Exploring the adaptability of the charge transport layers for enhanced efficiency in lead-free CH₃NH₃SnI₃ perovskite solar cells
Abstract
Perovskite solar cells (PSCs) have attracted a lot of interest for their remarkable energy transformation productivity (PCE) and possibility for application in both organic and inorganic compounds. Perfect for sustainable solar technologies, methylammonium tin iodide (CH₃NH₃) is a lead-free, non-hazardous perovskite displaying amazing optoelectronic properties. Its tunable bandgap helps to absorb solar energy efficiently. Its cost and great efficiency render it a perfect photovoltaic material. To improve essential characteristics of the hole transport layer (HTL), absorption area, and electron transport layer (ETL), this work models CH₃NH₃SnI₃-based PSCs using SCAPS-1D software. Simulations have been used to investigate the utility of CH₃NH₃SnI₃-based PSCs using Cu₂O as the HTL and including WS₂, C₆₀, IGZO, and ZnO as ETL compounds. Moreover, the effects on essential performance criteria like power fill factor (FF), conversion efficiency (PCE), open-circuit voltage ( ), and short-circuit current density ( ) of thickness, defect levels, absorber, HTL, and ETL have been investigated. The results show how much changing the ETL improves device efficiency. With PCE values of 33.43%, 33.19%, 33.19%, and 33.23%, respectively, ETLs consisting of WS₂, C₆₀, IGZO, and ZnO have been shown. Furthermore, this work investigated the effect of temperature on PSC performance. These results demonstrate quantum efficiency (QE) and the current density-voltage (J-V) responses.
Received: 03 July 2025
Accepted: 10 August 2025
Published: 26 August 2025
Keywords
Full Text:
PDFReferences
C. Liu, H. Mohammadpourkarbasi, and S. Sharples, “Life cycle carbon and cost assessments of the retrofit to Passivhaus EnerPHit standard of suburban residential buildings in Hunan, China,” Energy Build, vol. 332, p. 115417, Apr. 2025, doi: 10.1016/j.enbuild.2025.115417.
Q. Hassan et al., “The renewable energy role in the global energy Transformations,” Renewable Energy Focus, vol. 48, p. 100545, Mar. 2024, doi: 10.1016/j.ref.2024.100545.
N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 1092–1105, Sep. 2016, doi: 10.1016/j.rser.2016.05.022.
F. M. Guangul and G. T. Chala, “Solar Energy as Renewable Energy Source: SWOT Analysis,” in 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), IEEE, Jan. 2019, pp. 1–5. doi: 10.1109/ICBDSC.2019.8645580.
M. H. Ahmadi et al., “Renewable energy harvesting with the application of nanotechnology: A review,” Int J Energy Res, vol. 43, no. 4, pp. 1387–1410, Mar. 2019, doi: 10.1002/er.4282.
K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat Photonics, vol. 6, no. 12, pp. 809–817, Dec. 2012, doi: 10.1038/nphoton.2012.282.
T. M. Clarke and J. R. Durrant, “Charge Photogeneration in Organic Solar Cells,” Chem Rev, vol. 110, no. 11, pp. 6736–6767, Nov. 2010, doi: 10.1021/cr900271s.
F. Behrouznejad, S. Shahbazi, N. Taghavinia, H.-P. Wu, and E. Wei-Guang Diau, “A study on utilizing different metals as the back contact of CH 3 NH 3 PbI 3 perovskite solar cells,” J Mater Chem A Mater, vol. 4, no. 35, pp. 13488–13498, 2016, doi: 10.1039/C6TA05938D.
J. Pastuszak and P. Węgierek, “Photovoltaic Cell Generations and Current Research Directions for Their Development,” Materials, vol. 15, no. 16, p. 5542, Aug. 2022, doi: 10.3390/ma15165542.
P. Basumatary and P. Agarwal, “A short review on progress in perovskite solar cells,” Mater Res Bull, vol. 149, p. 111700, May 2022, doi: 10.1016/j.materresbull.2021.111700.
M. Balat, “Solar Technological Progress and Use of Solar Energy in the World,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 28, no. 10, pp. 979–994, Jun. 2006, doi: 10.1080/009083190953409.
R. R. King et al., “Solar cell generations over 40% efficiency,” Progress in Photovoltaics: Research and Applications, vol. 20, no. 6, pp. 801–815, Sep. 2012, doi: 10.1002/pip.1255.
H. Zhang, X. Ji, H. Yao, Q. Fan, B. Yu, and J. Li, “Review on efficiency improvement effort of perovskite solar cell,” Solar Energy, vol. 233, pp. 421–434, Feb. 2022, doi: 10.1016/j.solener.2022.01.060.
N. Suresh Kumar and K. Chandra Babu Naidu, “A review on perovskite solar cells (PSCs), materials and applications,” Journal of Materiomics, vol. 7, no. 5, pp. 940–956, Sep. 2021, doi: 10.1016/j.jmat.2021.04.002.
M. H. Ahmadi et al., “Renewable energy harvesting with the application of nanotechnology: A review,” Int J Energy Res, vol. 43, no. 4, pp. 1387–1410, Mar. 2019, doi: 10.1002/er.4282.
D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting Layered Organic-inorganic Halides Containing 〈110〉-Oriented Perovskite Sheets,” Science (1979), vol. 267, no. 5203, pp. 1473–1476, Mar. 1995, doi: 10.1126/science.267.5203.1473.
H. Arbouz, “Optimization of lead-free CsSnI 3 -based perovskite solar cell structure,” Applied Rheology, vol. 33, no. 1, Feb. 2023, doi: 10.1515/arh-2022-0138.
N. Ali et al., “A review on perovskite materials with solar cell prospective,” Int J Energy Res, vol. 45, no. 14, pp. 19729–19745, Nov. 2021, doi: 10.1002/er.7067.
S. J. Adjogri and E. L. Meyer, “A Review on Lead-Free Hybrid Halide Perovskites as Light Absorbers for Photovoltaic Applications Based on Their Structural, Optical, and Morphological Properties,” Molecules, vol. 25, no. 21, p. 5039, Oct. 2020, doi: 10.3390/molecules25215039.
Z. Li, W. Zhou, X. Zhang, Y. Gao, and S. Guo, “High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: layered structure design and shielding mechanism,” Sci Rep, vol. 11, no. 1, p. 4384, Feb. 2021, doi: 10.1038/s41598-021-83031-4.
Md. F. Rahman et al., “Design and numerical analysis of CIGS-based solar cell with V2O5 as the BSF layer to enhance photovoltaic performance,” AIP Adv, vol. 13, no. 4, Apr. 2023, doi: 10.1063/5.0138354.
A. Isha et al., “High efficiency Cu2MnSnS4 thin film solar cells with SnS BSF and CdS ETL layers: A numerical simulation,” Heliyon, vol. 9, no. 5, p. e15716, May 2023, doi: 10.1016/j.heliyon.2023.e15716.
M. E. Islam, M. R. Islam, S. Ahmmed, M. K. Hossain, and M. F. Rahman, “Highly efficient SnS-based inverted planar heterojunction solar cell with ZnO ETL,” Phys Scr, vol. 98, no. 6, p. 065501, Jun. 2023, doi: 10.1088/1402-4896/accb13.
K. Dris, M. Benhaliliba, A. Ayeshamariam, A. Roy, and K. Kaviyarasu, “Improving the perovskite solar cell by insertion of methyl ammonium tin oxide and cesium tin chloride as absorber layers: scaps 1d study based on experimental studies,” Journal of Optics, Jul. 2024, doi: 10.1007/s12596-024-01996-7.
S. Mushtaq et al., “Performance optimization of lead-free MASnBr3 based perovskite solar cells by SCAPS-1D device simulation,” Solar Energy, vol. 249, 2023, doi: 10.1016/j.solener.2022.11.050.
S. Banik, A. Das, B. K. Das, and N. Islam, “Numerical simulation and performance optimization of a lead-free inorganic perovskite solar cell using SCAPS-1D,” Heliyon, vol. 10, no. 1, 2024, doi: 10.1016/j.heliyon.2024.e23985.
B. Sultana, A. T. M. S. Islam, M. D. Haque, A. Kuddus, M. H. Ali, and M. F. Rahman, “Numerical study of MoSe2-based dual-heterojunction with In2Te3 BSF layer toward high-efficiency photovoltaics,” Phys Scr, vol. 98, no. 9, 2023, doi: 10.1088/1402-4896/acee29.
K. Sobayel et al., “A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation,” Results Phys, vol. 12, 2019, doi: 10.1016/j.rinp.2018.12.049.
Y. Gan et al., “Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator,” Energies (Basel), vol. 13, no. 22, 2020, doi: 10.3390/en13225907.
T. A. Chowdhury, R. B. Arif, H. Israq, N. Sharmili, and R. S. Shuvo, “SCAPS numerical design of MoSe2 solar cell for different buffer layers,” Chalcogenide Letters, vol. 21, no. 2, pp. 175–187, Mar. 2024, doi: 10.15251/CL.2024.212.175.
K. Deepthi Jayan and V. Sebastian, “Modelling and comparative performance analysis of tin based mixed halide perovskite solar cells with IGZO and CuO as charge transport layers,” Int J Energy Res, vol. 45, no. 11, 2021, doi: 10.1002/er.6909.
A. Hima, “Enhancing of CH3NH3SnI3 based solar cell efficiency by ETL engineering,” International Journal of Energetica, vol. 5, no. 1, 2020, doi: 10.47238/ijeca.v5i1.119.
N. Balaa and S. K. Mallik, “Comparative Study of Lead-free Perovskite Materials MASnI3, MASnBr3 and MAGeI3 to Design, Simulate and Optimize Lead Free PSC,” Indian Journal of Pure & Applied Physics, vol. 64, no. 4, pp. 292–303, 2024, doi: 10.56042/ijpap.v62i4.7435.
M. K. Hossain et al., “Deep Insights into the Coupled Optoelectronic and Photovoltaic Analysis of Lead-Free CsSnI 3 Perovskite-Based Solar Cell Using DFT Calculations and SCAPS-1D Simulations,” ACS Omega, vol. 8, no. 25, pp. 22466–22485, Jun. 2023, doi: 10.1021/acsomega.3c00306.
A. I. Shimul, A. T. M. S. Islam, A. Ghosh, M. M. Hossain, S. A. Dipa, and R. J. Ramalingam, “Investigating charge transport layer flexibility for boosted performance in Lead-Free CsSnBr3-based perovskite solar cells,” Comput Mater Sci, vol. 250, p. 113701, Feb. 2025, doi: 10.1016/j.commatsci.2025.113701.
Y. Raoui, H. Ez-Zahraouy, N. Tahiri, O. El Bounagui, S. Ahmad, and S. Kazim, “Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study,” Solar Energy, vol. 193, pp. 948–955, Nov. 2019, doi: 10.1016/j.solener.2019.10.009.
O. Ahmad, A. Rashid, M. W. Ahmed, M. F. Nasir, and I. Qasim, “Performance evaluation of Au/p-CdTe/Cs2TiI6/n-TiO2/ITO solar cell using SCAPS-1D,” Opt Mater (Amst), vol. 117, p. 111105, Jul. 2021, doi: 10.1016/j.optmat.2021.111105.
A. Mohandes, M. Moradi, and H. Nadgaran, “Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D,” Apr. 15, 2021. doi: 10.21203/rs.3.rs-320895/v1.
L. Lin, L. Jiang, P. Li, B. Fan, and Y. Qiu, “A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing,” Journal of Physics and Chemistry of Solids, vol. 124, pp. 205–211, Jan. 2019, doi: 10.1016/j.jpcs.2018.09.024.
T. Minemoto and M. Murata, “Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells,” J Appl Phys, vol. 116, no. 5, Aug. 2014, doi: 10.1063/1.4891982.
K. Amri, R. Belghouthi, R. Gharbi, and M. Aillerie, “Effect of defect densities and absorber thickness on carrier collection in Perovskite solar cells,” in 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), IEEE, Jun. 2020, pp. 599–603. doi: 10.1109/CoDIT49905.2020.9263934.
M. S. Uddin et al., “An In‐Depth Investigation of the Combined Optoelectronic and Photovoltaic Properties of Lead‐Free Cs 2 AgBiBr 6 Double Perovskite Solar Cells Using DFT and SCAPS‐1D Frameworks,” Adv Electron Mater, vol. 10, no. 5, May 2024, doi: 10.1002/aelm.202300751.
H.-J. Du, W.-C. Wang, and J.-Z. Zhu, “Device simulation of lead-free CH 3 NH 3 SnI 3 perovskite solar cells with high efficiency,” Chinese Physics B, vol. 25, no. 10, p. 108802, Oct. 2016, doi: 10.1088/1674-1056/25/10/108802.
N. Lakhdar and A. Hima, “Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3,” Opt Mater (Amst), vol. 99, p. 109517, Jan. 2020, doi: 10.1016/j.optmat.2019.109517.
E. S. Hossain, P. Chelvanathan, S. A. Shahahmadi, K. Sopian, B. Bais, and N. Amin, “Performance assessment of Cu2SnS3 (CTS) based thin film solar cells by AMPS-1D,” Current Applied Physics, vol. 18, no. 1, pp. 79–89, Jan. 2018, doi: 10.1016/j.cap.2017.10.009.
L. Lin et al., “Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells,” Solar Energy, vol. 198, pp. 454–460, Mar. 2020, doi: 10.1016/j.solener.2020.01.081.
A. I. Shimul, M. M. Hossain, and S. A. Dipa, “Investigating the effectiveness of Ca3AsCl3-based Perovskite Solar Cells with optimal hole transport layer selection through numerical optimization and machine learning,” Opt Commun, vol. 586, p. 131916, Aug. 2025, doi: 10.1016/j.optcom.2025.131916.
A. I. Shimul, S. R. Sarker, M. M. Hossain, S. K. Ghosh, M. J. Naime, and S. A. Dipa, “Enhancing the Efficiency of (CH 3 NH 3) 2 CuCl 4-based Perovskite Solar Cells by Selecting a Suitable Electron Transport Layer,” In 2025 International Conference on Electrical, Computer and Communication Engineering (ECCE) , pp. 1–6, 2025.
S. R. Sarker, A. Islam Shimul, M. M. Hossain, Md. Eakub Ali, Md. N. Sadman, and S. Aktar Dipa, “Numerical Investigation of a Novel Lead-Free Perovskite Solar Cell with FTO/WS 2 /CsSnI 3 /NiO Architecture For High-Efficiency Photovoltaic Applications,” in 2025 International Conference on Electrical, Computer and Communication Engineering (ECCE), IEEE, Feb. 2025, pp. 1–5. doi: 10.1109/ECCE64574.2025.11013974.
A. I. Shimul, S. R. Sarker, M. M. Hossain, S. Alam, A. Shahriare, and S. A. Dipa, “Numerical Optimization and High-Performance Design of Lead-Free CsSnBr 3 Perovskite Solar Cells with Optimal Hole Transport Layer Selection,” in 2024 13th International Conference on Electrical and Computer Engineering (ICECE), IEEE, Dec. 2024, pp. 148–153. doi: 10.1109/ICECE64886.2024.11024714.
A. I. Shimul, A. T. M. S. Islam, A. Ghosh, M. M. Hossain, S. A. Dipa, and R. J. Ramalingam, “Investigating charge transport layer flexibility for boosted performance in Lead-Free CsSnBr3-based perovskite solar cells,” Comput Mater Sci, vol. 250, p. 113701, Feb. 2025, doi: 10.1016/j.commatsci.2025.113701.
F. Oufqir, M. Bendaoud, F. E. Tahiri, and K. Chikh, “Advanced integration of a switched-coupled-inductor Ćuk converter for optimized grid-connected PV application,” Renewable Energy and Sustainable Development, vol. 11, no. 1, p. 58, Feb. 2025, doi: 10.21622/resd.2025.11.1.1128.
P. Singh, N. K. Singh, and A. K. Singh, “Intelligent hybrid method to predict generated power of solar PV system,” Renewable Energy and Sustainable Development, vol. 11, no. 1, p. 141, May 2025, doi: 10.21622/resd.2025.11.1.1264.
R. T. Moyo, M. Dewa, H. F. M. Romero, V. A. Gómez, J. I. M. Aragonés, and L. Hernández-Callejo, “An adaptive neuro-fuzzy inference scheme for defect detection and classification of solar PV cells,” Renewable Energy and Sustainable Development, vol. 10, no. 2, p. 218, Sep. 2024, doi: 10.21622/resd.2024.10.2.929.
S. Bouafia and M. Si Abdallah, “Numerical study of a solar PV/thermal collector under several conditions in Algeria,” Renewable Energy and Sustainable Development, vol. 10, no. 2, p. 233, Sep. 2024, doi: 10.21622/resd.2024.10.2.900.
A.-M. Y. Yidana, “2d solar thermal direct absorption comparison between gold and silver nanoparticle,” Renewable Energy and Sustainable Development, vol. 9, no. 2, p. 32, Oct. 2023, doi: 10.21622/resd.2023.09.2.032.
S. S. Jaafar, H. A. Maarof, R. T. Salh, H. Sahib, and Y. H. Azeez, “Non-uniform dust distribution effect on photovoltaic panel performance,” Renewable Energy and Sustainable Development, vol. 9, no. 1, p. 01, Feb. 2023, doi: 10.21622/resd.2023.09.1.001.
A. Bag, R. Radhakrishnan, R. Nekovei, and R. Jeyakumar, “Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation,” Solar Energy, vol. 196, 2020, doi: 10.1016/j.solener.2019.12.014.
P. K. Patel, “Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell,” Sci Rep, vol. 11, no. 1, p. 3082, Feb. 2021, doi: 10.1038/s41598-021-82817-w.
M. M. Otrokov et al., “Evidence of large spin-orbit coupling effects in quasi-free-standing graphene on Pb/Ir(1 1 1),” 2d Mater, vol. 5, no. 3, p. 035029, Jun. 2018, doi: 10.1088/2053-1583/aac596.
W. Ahmad, M. Noman, S. Tariq Jan, and A. D. Khan, “Performance analysis and optimization of inverted inorganic CsGeI 3 perovskite cells with carbon/copper charge transport materials using SCAPS-1D,” R Soc Open Sci, vol. 10, no. 3, Mar. 2023, doi: 10.1098/rsos.221127.
H. Zhou et al., “Interface engineering of highly efficient perovskite solar cells,” Science (1979), vol. 345, no. 6196, pp. 542–546, Aug. 2014, doi: 10.1126/science.1254050.
S. A. Dar and B. S. Sengar, “Optimization and Performance Analysis of Inorganic Lead-Free CsSnBr3 Perovskite Solar Cells Using Diverse Electron Transport Materials,” Energy & Fuels, vol. 38, no. 9, pp. 8229–8248, 2024.
A. Gheno, T. T. Thu Pham, C. Di Bin, J. Bouclé, B. Ratier, and S. Vedraine, “Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability,” Solar Energy Materials and Solar Cells, vol. 161, pp. 347–354, Mar. 2017, doi: 10.1016/j.solmat.2016.10.002.
O. Ahmad, A. Rashid, M. W. Ahmed, M. F. Nasir, and I. Qasim, “Performance evaluation of Au/p-CdTe/Cs2TiI6/n-TiO2/ITO solar cell using SCAPS-1D,” Opt Mater (Amst), vol. 117, p. 111105, Jul. 2021, doi: 10.1016/j.optmat.2021.111105.
A. Mohandes, M. Moradi, and H. Nadgaran, “Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D,” Opt Quantum Electron, vol. 53, no. 6, p. 319, Jun. 2021, doi: 10.1007/s11082-021-02959-z.
L. Lin, L. Jiang, P. Li, B. Fan, and Y. Qiu, “A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing,” Journal of Physics and Chemistry of Solids, vol. 124, pp. 205–211, Jan. 2019, doi: 10.1016/j.jpcs.2018.09.024.
T. Minemoto and M. Murata, “Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells,” J Appl Phys, vol. 116, no. 5, Aug. 2014, doi: 10.1063/1.4891982.
K. Amri, R. Belghouthi, R. Gharbi, and M. Aillerie, “Effect of defect densities and absorber thickness on carrier collection in Perovskite solar cells,” in 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), IEEE, Jun. 2020, pp. 599–603. doi: 10.1109/CoDIT49905.2020.9263934.
DOI: https://dx.doi.org/10.21622/resd.2025.11.2.1439
Refbacks
- » —
Copyright (c) 2025 Ibrahim Al Imran, Safia Aktar Dipa, Shariful Islam Sharif, Molla Asif Zaman, Abdullah Tanzib Mahdy
Renewable Energy and Sustainable Development
E-ISSN: 2356-8569
P-ISSN: 2356-8518
Published by:
Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt




