Improving the Efficiency of Concentric Heat Exchanger using Nano Particles in the Fluid and Transitioning
Abstract
Keywords
Full Text:
PDFReferences
S.M. Ammar, et al., Condensing heat transfer coefficients of R134a in smooth and grooved multiport flat tubes of automotive heat exchanger: an experimental investigation, Int. J. Heat Mass Tran. 134 (2019) 366–376, https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.047.
X. Han, N. Chen, J. Yan, J. Liu, M. Liu, S. Karellas, Thermodynamic analysis and life cycle assessment of supercritical pulverized coal-fired power plant integrated with No.0 feedwater pre-heater under partial loads, J. Clean. Prod. 233 (2019) 1106–1122, https://doi.org/10.1016/j.jclepro.2019.06.159.
M.M. Sarafraz, M.R. Safaei, M. Goodarzi, B. Yang, M. Arjomandi, Heat transfer analysis of Ga-In-Sn in a compact heat exchanger equipped with straight micropassages, Int. J. Heat Mass Tran. 139 (2019) 675–684, https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.057 .
E.I. Jassim, Exergy analysis of petrol engine accommodated nanoparticle in the lubricant system, Int. J. Exergy 35 (2021) 406–420.
Esam I. Jassim, Faizan Ahmed, Bashar Jasem, Effect of Mixing Nano-Additive with Engine Oil on the Heat Transfer Performance, International Petroleum Technology Conference, 2020.
A. Bhattad, J. Sarkar, P. Ghosh, Improving the performance of refrigeration systems by using nanofluids: a comprehensive review, Renew. Sustain. Energy Rev. 82 (2018) 3656–3669.
E.Y. Gürbüz, A. Sozen, ¨ H.˙ I. Variyenli, A. Khanlari, A.D. Tuncer, A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates, J. Braz. Soc. Mech. Sci. Eng. 42 (2020) 524, https://doi.org/10.1007/s40430-020-02601-1.
B. Ali, R.A. Naqvi, L. Ali, S. Abdal, S. Hussain, A comparative description on time-dependent rotating magnetic transport of a water base liquid H2O with hybrid nano-materials Al2O3-Cu and Al2O3-TiO2 over an extending sheet using Buongiorno model: finite element approach, Chin. J. Phys. 70 (2021) 125–139, https://doi.org/10.1016/j.cjph.2020.12.022.
L. Ali, X. Liu, B. Ali, S. Mujeed, S. Abdal, S.A. Khan, Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet, Coatings 10 (2020), https://doi.org/10.3390/coatings10020170.
L. Ali, X. Liu, B. Ali, S. Mujeed, S. Abdal, A. Mutahir, The impact of nanoparticles due to applied magnetic dipole in micropolar fluid flow using the finite element method, Symmetry 12 (2020), https://doi.org/10.3390/sym12040520.
L. Ali, X. Liu, B. Ali, Finite element analysis of variable viscosity impact on MHD flow and heat transfer of nanofluid using the cattaneo–christov model, Coatings (2020) 10, https://doi.org/10.3390/coatings10040395.
H. Eshgarf, R. Kalbasi, A. Maleki, M.S. Shadloo, A. karimipour, A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption, J. Therm. Anal. Calorim. (2020), https://doi.org/10.1007/s10973-020-09998- w. Jul.
M. Ghalandari, M. Irandoost Shahrestani, A. Maleki, M. Safdari Shadloo, M. El Haj Assad, Applications of intelligent methods in various types of heat exchangers: a review, J. Therm. Anal. Calorim. (2021), https://doi.org/10.1007/s10973-020-10425-3. Jan.
H. Masuda, A. Ebata, K. Teramae, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei 4 (1993) 227–233.
Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow 21 (2000) 58–64.
D. Zheng, J. Wang, Z. Chen, J. Baleta, B. Sund´en, Performance analysis of a plate heat exchanger using various nanofluids, Int. J. Heat Mass Tran. 158 (2020) 119993, https://doi.org/10.1016/j.ijheatmasstransfer.2020.119993.
A. Sozen, ¨ A. Khanları, E. Çiftçi, Heat transfer enhancement of plate heat exchanger utilizing kaolin-including working fluid, Proc. Inst. Mech. Eng. Part J. Power Energy. 233 (2019) 626–634, https://doi.org/10.1177/0957650919832445.
M.M. Sarafraz, M.R. Safaei, Z. Tian, M. Goodarzi, E.P. Bandarra Filho, M. Arjomandi, Thermal assessment of nano-particulate graphene-water/ethylene glycol (WEG 60:40) nano-suspension in a compact heat exchanger, Energies (2019) 12, https://doi.org/10.3390/en12101929.
Khan AA, Danish M, Rubaiee S, Yahya SM. Insight into the inves- tigation of Fe3O4/SiO2 nanoparticles suspended aqueous nano- fluids in hybrid photovoltaic/thermal system. Clean Eng Technol. 2022. https://doi.org/10.1016/J.CLET.2022.100572.
M. Goodarzi, et al., Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphenebased nanofluids, Int. Commun. Heat Mass Tran. 76 (2016) 16–23, https://doi.org/10.1016/j.icheatmasstransfer.2016.05.018.
A. Khanlari, A. Sozen, ¨ H.˙ I. Variyenli, Simulation and experimental analysis of heat transfer characteristics in the plate type heat exchangers using TiO2/water nanofluid, Int. J. Numer. Methods Heat Fluid Flow 29 (2019) 1343–1362, https://doi.org/10.1108/HFF-05-2018-0191.
M. Goodarzi, et al., Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids, Int. Commun. Heat Mass Tran. 66 (2015) 172–179, https://doi.org/10.1016/j.icheatmasstransfer.2015.05.002.
M.H. Bahmani, O.A. Akbari, M. Zarringhalam, G. Ahmadi Sheikh Shabani, M. Goodarzi, Forced convection in a double tube heat exchanger using nanofluids with constant and variable thermophysical properties, Int. J. Numer. Methods Heat Fluid Flow 30 (2019) 3247–3265, https://doi.org/10.1108/HFF-01-2019- 0017.
M.H. Bahmani, et al., Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger, Adv. Powder Technol. 29 (2018) 273–282, https://doi.org/10.1016/j.apt.2017.11.013.
Z.X. Li, U. Khaled, A.A.A.A. Al-Rashed, M. Goodarzi, M.M. Sarafraz, R. Meer, Heat transfer evaluation of a micro heat exchanger cooling with spherical carbonacetone nanofluid, Int. J. Heat Mass Tran. 149 (2020) 119124, https://doi.org/10.1016/j.ijheatmasstransfer.2019, 119124.
S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Tran. 125 (2003) 567–574.
R. Hosseinnezhad, O.A. Akbari, H.H. Afrouzi, M. Biglarian, A. Koveiti, D. Toghraie, Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts, J. Therm. Anal. Calorim. 132 (2018) 741–759.
N. Putra, W.N. Septiadi, G. Julian, A. Maulana, R. Irwansyah, An experimental study on thermal performance of nano fluids in microchannel heat exchanger, Int. J. Technol. 2 (2013) 167–177.
A.K. Tiwari, P. Ghosh, J. Sarkar, Particle concentration levels of various nanofluids in plate heat exchanger for best performance, Int. J. Heat Mass Tran. 89 (2015) 1110–1118, https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.118.
Henein, S.M.; Abdel-Rehim, A.A. The performance response of a heat pipe evacuated tube solar collector using MgO/MWCNT hybrid nanofluid as a working fluid. Case Stud. Therm. Eng. 2022, 33, 101957. https://doi.org/10.1016/j.csite.2022.101957.
B. Sun, C. Peng, R. Zuo, D. Yang, H. Li, Investigation on the flow and convective heat transfer characteristics of nanofluids in the plate heat exchanger, Exp. Therm. Fluid Sci. 76 (2016) 75–86, https://doi.org/10.1016/j.expthermflusci.2016.03.005.
M.M. Sarafraz, F. Hormozi, V. Nikkhah, Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids, Exp. Therm. Fluid Sci. 78 (2016) 41–49, https://doi.org/10.1016/j.expthermflusci.2016.05.014.
M. Fares, M. AL-Mayyahi, M. AL-Saad, Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids, Case Stud. Therm. Eng. 18 (2020) 100584, https://doi.org/10.1016/j.csite.2020.100584.
A.D. Tuncer, A. Sozen, ¨ A. Khanlari, E.Y. Gürbüz, H.˙ I. Variyenli, Upgrading the performance of a new shell and helically coiled heat exchanger by using longitudinal fins, Appl. Therm. Eng. 191 (2021) 116876, https://doi.org/10.1016/j.applthermaleng.2021.116876.
A.D. Tuncer, A. Sozen, ¨ A. Khanlari, E.Y. Gürbüz, H.˙ I. Variyenli, Analysis of thermal performance of an improved shell and helically coiled heat exchanger, Appl. Therm. Eng. 184 (2021) 116272, https://doi.org/10.1016/j.applthermaleng.2020.116272.
R. Sheikh, S. Gholampour, H. Fallahsohi, M. Goodarzi, M. Mohammad Taheri, M. Bagheri, Improving the efficiency of an exhaust thermoelectric generator based on changes in the baffle distribution of the heat exchanger, J. Therm. Anal. Calorim. 143 (2021) 523–533, https://doi.org/10.1007/s10973-019-09253-x . [35] Z. Tian, et al., Turbulent flows in a spiral double-pipe heat exchanger: optimal performance conditions using an enhanced genetic algorithm, Int. J. Numer. Methods Heat Fluid Flow 30 (2019) 39–53, https://doi.org/10.1108/HFF-04-2019-0287.
M. Hashemian, S. Jafarmadar, H.S. Dizaji, A comprehensive numerical study on multi-criteria design analyses in a novel form (conical) of double pipe heat exchanger, Appl. Therm. Eng. 102 (2016) 1228–1237. [37] H.-Z. Han, B.-X. Li, H. Wu, W. Shao, Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method, Int. J. Therm. Sci. 90 (2015) 173–186.
M. Prithiviraj, M.J. Andrews, Three dimensional numerical simulation of shell-and-tube heat exchangers. Part I: foundation and fluid mechanics, Numer. Heat Tran. 33 (1998) 799–816.
M. Prithiviraj, M.J. Andrews, Three-dimensional numerical simulation of shell-and-tube heat exchangers. Part II: heat transfer, Numer. Heat Tran. 33 (1998) 817–828.
S.K. Saha, M. Baelmans, A design method for rectangular microchannel counter flow heat exchangers, Int. J. Heat Mass Tran. 74 (2014) 1–12.
S.K. Saha, M. Baelmans, A design method for rectangular microchannel counter flow heat exchangers, Int. J. Heat Mass Tran. 74 (2014) 1–12.
M. Zarringhalam, A. Karimipour, D. Toghraie, Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid, Exp. Therm. Fluid Sci. 76 (2016) 342–351.
M.H. Esfe, S. Saedodin, O. Mahian, S. Wongwises, Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations, Int. J. Heat Mass Tran. 73 (2014) 186–194.
B.-H. Chun, H.U. Kang, S.H. Kim, Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system, Kor. J. Chem. Eng. 25 (2008) 966–971.
M.H. Esfe, S. Saedodin, O. Mahian, S. Wongwises, Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations, Int. J. Heat Mass Tran. 73 (2014) 186–194.
A.A.A. Arani, J. Amani, Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid, Exp. Therm. Fluid Sci. 44 (2013) 520–533.
X. Han, N. Chen, J. Yan, J. Liu, M. Liu, S. Karellas, Thermodynamic analysis and life cycle assessment of supercritical pulverized coal-fired power plant integrated with No.0 feedwater pre-heater under partial loads, J. Clean. Prod. 233 (2019) 1106–1122, https://doi.org/10.1016/j.jclepro.2019.06.159.
DOI: https://dx.doi.org/10.21622/MARLOG.2024.13.1.105
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ali I. Shehata, Ahmed A. Taha, Mohamed M. Khairat Dawood
The International Maritime Transport and Logistics Journal (MARLOG)
E-ISSN: 2974-3141
P-ISSN: 2974-3133
Published by:
Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt