Machine learning models for predicting spatiotemporal dynamics of groundwater recharge
Abstract
Although groundwater is one of the most important sectoral exposures to climate change [1], a vital component of maintaining the world's food supply, the primary source of fresh water, an essential component of preserving the ecological balance of the planet, and a necessary component of the earth's crust that prevents the earth from burning, it is hardly ever fully utilized. Despite its significance and limited availability, groundwater management is rarely done in most countries of the world [2]. Continuous monitoring and precise projections of spatiotemporal groundwater recharge change can aid in sustainable development and effective groundwater resource management. Open public remote sensing datasets were used to develop machine learning prediction models (Random Forest, XGBoost, Keras models, etc.) and time series forecasting models (LSTM, CNN, etc.) for predicting and forecasting groundwater sheet recharge, respectively. The publicly available datasets are merged, processed, and organized into three parts for training, testing, and validation: 2002–2009, 2010–2015, and 2015–2020. A comparison of spatiotemporal prediction models' estimates of groundwater recharge in Morocco revealed AdaBoost and RF were the more accurate methods for temporal and spatial prediction, with RMSE values of 10.9712 mm/month and 5.0089 mm/month, respectively. In terms of time series forecasting, the LSTM model performed better, with an RMSE of 20.05 mm/month. Our models' performance on validation datasets demonstrates the utility and scalability of our combined remote sensing and artificial intelligence-based technology, opening up a new pathway for large-scale groundwater management. Our established workflow enables the study to be extended to any other site.
Received: 20 July 2024
Accepted: 03 October 2024
Published: 03 November 2024
Keywords
Full Text:
PDFReferences
S. A. Sarkodie, M. Y. Ahmed, and P. A. Owusu, “Global adaptation readiness and income mitigate sectoral climate change vulnerabilities,” Humanit Soc Sci Commun, vol. 9, no. 1, 2022, doi: 10.1057/s41599-022-01130-7.
S. Majumdar, R. Smith, B. D. Conway, and V. Lakshmi, “Advancing remote sensing and machine learning-driven frameworks for groundwater withdrawal estimation in Arizona: Linking land subsidence to groundwater withdrawals,” in Hydrological Processes, 2022. doi: 10.1002/hyp.14757.
G. B. Senay et al., “Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach,” J Am Water Resour Assoc, vol. 49, no. 3, 2013, doi: 10.1111/jawr.12057.
K. E. Saxton and W. J. Rawls, “Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions,” Soil Science Society of America Journal, vol. 70, no. 5, 2006, doi: 10.2136/sssaj2005.0117.
B. Janga, G. P. Asamani, Z. Sun, and N. Cristea, “A Review of Practical AI for Remote Sensing in Earth Sciences,” 2023. doi: 10.3390/rs15164112.
A. Wunsch, T. Liesch, and S. Broda, “Groundwater level forecasting with artificial neural networks: A comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX),” Hydrol Earth Syst Sci, vol. 25, no. 3, 2021, doi: 10.5194/hess-25-1671-2021.
Seo J. Y and Lee S.-I, “Predicting changes in spatiotemporal ground- water storage through the integration of multi-satellite data and deep learning models,” IEEE Access, vol. 9, pp. 157 571-157 583, 2021.
A. Wunsch, T. Liesch, and S. Broda, “Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX),” Hydrol Earth Syst Sci, vol. 25, no. 3, pp. 1671–1687, Apr. 2021, doi: 10.5194/hess-25-1671-2021.
S. Majumdar, R. Smith, J. J. Butler, and V. Lakshmi, “Groundwater Withdrawal Prediction Using Integrated Multitemporal Remote Sensing Data Sets and Machine Learning,” Water Resour Res, vol. 56, no. 11, 2020, doi: 10.1029/2020WR028059.
Grigsby Jake, Wang Zhe, Qi Yanjun, and Nguyen Nam, “Long-Range Transformers for Dynamic Spatiotemporal Forecasting,” eprint arXiv:2109.12218, Sep. 2021.
M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review,” 2020. doi: 10.1109/JSTARS.2020.3026724.
H. Yoon, S. C. Jun, Y. Hyun, G. O. Bae, and K. K. Lee, “A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer,” J Hydrol (Amst), vol. 396, no. 1–2, 2011, doi: 10.1016/j.jhydrol.2010.11.002.
T. Zhou, F. Wang, and Z. Yang, “Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction,” Water (Switzerland), vol. 9, no. 10, 2017, doi: 10.3390/w9100781.
X. Huang, L. Gao, R. S. Crosbie, N. Zhang, G. Fu, and R. Doble, “Groundwater recharge prediction using linear regression, multi-layer perception network, and deep learning,” Water (Switzerland), vol. 11, no. 9, 2019, doi: 10.3390/w11091879.
S. A. Naghibi, K. Ahmadi, and A. Daneshi, “Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping,” Water Resources Management, vol. 31, no. 9, 2017, doi: 10.1007/s11269-017-1660-3.
D. Liu, A. K. Mishra, Z. Yu, H. Lü, and Y. Li, “Support vector machine and data assimilation framework for Groundwater Level Forecasting using GRACE satellite data,” J Hydrol (Amst), vol. 603, 2021, doi: 10.1016/j.jhydrol.2021.126929.
Seo J. Y. and Lee S.-I., “Predicting changes in spatiotemporal ground- water storage through the integration of multi-satellite data and deep learning models,” IEEE Access, vol. 9, pp. 157 571-157 583, 2021.
A. Laouina, “PROSPECTIVE « MAROC 2030 » ,” Gestion durable des ressources naturelles de la biodiversite´ au maroc,” Rapport pour le compte du HAUTCOMMISSARIAT AU PLAN ROYAUME DU MAROC, 2006.
T. L. machine learning on heterogeneous systems, “TensorFlow,” 2015. [Online]. Available: https://www.tensorflow.org
C. f, “keras-team/keras,” 2015. [Online]. Available: https://github.com/fchollet/keras
R. Vallat, “Pingouin: statistics in Python,” J Open Source Softw, vol. 3, no. 31, 2018, doi: 10.21105/joss.01026.
C. R. Harris et al., “Array programming with NumPy,” 2020. doi: 10.1038/s41586-020-2649-2.
P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in Python,” Nat Methods, vol. 17, no. 3, 2020, doi: 10.1038/s41592-019-0686-2.
F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, 2011.
K. Jordahl et al., “geopandas/geopandas: v0.8.1,” Zenodo, 2020.
pandas development team, “pandas-dev/pandas: Pandas 1.0.3,” Zenodo, 2020.
“Folium — Folium 0.11.0 documentation.” [Online]. Available: https://python-visualization.github.io/folium/
M. Waskom, “seaborn: statistical data visualization,” J Open Source Softw, vol. 6, no. 60, 2021, doi: 10.21105/joss.03021.
J. D. Hunter, “Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering,” Comput Sci Eng, vol. 9, no. 3, 2007.
T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. doi: 10.1145/2939672.2939785.
G. I. S. O. S. G. F. QGIS Development Team QGIS, “Welcome to the QGIS project!,” 2009. [Online]. Available: https://qgis.osgeo.org
M. Amani et al., “Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, 2020, doi: 10.1109/JSTARS.2020.3021052.
T. S. Steenhuis and W. H. Van Der Molen, “The Thornthwaite-Mather procedure as a simple engineering method to predict recharge,” J Hydrol (Amst), vol. 84, no. 3–4, pp. 221–229, May 1986, doi: 10.1016/0022-1694(86)90124-1.
C. ,Warren Thornthwaite and J. R. Mather, “Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance,” Laboratory of Climatology, 1957.
S. Majumdar, R. Smith, J. J. Butler, and V. Lakshmi, “Groundwater Withdrawal Prediction Using Integrated Multitemporal Remote Sensing Data Sets and Machine Learning,” Water Resour Res, vol. 56, no. 11, Nov. 2020, doi: 10.1029/2020WR028059.
M. Topuz and M. Deniz, “Application of GIS and AHP for land use suitability analysis: case of Demirci district (Turkey),” Humanit Soc Sci Commun, vol. 10, no. 1, 2023, doi: 10.1057/s41599-023-01609-x.
N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google Earth Engine: Planetary-scale geospatial analysis for everyone,” Remote Sens Environ, vol. 202, 2017, doi: 10.1016/j.rse.2017.06.031.
C. Funk et al., “The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes,” Sci Data, vol. 2, 2015, doi: 10.1038/sdata.2015.66.
T. Hengl and S. Gupta, “Soil water content (volumetric%) for 33kPa and 1500kPa suctions predicted at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (Version v01),” Zenodo. Available at: https://zenodo. org/(Accessed 06 April 2022), 2019.
A. G and recharge estimation using google earth engine Groundwater, “Google Earth Engine,” 2022. [Online]. Available: https://developers.google.com/earth-engine/
R. G. Allen, L. S. Pereira, D. Raes, M. Smith, and a B. W, “Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56,” Irrigation and Drainage, 1998, doi: 10.1016/j.eja.2010.12.001.
He Tong and Chen Tianqi, “Xgboost: extreme gradient boosting,” R package version 0.4-2, vol. 1, no. 4, 2015.
J. H. Friedman, “Greedy function approximation: A gradient boosting machine.,” The Annals of Statistics, vol. 29, no. 5, Oct. 2001, doi: 10.1214/aos/1013203451.
T. Chen et al., “Package ‘xgboost,’” 2019.
Y. Yang, R. J. Donohue, and T. R. McVicar, “Global estimation of effective plant rooting depth: Implications for hydrological modeling,” Water Resour Res, vol. 52, no. 10, 2016, doi: 10.1002/2016WR019392.
S. M. Basha and D. S. Rajput, “Chapter 9 - Survey on Evaluating the Performance of Machine Learning Algorithms: Past Contributions and Future Roadmap,” Oct. 2019, Academic Press. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128167182000166
C. S. J. Chu, “Time series segmentation: A sliding window approach,” Inf Sci (N Y), vol. 85, no. 1–3, 1995, doi: 10.1016/0020-0255(95)00021-G.
T. C. Fu, “A review on time series data mining,” 2011. doi: 10.1016/j.engappai.2010.09.007.
DOI: https://dx.doi.org/10.21622/resd.2024.10.2.933
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Azeddine Elhassouny
Renewable Energy and Sustainable Development
E-ISSN: 2356-8569
P-ISSN: 2356-8518
Published by:
Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt