Modeling the kinetics of pyrolysis of date seeds using artificial neural networks
Abstract
Ground date seeds were subjected to thermal analysis in a stream of Nitrogen at four different heating rates (5, 10, 15 and 20oC.min-1 ) and their TG – DTG patterns were obtained. Two peaks showed up for the degradation of lignocellulosic components. Three iso-conversional methods were used to obtain the activation energy of these steps, namely the Flynn-Wall-Ozawa (FWO), the Kissinger-Asahira-Sunoze (KAS) and the Friedmann methods. The values of activation energy for the first step of degradation varied from 113.76 to 117.80 kJ.mol-1 , depending on the method of calculation. For the second step, the corresponding values were 130.99, 123.07 and 127.52 kJ.mol-1 . At the end of the second peak, biochar was formed that went on cracking off its more volatile constituents at higher temperatures. An artificial Neural Network simulation was carried out for the first degradation step. The values obtained from that simulation for conversion – temperature curves and for biochar content were in excellent agreement with the corresponding experimental figures. However, the simulated values obtained for activation energy at different conversion levels were higher.
Received: 17 February 2024
Accepted: 11 April 2024
Published: 20 May 2024
Keywords
Full Text:
PDFReferences
M. V. L. Chhandama, A. C. Chetia, K. B. Satyan, Supongsenla Ao, J. V. Ruatpuia, and S. L. Rokhum, “Valorisation of food waste to sustainable energy and other value-added products: A review,” Bioresour Technol Rep, vol. 17, p. 100945, Feb. 2022, doi: 10.1016/j.biteb.2022.100945.
A. Sridhar, A. Kapoor, P. Senthil Kumar, M. Ponnuchamy, S. Balasubramanian, and S. Prabhakar, “Conversion of food waste to energy: A focus on sustainability and life cycle assessment,” Fuel, vol. 302, p. 121069, Oct. 2021, doi: 10.1016/j.fuel.2021.121069.
W. Zieri and I. Ismail, “Alternative Fuels from Waste Products in Cement Industry,” in Handbook of Ecomaterials, Cham: Springer International Publishing, 2019, pp. 1183–1206. doi: 10.1007/978-3-319-68255-6_142.
N. Chatziaras, C. S. Psomopoulos, and N. J. Themelis, “Use of waste derived fuels in cement industry: a review,” Management of Environmental Quality: An International Journal, vol. 27, no. 2, pp. 178–193, Mar. 2016, doi: 10.1108/MEQ-01-2015-0012.
A. Sarker, R. Ahmmed, S. M. Ahsan, J. Rana, M. K. Ghosh, and R. Nandi, “A comprehensive review of food waste valorization for the sustainable management of global food waste,” Sustainable Food Technology, vol. 2, no. 1, pp. 48–69, 2024, doi: 10.1039/D3FB00156C.
F. Ronsse, S. van Hecke, D. Dickinson, and W. Prins, “Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions,” GCB Bioenergy, vol. 5, no. 2, pp. 104–115, Mar. 2013, doi: 10.1111/gcbb.12018.
N. Cai, H. Zhang, J. Nie, Y. Deng, and J. Baeyens, “Biochar from Biomass Slow Pyrolysis,” IOP Conf Ser Earth Environ Sci, vol. 586, no. 1, p. 012001, Oct. 2020, doi: 10.1088/1755-1315/586/1/012001.
M. Maniscalco, G. Infurna, G. Caputo, L. Botta, and N. Tz. Dintcheva, “Slow Pyrolysis as a Method for Biochar Production from Carob Waste: Process Investigation and Products’ Characterization,” Energies (Basel), vol. 14, no. 24, p. 8457, Dec. 2021, doi: 10.3390/en14248457.
P. Srivatsav, B. S. Bhargav, V. Shanmugasundaram, J. Arun, K. P. Gopinath, and A. Bhatnagar, “Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants (Dyes) from Aqueous Environment: A Review,” Water (Basel), vol. 12, no. 12, p. 3561, Dec. 2020, doi: 10.3390/w12123561.
B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, and H. Chu, “Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review,” J Anal Appl Pyrolysis, vol. 155, p. 105081, May 2021, doi: 10.1016/j.jaap.2021.105081.
N. Jagadeesh and B. Sundaram, “Adsorption of Pollutants from Wastewater by Biochar: A Review,” Journal of Hazardous Materials Advances, vol. 9, 2023, doi: 10.1016/j.hazadv.2022.100226.
C. L. Yiin, S. Yusup, P. Udomsap, B. Yoosuk, and S. Sukkasi, “Stabilization of Empty Fruit Bunch (EFB) derived Bio-oil using Antioxidants,” 2014, pp. 223–228. doi: 10.1016/B978-0-444-63456-6.50038-7.
Y. Y. Chong, S. Gan, L. Y. Lee, H. K. Ng, and S. Thangalazhy-Gopakumar, “Role of catalysts in biofuel production through fast pyrolysis,” in Bioenergy Engineering, Elsevier, 2023, pp. 115–132. doi: 10.1016/B978-0-323-98363-1.00023-5.
S. Bielfeldt et al., “Observer‐blind randomized controlled study of a cosmetic blend of safflower, olive and other plant oils in the improvement of scar and striae appearance,” Int J Cosmet Sci, vol. 40, no. 1, pp. 81–86, Feb. 2018, doi: 10.1111/ics.12438.
O. Onay and O. M. Kockar, “Slow, fast and flash pyrolysis of rapeseed,” Renew Energy, vol. 28, no. 15, pp. 2417–2433, Dec. 2003, doi: 10.1016/S0960-1481(03)00137-X.
J. O. Ighalo et al., “Flash pyrolysis of biomass: a review of recent advances,” Clean Technol Environ Policy, vol. 24, no. 8, pp. 2349–2363, Oct. 2022, doi: 10.1007/s10098-022-02339-5.
C. Gai, Y. Dong, and T. Zhang, “The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions,” Bioresour Technol, vol. 127, pp. 298–305, Jan. 2013, doi: 10.1016/j.biortech.2012.09.089.
A. Saffe, A. Fernandez, M. Echegaray, G. Mazza, and R. Rodriguez, “Pyrolysis kinetics of regional agro-industrial wastes using isoconversional methods,” Biofuels, vol. 10, no. 2, pp. 245–257, Mar. 2019, doi: 10.1080/17597269.2017.1316144.
M. Nour, M. Amer, A. Elwardany, A. Attia, X. Li, and S. Nada, “Pyrolysis, kinetics, and structural analyses of agricultural residues in Egypt: For future assessment of their energy potential,” Clean Eng Technol, vol. 2, p. 100080, Jun. 2021, doi: 10.1016/j.clet.2021.100080.
R. K. Mishra, S. U. Naik, S. M. Chistie, V. Kumar, and A. Narula, “Pyrolysis of agricultural waste in a thermogravimetric analyzer: Studies of physicochemical properties, kinetics behaviour, and gas compositions,” Mater Sci Energy Technol, vol. 5, pp. 399–410, 2022, doi: 10.1016/j.mset.2022.09.001.
N. Madany, M. Gadalla, F. Ashour, and M. Abadir, “Investigating the kinetic parameters in the thermal analysis of jojoba cake,” Egypt J Chem, vol. 0, no. 0, pp. 0–0, Oct. 2022, doi: 10.21608/ejchem.2022.160576.6924.
S. T. Aly, Sh. K. Amin, S. A. El Sherbiny, and M. F. Abadir, “Kinetics of isothermal oxidation of WC–20Co hot-pressed compacts in air,” J Therm Anal Calorim, vol. 118, no. 3, pp. 1543–1549, Dec. 2014, doi: 10.1007/s10973-014-4044-4.
R. Ebrahimi-Kahrizsangi and M. H. Abbasi, “Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 1, pp. 217–221, Feb. 2008, doi: 10.1016/S1003-6326(08)60039-4.
A. C. R. Lim, B. L. F. Chin, Z. A. Jawad, and K. L. Hii, “Kinetic Analysis of Rice Husk Pyrolysis Using Kissinger-Akahira-Sunose (KAS) Method,” Procedia Eng, vol. 148, pp. 1247–1251, 2016, doi: 10.1016/j.proeng.2016.06.486.
B. Khiari, M. Massoudi, and M. Jeguirim, “Tunisian tomato waste pyrolysis: thermogravimetry analysis and kinetic study,” Environmental Science and Pollution Research, vol. 26, no. 35, pp. 35435–35444, Dec. 2019, doi: 10.1007/s11356-019-04675-4.
F. Zaman, Z. Du, A. Munawar, M. W. Ishaq, and Y. Guan, “Pyrolysis kinetics and conversion of pomegranate peels into porous carbon,” Environ Prog Sustain Energy, vol. 42, no. 5, Sep. 2023, doi: 10.1002/ep.14153.
M. M. Alashmawy, H. S. Hassan, S. A. Ookawara, and A. E. Elwardany, “Thermal decomposition characteristics and study of the reaction kinetics of tea-waste,” Biomass Convers Biorefin, vol. 13, no. 11, 2023, doi: 10.1007/s13399-023-04017-y.
F. Demir, B. Dönmez, H. Okur, and F. Sevim, “Calcination Kinetic of Magnesite from Thermogravimetric Data,” Chemical Engineering Research and Design, vol. 81, no. 6, pp. 618–622, Jul. 2003, doi: 10.1205/026387603322150462.
Fedunik-Hofman, Bayon, and Donne, “Comparative Kinetic Analysis of CaCO3/CaO Reaction System for Energy Storage and Carbon Capture,” Applied Sciences, vol. 9, no. 21, p. 4601, Oct. 2019, doi: 10.3390/app9214601.
P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, and J. M. Criado, “Limitations of model-fitting methods for kinetic analysis: Polystyrene thermal degradation,” Resour Conserv Recycl, vol. 74, pp. 75–81, May 2013, doi: 10.1016/j.resconrec.2013.02.014.
H. Mahmood, A. Shakeel, A. Abdullah, M. Khan, and M. Moniruzzaman, “A Comparative Study on Suitability of Model-Free and Model-Fitting Kinetic Methods to Non-Isothermal Degradation of Lignocellulosic Materials,” Polymers (Basel), vol. 13, no. 15, p. 2504, Jul. 2021, doi: 10.3390/polym13152504.
A. Dhaundiyal, S. B. Singh, M. M. Hanon, and R. Rawat, “Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus,” Environmental and Climate Technologies, vol. 22, no. 1, pp. 5–21, Feb. 2018, doi: 10.1515/rtuect-2018-0001.
hanaa abdelhady, magdi Abadir, H. Sibak, and jasmine abdelraouf, “Kinetics of pyrolysis of water hyacinth: A novel empirical approach,” Egypt J Chem, vol. 0, no. 0, pp. 0–0, Mar. 2022, doi: 10.21608/ejchem.2022.125143.5565.
P.N. Sheth and B.V. Babu, “Kinetic modeling of the pyrolysis of biomass” National Conference on Environmental Conservation (NCEC-2006), BITS-Pilani,” https://www.researchgate.net/publication/265379709_Kinetic_Modeling_of_the_Pyrolysis_of_Biomass.
A. Bieniek, M. Reinmöller, F. Küster, M. Gräbner, W. Jerzak, and A. Magdziarz, “Investigation and modelling of the pyrolysis kinetics of industrial biomass wastes,” J Environ Manage, vol. 319, p. 115707, Oct. 2022, doi: 10.1016/j.jenvman.2022.115707.
S. Sunphorka, B. Chalermsinsuwan, and P. Piumsomboon, “Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents,” Fuel, vol. 193, pp. 142–158, Apr. 2017, doi: 10.1016/j.fuel.2016.12.046.
T. Xie, R. C. Wei, C. Z. Gong, and J. Wang, “Thermal Oxidative Decomposition of Soybean Straw: Thermo-Kinetic Analysis via Thermogravimetric Analysis and Artificial Neural Networks,” IOP Conf Ser Earth Environ Sci, vol. 581, no. 1, p. 012019, Nov. 2020, doi: 10.1088/1755-1315/581/1/012019.
A. Hai et al., “Valorization of groundnut shell via pyrolysis: Product distribution, thermodynamic analysis, kinetic estimation, and artificial neural network modeling,” Chemosphere, vol. 283, p. 131162, Nov. 2021, doi: 10.1016/j.chemosphere.2021.131162.
L. Dong, R. Wang, P. Liu, and S. Sarvazizi, “Prediction of Pyrolysis Kinetics of Biomass: New Insights from Artificial Intelligence-Based Modeling,” International Journal of Chemical Engineering, vol. 2022, pp. 1–8, Mar. 2022, doi: 10.1155/2022/6491745.
S. T. Aly, I. A. Ibrahim, and M. F. Abadir, “Kinetics of Pyrolysis of Date Kernels,” Int J Eng Adv Technol, vol. 9, no. 3, pp. 930–935, Feb. 2020, doi: 10.35940/ijeat.C5419.029320.
M. Raza and B. Abu-Jdayil, “Synergic interactions, kinetic and thermodynamic analyses of date palm seeds and cashew shell waste co-pyrolysis using Coats–Redfern method,” Case Studies in Thermal Engineering, vol. 47, p. 103118, Jul. 2023, doi: 10.1016/j.csite.2023.103118.
ASTM International, “ASTM C136/C136M Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” ASTM Standard Book, 2019.
S. Vyazovkin, “Kissinger Method in Kinetics of Materials: Things to Beware and Be Aware of,” Molecules, vol. 25, no. 12, p. 2813, Jun. 2020, doi: 10.3390/molecules25122813.
N. Koga and J. šesták, “Further aspects of the kinetic compensation effect,” Journal of Thermal Analysis, vol. 37, no. 5, 1991, doi: 10.1007/BF01932804.
D. Rammohan, N. Kishore, and R. V. S. Uppaluri, “Reaction Kinetics of Non-isothermal Pyrolysis of Tube Waste in Thermogravimetric Analyzer,” in Sustainable Energy Generation and Storage, Singapore: Springer Nature Singapore, 2023, pp. 185–193. doi: 10.1007/978-981-99-2088-4_15.
J. Li et al., “Comparative Study on Pyrolysis Kinetics Behavior and High-Temperature Fast Pyrolysis Product Analysis of Coastal Zone and Land Biomasses,” ACS Omega, vol. 7, no. 12, pp. 10144–10155, Mar. 2022, doi: 10.1021/acsomega.1c06363.
O. A. Montesinos López, A. Montesinos López, and J. Crossa, “Fundamentals of Artificial Neural Networks and Deep Learning,” in Multivariate Statistical Machine Learning Methods for Genomic Prediction, Cham: Springer International Publishing, 2022, pp. 379–425. doi: 10.1007/978-3-030-89010-0_10.
I. M. S. Anekwe, “Artificial Intelligence Applications in Solar Photovoltaic Renewable Energy Systems,” 2023, pp. 47–86. doi: 10.21741/9781644902530-3.
J. Arcenegui-Troya, P. E. Sánchez-Jiménez, A. Perejón, and L. A. Pérez-Maqueda, “Determination of the activation energy under isothermal conditions: revisited,” J Therm Anal Calorim, vol. 148, no. 4, pp. 1679–1686, Feb. 2023, doi: 10.1007/s10973-022-11728-3.
I. Bakhattar et al., “Physicochemical characterization, thermal analysis and pyrolysis kinetics of lignocellulosic biomasses,” Biofuels, vol. 14, no. 10, pp. 1015–1026, Nov. 2023, doi: 10.1080/17597269.2023.2201732.
Y. Li et al., “Pyrolysis kinetics and thermodynamic parameters of bamboo residues and its three main components using thermogravimetric analysis,” Biomass Bioenergy, vol. 170, p. 106705, Mar. 2023, doi: 10.1016/j.biombioe.2023.106705.
J. Cheng, S. C. Hu, G. T. Sun, Z. C. Geng, and M. Q. Zhu, “The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process,” Ind Crops Prod, vol. 170, 2021, doi: 10.1016/j.indcrop.2021.113690.
N. M. Noor, A. Shariff, N. Abdullah, and N. S. M. Aziz, “Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste,” Malaysian Journal of Fundamental and Applied Sciences, vol. 15, no. 2, 2019, doi: 10.11113/mjfas.v15n2.1015.
K. Wystalska and A. Kwarciak-Kozłowska, “The Effect of Biodegradable Waste Pyrolysis Temperatures on Selected Biochar Properties,” Materials, vol. 14, no. 7, p. 1644, Mar. 2021, doi: 10.3390/ma14071644.
DOI: http://dx.doi.org/10.21622/resd.2024.10.1.811
Refbacks
Copyright (c) 2024 R. A. Felobes, Magdy Abadir
Renewable Energy and Sustainable Development
E-ISSN: 2356-8569
P-ISSN: 2356-8518
Published by:
Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt