A Comparative Analysis Between Wave and Solar Energy for Sustainability in Coastal zones; Case Study: Alexandria Port, Egypt

Wael A. Kamel, Youssef K. Mahfouz, Ahmed M. A. Moussa, Youssef A. Ebeid

Abstract


The growing impact of carbon emissions, including rising sea levels and extreme weather, underscores the need for sustainable energy solutions, especially in coastal areas. This study compares solar and wave energy in Alexandria, Egypt, evaluating their costs and environmental feasibility. Utilizing Alexandria’s high solar irradiance and promising wave energy potential, Solar Photovoltaic (PV) systems and Oscillating Water Column (OWC) wave energy systems are assessed. HOMER PRO software was used for solar modeling, while empirical formulas and MATLAB estimated wave energy production. Results show solar PV systems are more cost-effective, with a Levelized Cost of Energy (LCOE) of $0.01165/kWh and a CO₂ reduction of 26.3 million kg annually. In contrast, wave energy offers more consistent production and a larger environmental benefit (55 million kg CO₂ reduction per year), but with higher initial costs and an LCOE of $0.0472/kWh. The study concludes that while solar energy is more cost-effective, wave energy holds significant potential for long-term development in coastal zones like Alexandria. 

Keywords


Solar Energy, Wave Energy, Oscillating Water Column, PV Panels, LCOE, Alexandria Port.

Full Text:

PDF

References


Ang, T. Z., Salem, M., Kamarol, M., Das, H. S., Nazari, M. A., & Prabaharan, N. (2022). A Comprehensive Study of Renewable Energy Sources: Classifications, Challenges, and

Suggestions. Energy Strategy Reviews, 43, 100939. https://doi.org/10.1016/j.esr.2022.100939

Abubakr, H., Vasquez, J. C., Mahmoud, K., Darwish, M. M. F., & Guerrero, J. M. (2022). Comprehensive Review on Renewable Energy Sources in Egypt—Current Status, Grid Codes, and Future Vision. IEEE Access, 10, 4081-4101. https://doi.org/10.1109/ACCESS.2022.3140385

Moharram, N. A., Tarek, A., Gaber, M., & Bayoumi, S. (2022). Brief Review on Egypt’s Renewable Energy Current Status and Future Vision. Energy Reports, 8, 165-172. https://doi.org/10.1016/j.egyr.2022.06.103

Ban, K. (2008). Kyoto Protocol Reference Manual. United Nations Framework Convention on Climate Change, 130. UNFCCC. https://doi.org/10.5213/jkcs.1998.2.2.62

Maamoun, N. (2019). The Kyoto Protocol: Empirical Evidence of a Hidden Success. Journal of

Environmental Economics and Management, 95, 227-256. https://doi.org/10.1016/j.jeem.2019.04.001

International Energy Agency (IEA). (2019). CO2 Status Report 2018: The Latest Trends in Energy and Emissions in 2018. France: International Energy Agency.

https://www.iea.org/reports/global-energyreview-2019

Amini, E., Asadi, R., Golbaz, D., Nasiri, M., Omid Naeeni, S. T., & Amini, F. (2020). Comparative Analysis of Oscillating Wave Energy Converter Performance in Southern Coast of the Caspian Sea. arXiv preprint arXiv:2011.13221. https://doi.org/10.48550/arXiv.2011.13221

Fadaeenejad, M., Shamsipour, R., Rokni, S. D., & Gomes, C. (2014). New Approaches in Harnessing Wave Energy: With Special Attention to Small Islands. Renewable and Sustainable Energy Reviews, 29, 345-354. https://doi.org/10.1016/j.rser.2013.08.077

Kushwah, S. (2021). An Oscillating Water Column (OWC): The Wave Energy Converter. Journal of The Institution of Engineers (India): Series C, 102(5), 1311-1317. https://doi.org/10.1016/j.ecmx.2022.100322

Elhussieny, M., Arafat, O., & El Kassar, A. (2023). The Outcomes of Applying Smart Green Port

Concept in Egyptian Ports (Case Study: Alexandria Port). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 413-420. https://doi.org/10.5194/isprs-archivesXLVIII-1-W2-2023-413-2023

McTiernan, K. L., & Sharman, K. T. (2020). Review of Hybrid Offshore Wind and Wave Energy

Systems. Journal of Physics: Conference Series, 1452(1), 012016. https://doi.org/10.1088/17426596/1452/1/012016

Kannan, N., & Vakeesan, D. (2016). Solar Energy for Future World: A Review. Renewable and Sustainable Energy Reviews, 62, 1092-1105. https://doi.org/10.1016/j.rser.2016.05.022

Boccotti, P. (2006). Comparison Between a U-OWC and a Conventional OWC. Okeanos

Laboratory, Mediterranean University, Italy, October. https://doi.org/10.1016/j.oceaneng.2006.04.005

Østergaard, P. A., Andersen, A. N., & Sorknæs, P. (2022). The business-economic energy system modelling tool energyPRO. Energy, 257, 124792. https://doi.org/10.1016/j.energy.2022.124792.

Hossain, J., Sikander, S. S., & Hossain, E. (2016). A wave-to-wire model of ocean wave energy conversion system using MATLAB/Simulink platform. In 2016 4th International Conference on the Development in the Renewable Energy Technology (ICDRET) (pp. 1-6). IEEE. https://doi.org/10.1109/ICDRET.2016.7461246.

Sislian, L., & Jaegler, A. (2018). A sustainable maritime balanced scorecard applied to the Egyptian Port of Alexandria. Supply Chain Forum: An International Journal, 19(2), 101-110.

https://doi.org/10.1080/16258312.2018.1466749

Goda, Y. (2010). Random Seas and Design of Maritime Structures. Singapore: World Scientific. https://doi.org/10.1142/7425

Battjes, J. A., & Janssen, J. P. F. M. (1978). Energy Loss and Set-Up Due to Breaking of Random Waves. Proceedings of the 16th International Conference on Coastal Engineering, 569-587. https://doi.org/10.1061/9780872621909.034

Lisboa, R. C., Teixeira, P. R. F., & Fortes, C. J. (2017). Numerical evaluation of wave energy potential in the south of Brazil. Energy, 121, 176-184. https://doi.org/10.1016/j.energy.2016.11.082.

Iris, Ç., & Lam, J. S. L. (2019). A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renewable and Sustainable Energy Reviews, 112, 170-182. https://doi.org/10.1016/j.rser.2019.06.037

Pavlic, B., Cepak, F., Sucic, B., Peckaj, M., & Kandus, B. (2014). Sustainable port infrastructure, practical implementation of the green port concept. Thermal Science, 18(3), 935-948. https://doi.org/10.2298/TSCI1403935P

Ramos, V., Giannini, G., Calheiros-Cabral, T., Rosa-Santos, P., & Taveira-Pinto, F. (2022). An integrated approach to assessing the wave potential for the energy supply of ports: A case study. Journal of Marine Science and Engineering, 10(12), 1989. https://doi.org/10.3390/jmse10121989

Clemente, D., Rosa-Santos, P., & Taveira-Pinto, F. (2021). On the potential synergies and applications of wave energy converters: A review. Renewable and Sustainable Energy Reviews, 135, 110162. https://doi.org/10.1016/j.rser.2020.110162




DOI: https://dx.doi.org/10.21622/MARLOG.2025.14.1.78

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Wael A. Kamel, Youssef K. Mahfouz, Ahmed M. A. Moussa, Youssef A. Ebeid

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

The International Maritime Transport and Logistics Journal (MARLOG)

E-ISSN: 2974-3141
P-ISSN: 2974-3133

Published by:

Academy Publishing Center (APC)

Arab Academy for Science, Technology and Maritime Transport (AASTMT)

Alexandria, Egypt