INTEGRATING SIMULATION AND OPTIMIZATION FOR SUSTAINABILITY ASSESSMENT IN COMPLEX SUPPLY CHAINS: A UNIFIED FRAMEWORK WITH AI
Abstract
Keywords
Full Text:
PDFReferences
M. Abubakr, A. T. Abbas, I. Tomaz, M. S. Soliman, M. Luqman, and H. Hegab, ‘Sustainable and Smart Manufacturing: An Integrated Approach’, Sustainability, vol. 12, no. 6, Art. no. 6, Jan. 2020, doi: 10.3390/su12062280.
M. H. Saad, M. A. Nazzal, and B. M. Darras, ‘A general framework for sustainability assessment of manufacturing processes’, Ecological Indicators, vol. 97, pp. 211–224, Feb. 2019, doi: 10.1016/j.ecolind.2018.09.062.
M. Liu, T. Lin, F. Chu, F. Zheng, and C. Chu, ‘A New Robust Dynamic Bayesian Network Model with Bounded Deviation Budget for Disruption Risk Evaluation’, in Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems, A. Dolgui, A.
Bernard, D. Lemoine, G. von Cieminski, and D. Romero, Eds., Cham: Springer International Publishing, 2021, pp. 681–688. doi: 10.1007/978-3-030-85906-0_74.
R. M. Thirupathi, S. Vinodh, and S. Dhanasekaran, ‘Application of system dynamics modelling for a sustainable manufacturing system of an Indian automotive component manufacturing organisation: a case study’, Clean Techn Environ Policy, vol. 21, no. 5, pp. 1055–1071, Jul. 2019, doi:
1007/s10098-019-01692-2.
D. Ivanov, ‘Conceptualisation of a 7-element digital twin framework in supply chain and operations management’, International Journal of Production Research, vol. 62, no. 6, pp. 2220– 2232, Mar. 2024, doi: 10.1080/00207543.2023.2217291.
D. Ivanov, Structural Dynamics and Resilience in Supply Chain Risk Management, vol. 265. in International Series in Operations Research & Management Science, vol. 265. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-69305-7.
S. Moazzem, E. Crossin, F. Daver, and L. Wang, ‘Environmental impact of apparel supply chain and textile products’, Environ Dev Sustain, vol. 24, no. 8, pp. 9757–9775, Aug. 2022, doi: 10.1007/s10668-021-01873-4.
V. Carlan, C. Sys, and T. Vanelslander, ‘Innovation in Road Freight Transport: Quantifying the Environmental Performance of Operational Cost-Reducing Practices’, Sustainability, vol. 11, no. 8, Art. no. 8, Jan. 2019, doi: 10.3390/su11082212.
M. Brans, R. Bloemberg, and F. Felder, ‘Reporting under the “E” of the CSRD. An Overview of Legal Requirements and a Comparison With Existing Obligations under Environmental Law,
Focussing on the Netherlands’, European Energy and Environmental Law Review, vol. 33, no. 5, Oct.
, Accessed: Feb. 11, 2025. [Online]. Available:
https://kluwerlawonline.com/api/Product/CitationPDFURL?file=JournalsEELREELR2024015.pdf [10] F. Longo, K. A. Manfredi, V. Solina, R. Conte, and A. Cosma, ‘Improving Supply Chain Sustainability and Resilience via anyLogistix: Research Trends and Future Challenges’, Procedia Computer Science, vol. 232, pp. 1721–1728, Jan. 2024, doi: 10.1016/j.procs.2024.01.170.
S. Scamans, ‘Corporate Sustainability Reporting Directive’s (CSRD) impacts on stakeholders : an analysis of the European Sustainability Reporting Standards (ESRS)’, Kestävyysraportointidirektiivin (CSRD) vaikutukset sidosryhmiin : analyysi kestävyysraportoinnin standardeista (ESRS), 2024, Accessed: Feb. 11, 2025. [Online]. Available: https://lutpub.lut.fi/handle/10024/167556
A. Huang and F. Badurdeen, ‘Metrics-based approach to evaluate sustainable manufacturing performance at the production line and plant levels’, Journal of Cleaner Production, vol. 192, pp. 462– 476, Aug. 2018, doi: 10.1016/j.jclepro.2018.04.234.
Z. Song and Y. Moon, ‘Sustainability metrics for assessing manufacturing systems: a distance-to-target methodology’, Environ Dev Sustain, vol. 21, no. 6, pp. 2811–2834, Dec. 2019, doi: 10.1007/s10668-018-0162-7.
S. Sala, B. Ciuffo, and P. Nijkamp, ‘A systemic framework for sustainability assessment’, Ecological Economics, vol. 119, pp. 314–325, Nov. 2015, doi: 10.1016/j.ecolecon.2015.09.015.
B. Chidozie, A. Ramos, J. Vasconcelos, L. P. Ferreira, and R. Gomes, ‘Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach’, Sustainability, vol. 16, no. 22, Art. no. 22, Jan. 2024, doi: 10.3390/su16229709.
J. E. Leal, ‘AHP-express: A simplified version of the analytical hierarchy process method’, MethodsX, vol. 7, p. 100748, Jan. 2020, doi: 10.1016/j.mex.2019.11.021.
T. L. Saaty, Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS publications, 1994. Accessed: Oct. 19, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=wct10TlbbIUC&oi=fnd&pg=PT1&dq=Fundamen tals+of+Decision+Making+and+Priority+Theory+With+the+Analytic+...+By+Thomas+L.+Saaty&ots
=_E1xTSYKEc&sig=Yi6mj6yddzRkJ_EiETjowyBJyDk
L. Damiani, R. Revetria, I. Svilenova, and P. Giribone, ‘Survey and comparison of the project management softwares used by engineering, procurement and construction companies’, Advances in Energy and Environmental Science and Engineering, vol. 6, 2015, Accessed: Feb. 11, 2025. [Online]. Available: https://www.academia.edu/download/85363057/LENFI-11.pdf
E. Adorni, A. Rozhok, L. Damiani, and R. Revetria, ‘MODELLING AND SIMULATION COMPARISON OF CONVENTIONAL AND INNOVATIVE TRANSPORT FOR NATURAL GAS’, 2023. [20] A. van Wynsberghe, ‘Sustainable AI: AI for sustainability and the sustainability of AI’, AI Ethics, vol. 1, no. 3, pp. 213–218, Aug. 2021, doi: 10.1007/s43681-021-00043-6.
C.-J. Wu et al., ‘Sustainable AI: Environmental Implications, Challenges and Opportunities’, Proceedings of Machine Learning and Systems, vol. 4, pp. 795–813, Apr. 2022.
K. Ahmad, A. Rozhok, and R. Revetria, ‘Supply Chain Resilience in SMEs: Integration of
Generative AI in Decision-Making Framework’, in 2024 International Conference on Machine
Intelligence and Smart Innovation (ICMISI), May 2024, pp. 295–299. doi:
1109/ICMISI61517.2024.10580495.
I. Jackson, D. Ivanov, A. Dolgui, and J. Namdar, ‘Generative artificial intelligence in supply chain and operations management: a capability-based framework for analysis and implementation’,
International Journal of Production Research, vol. 62, no. 17, pp. 6120–6145, Sep. 2024, doi:
1080/00207543.2024.2309309.
DOI: https://dx.doi.org/10.21622/MARLOG.2025.14.1.83
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Anastasiia Rozhok, Khursheed Ahmad, Roberto Revetria

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The International Maritime Transport and Logistics Journal (MARLOG)
E-ISSN: 2974-3141
P-ISSN: 2974-3133
Published by:
Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt