Recent advanced technologies for ocular drug delivery: the transformative impact of nanotechnology on treating eye disorders

Maram ElToukhy, Mozen Elsir, Waleed Khattab

Abstract


Ocular drug delivery remains a significant challenge due to the eye’s unique anatomical and physiological barriers, such as tear film dynamics, corneal epithelium, and blood-ocular barriers, which limit drug penetration and reduce the bioavailability of conventional formulations such as eye drops, suspensions, and ointments. These extensively utilized procedures, while non-invasive and simple, have less than 5% bioavailability and necessitate frequent dosage, jeopardizing therapeutic efficacy and patient compliance. To address these constraints, recent improvements have centered on innovative ocular drug delivery platforms that allow for longer residence duration, tailored release, and improved therapeutic effects. Nanotechnology-based systems, such as nanoparticles, liposomes, dendrimers, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, niosomes, and cubosomes, show promise in terms of solubility, stability, and penetration while minimizing systemic side effects. Their clinical potential has been established in a variety of anterior and posterior segment problems, including glaucoma, dry eye disease, microbial keratitis, retinal degeneration, and uveitis, with several nanocarrier formulations now licensed for use in clinical settings. Microneedles, punctal plugs, iontophoresis, and sustained-release implants are other advancements that broaden the therapeutic arsenal, allowing for accurate and minimally invasive drug administration. Despite these gains, clinical translation faces significant obstacles, particularly in terms of long-term safety, nanotoxicity, large-scale manufacturing, stability, cost-effectiveness, and regulatory approval, all of which necessitate comprehensive review and standardization. In the future, the combination of smart stimuli-responsive systems, gene therapy vectors, and personalized delivery platforms has the potential to transform ophthalmic care by allowing for tailored, sustained, and patient-specific therapies. These developments highlight nanotechnology’s dramatic impact on ocular drug delivery, paving the way for safer, more effective, and accessible treatments for vision-threatening eye conditions.

 

Received on, 18 October 2025

Accepted on, 17 December 2025

Published on, 24 December 2025


Keywords


Ocular; Nanotechnology; Nanoparticles; Glaucoma; Retinopathy.

Full Text:

PDF

References


Galloway NR, Amoaku WM, Galloway PH, Browning AC. Common Eye Diseases and their Management. 3rd ed. London: Springer-Verlag; 2006. https://doi.org/10.1007/b136911.

Ng JS. Ocular Anatomy and Physiology (2nd ed.). Optometry and Vision Science 2009;86:1208. https://doi.org/10.1097/OPX.0b013e3181bafca3.

Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular Drug Delivery. AAPS J 2010;12:348–60. https://doi.org/10.1208/s12248-010-9183-3.

Khurana V, Agrahari Vandana. Recent advances in ocular drug delivery. Advanced Drug Delivery, Elsevier; 2014.

Barar J, Asadi M, Mortazavi-Tabatabaei SA, Omidi Y. Ocular drug delivery: Impact of in vitro cell culture models. J Ophthalmic Vis Res 2009;4:238–52.

Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm 2013;39:1599–617. https://doi.org/10.3109/03639045.2012.736515.

Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv 2008;5:567–81. https://doi.org/10.1517/17425247.5.5.567.

Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv 2006;3:275–87. https://doi.org/10.1517/17425247.3.2.275.

Ruponen M, Urtti A. Undefined role of mucus as a barrier in ocular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 2015;96:442–6. https://doi.org/10.1016/j.ejpb.2015.02.032.

Gaudana R, Jwala J, Boddu SHS, Mitra AK. Recent Perspectives in Ocular Drug Delivery. Pharm Res 2009;26:1197. https://doi.org/10.1007/s11095-008-9694-0.

Barar J, Aghanejad A, Fathi M, Omidi Y. Advanced drug delivery and targeting technologies for the ocular diseases. BioImpacts 2016;6:49–67. https://doi.org/10.15171/bi.2016.07.

Tangri P, Khurana S. Basics of ocular drug delivery systems. International Journal of Research in Pharmaceutical and Biomedical Sciences 2011;2:1541–52.

Ahmed S, Amin MM, Sayed S. Ocular Drug Delivery: a Comprehensive Review. AAPS PharmSciTech 2023;24:66. https://doi.org/10.1208/s12249-023-02516-9.

Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol 2013;2:47. https://doi.org/10.5497/wjp.v2.i2.47.

Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Camins Espuny A, et al. Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents. Pharmaceutics 2019;11:460. https://doi.org/10.3390/pharmaceutics11090460.

Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. Journal of Controlled Release 2020;321:1–22. https://doi.org/10.1016/j.jconrel.2020.01.057.

Shastri D, Shelat P, Shukla A, Patel P. Ophthalmic drug delivery system: Challenges and approaches. Systematic Reviews in Pharmacy 2010;1:113. https://doi.org/10.4103/0975-8453.75042.

Sergeev D, Alexandrovna M, Romanov N, Orlova E. Advancements in ophthalmic formulations: future prospects of eye drops in combating emerging ocular diseases. Journal of Molecular Sciences 2022;32:36–8.

Zhang J, Jiao J, Niu M, Gao X, Zhang G, Yu H, et al. Ten Years of Knowledge of Nano-Carrier Based Drug Delivery Systems in Ophthalmology: Current Evidence, Challenges, and Future Prospective. Int J Nanomedicine 2021;Volume 16:6497–530. https://doi.org/10.2147/IJN.S329831.

Lallemand F, Garrigue J-S. Emulsions for Topical Eye Delivery: State of the Art and Future Perspectives. In: Neervannan S, Kompella UB, editors. Ophthalmic Product Development: From Bench to Bedside, vol. 37, Advances in the Pharmaceutical Sciences Series; 2021, p. 349–79. https://doi.org/10.1007/978-3-030-76367-1_13.

Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023;21:232. https://doi.org/10.1186/s12951-023-01992-2.

Tamilvanan S, Benita S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. European Journal of Pharmaceutics and Biopharmaceutics 2004;58:357–68. https://doi.org/10.1016/j.ejpb.2004.03.033.

Busbee B, Shah H, Reichel E. A novel lidocaine hydrochloride ophthalmic gel for topical ocular anesthesia. Local Reg Anesth 2010;3:57. https://doi.org/10.2147/LRA.S6453.

Lyseng-Williamson KA. Loteprednol Etabonate Ophthalmic Gel 0.5 %: A Review of Its Use in Post-Operative Inflammation and Pain Following Ocular Surgery. Drugs 2013;73:949–58. https://doi.org/10.1007/s40265-013-0073-8.

Bisen AC, Dubey A, Agrawal S, Biswas A, Rawat KS, Srivastava S, et al. Recent updates on ocular disease management with ophthalmic ointments. Ther Deliv 2024;15:463–80. https://doi.org/10.1080/20415990.2024.2346047.

Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, et al. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 2020;10:27835–55. https://doi.org/10.1039/D0RA04971A.

Kumari A, Sharma P, Garg V, Garg G. Ocular inserts - Advancement in therapy of eye diseases. J Adv Pharm Technol Res 2010;1:291. https://doi.org/10.4103/0110-5558.72419.

Kumar KPS, Bhowmik D, Harish G, Duraivel S., Kumar BP. Ocular inserts: A novel controlled drug delivery system. The Pharma Innovation Journal 2013;1:1–16.

Jehangir N, Bever G, Mahmood SMJ, Moshirfar M. Comprehensive Review of the Literature on Existing Punctal Plugs for the Management of Dry Eye Disease. J Ophthalmol 2016;2016:1–22. https://doi.org/10.1155/2016/9312340.

Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res 2021;82:100901. https://doi.org/10.1016/j.preteyeres.2020.100901.

Gupta P, Yadav KS. Applications of microneedles in delivering drugs for various ocular diseases. Life Sci 2019;237:116907. https://doi.org/10.1016/j.lfs.2019.116907.

Perez VL, Wirostko B, Korenfeld M, From S, Raizman M. Ophthalmic Drug Delivery Using Iontophoresis: Recent Clinical Applications. Journal of Ocular Pharmacology and Therapeutics 2020;36:75–87. https://doi.org/10.1089/jop.2019.0034.

Wei D, Pu N, Li S-Y, Wang Y-G, Tao Y. Application of iontophoresis in ophthalmic practice: an innovative strategy to deliver drugs into the eye. Drug Deliv 2023;30. https://doi.org/10.1080/10717544.2023.2165736.

Rojekar S, Parit S, Gholap AD, Manchare A, Nangare SN, Hatvate N, et al. Revolutionizing Eye Care: Exploring the Potential of Microneedle Drug Delivery. Pharmaceutics 2024;16:1398. https://doi.org/10.3390/pharmaceutics16111398.

Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023;15:1746. https://doi.org/10.3390/pharmaceutics15061746.

Omerović N, Vranić E. Application of nanoparticles in ocular drug delivery systems. Health Technol (Berl) 2020;10:61–78. https://doi.org/10.1007/s12553-019-00381-w.

Zhou H Y, Hao J L, Wang S, Zheng Y, Zhang W S. Nanoparticles in the ocular drug delivery. Int J Ophthalmol 2013;6:390–6.

Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, et al. Emerging Nano-Formulations and Nanomedicines Applications for Ocular Drug Delivery. Nanomaterials 2021;11:173. https://doi.org/10.3390/nano11010173.

Agarwal R, Iezhitsa I, Agarwal P, Abdul Nasir NA, Razali N, Alyautdin R, et al. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv 2016;23:1075–91. https://doi.org/10.3109/10717544.2014.943336.

Albarqi HA, Garg A, Ahmad MZ, Alqahtani AA, Walbi IA, Ahmad J. Recent Progress in Chitosan-Based Nanomedicine for Its Ocular Application in Glaucoma. Pharmaceutics 2023;15:681. https://doi.org/10.3390/pharmaceutics15020681.

Li R, Jiang S, Liu D, Bi X, Wang F, Zhang Q, et al. A potential new therapeutic system for glaucoma: solid lipid nanoparticles containing methazolamide. J Microencapsul 2011;28:134–41. https://doi.org/10.3109/02652048.2010.539304.

Sharif Makhmal Zadeh B, Niro H, Rahim F, Esfahani G. Ocular Delivery System for Propranolol Hydrochloride Based on Nanostructured Lipid Carrier. Sci Pharm 2018;86:16. https://doi.org/10.3390/scipharm86020016.

Patel A. Ocular drug delivery systems: An overview. World J Pharmacol 2013;2:47. https://doi.org/10.5497/wjp.v2.i2.47.

Puglia C, Offerta A, Carbone C, Bonina F, Pignatello R, Puglisi G. Lipid Nanocarriers (LNC) and their Applications in Ocular Drug Delivery. Curr Med Chem 2015;22:1589–602. https://doi.org/10.2174/0929867322666150209152259.

Sutradhar KB, Amin MdL. Nanoemulsions: increasing possibilities in drug delivery. Ejnm 2013;5:97–110. https://doi.org/10.1515/ejnm-2013-0001.

KECK C, MULLER R. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. European Journal of Pharmaceutics and Biopharmaceutics 2006;62:3–16. https://doi.org/10.1016/j.ejpb.2005.05.009.

Müller RH, Keck CM. Twenty years of drug nanocrystals: Where are we, and where do we go? European Journal of Pharmaceutics and Biopharmaceutics 2012;80:1–3. https://doi.org/10.1016/j.ejpb.2011.09.012.

Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, et al. Application of Drug Nanocrystal Technologies on Oral Drug Delivery of Poorly Soluble Drugs. Pharm Res 2013;30:307–24. https://doi.org/10.1007/s11095-012-0889-z.

Patri AK, Majoros IJ, Baker JR. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol 2002;6:466–71. https://doi.org/10.1016/S1367-5931(02)00347-2.

Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: A Controlled and Novel Drug Delivery System. Biol Pharm Bull 2011;34:945–53. https://doi.org/10.1248/bpb.34.945.

Abdelkader H, G. Alany R. Controlled and Continuous Release Ocular Drug Delivery Systems: Pros and Cons. Curr Drug Deliv 2012;9:421–30. https://doi.org/10.2174/156720112801323125.

Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 1998;172:33–70. https://doi.org/10.1016/S0378-5173(98)00169-0.

SPICER P. Cubosome ProcessingIndustrial Nanoparticle Technology Development. Chemical Engineering Research and Design 2005;83:1283–6. https://doi.org/10.1205/cherd.05087.

Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today 2016;21:789–801. https://doi.org/10.1016/j.drudis.2016.01.004.

Yaghmur A, Glatter O. Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interface Sci 2009;147–148:333–42. https://doi.org/10.1016/j.cis.2008.07.007.

Occhiutto ML, Maranhão RC, Costa VP, Konstas AG. Nanotechnology for Medical and Surgical Glaucoma Therapy—A Review. Adv Ther 2020;37:155–99. https://doi.org/10.1007/s12325-019-01163-6.

Jiang W, Ulker Z, Thong KX, Qin M, Yu-Wai-Man C. Applying nanotechnology to glaucoma therapy: past, present, and future. Nanomedicine 2025;20:1653–5. https://doi.org/10.1080/17435889.2025.2497748.

Coco G, Buffon G, Taloni A, Giannaccare G. Recent Advances in Nanotechnology for the Treatment of Dry Eye Disease. Nanomaterials 2024;14:669. https://doi.org/10.3390/nano14080669.

Philip AK. Nanotechnology-based Therapeutic Strategies for Dry Eye Disease. J Explor Res Pharmacol 2023;000:000–000. https://doi.org/10.14218/JERP.2023.00034.

Jaiswal S, Shinde P, Tale V. Recent Nanotechnological Trends in the Management of Microbial Keratitis. J Ophthalmic Vis Res 2024;19:476–87. https://doi.org/10.18502/jovr.v19i4.14498.

Qu S, Zheng S, Muhammad S, Huang L, Guo B. An exploration of the ocular mysteries linking nanoparticles to the patho-therapeutic effects against keratitis. Journal of Nanobiotechnology 2025;23. https://doi.org/10.1186/s12951-025-03230-3.

Murata N, Takashima Y, Toyoshima K, Yamamoto M, Okada H. Anti-tumor effects of anti-VEGF siRNA encapsulated with PLGA microspheres in mice. Journal of Controlled Release 2008;126:246–54. https://doi.org/10.1016/j.jconrel.2007.11.017.

Liu H, Liu Y, Ma Z, Wang J, Zhang Q. A Lipid Nanoparticle System Improves siRNA Efficacy in RPE Cells and a Laser-Induced Murine CNV Model. Investigative Opthalmology & Visual Science 2011;52:4789. https://doi.org/10.1167/iovs.10-5891.

Marano RJ, Toth I, Wimmer N, Brankov M, Rakoczy PE. Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther 2005;12:1544–50. https://doi.org/10.1038/sj.gt.3302579.

FIALHO S. Dexamethasone-loaded poly(ε-caprolactone) intravitreal implants: A pilot study. European Journal of Pharmaceutics and Biopharmaceutics 2008;68:637–46. https://doi.org/10.1016/j.ejpb.2007.08.004.

Kempen JH, Altaweel MM, Holbrook JT, Jabs DA, Louis TA, Sugar EA, et al. Randomized Comparison of Systemic Anti-inflammatory Therapy Versus Fluocinolone Acetonide Implant for Intermediate, Posterior, and Panuveitis: The Multicenter Uveitis Steroid Treatment Trial. Ophthalmology 2011;118:1916–26. https://doi.org/10.1016/j.ophtha.2011.07.027.

Mahaling B, Baruah N, Dinabandhu A. Nanomedicine in Ophthalmology: From Bench to Bedside. J Clin Med 2024;13:7651. https://doi.org/10.3390/jcm13247651.

Najahi-Missaoui W, Arnold RD, Cummings BS. Safe Nanoparticles: Are We There Yet? Int J Mol Sci 2020;22:385. https://doi.org/10.3390/ijms22010385.

Peppas NA, Van Blarcom DS, Wiggins M, Yu. Jun. Stimuli responsive hydrogels for biomedical applications. Nat Rev Mater 2016;1.

Aragón-Navas A, López-Cano JJ, Johnson M, A S, Vicario-de-la-Torre M, Andrés-Guerrero V, et al. Smart biodegradable hydrogels: Drug-delivery platforms for treatment of chronic ophthalmic diseases affecting the back of the eye. Int J Pharm 2024;649:123653. https://doi.org/10.1016/j.ijpharm.2023.123653.

Ma X, Ahadian S, Liu S, Zhang J, Liu S, Cao T, et al. Smart Contact Lenses for Biosensing Applications. Advanced Intelligent Systems 2021;3. https://doi.org/10.1002/aisy.202000263.

Russell S, Bennett J, Wellman JA, Chung DC, Yu Z-F, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. The Lancet 2017;390:849–60. https://doi.org/10.1016/S0140-6736(17)31868-8.

Trapani I, Auricchio A. Seeing the Light after 25 Years of Retinal Gene Therapy. Trends Mol Med 2018;24:669–81. https://doi.org/10.1016/j.molmed.2018.06.006.

Liu S, Yan Z, Huang Z, Yang H, Li J. Smart Nanocarriers for the Treatment of Retinal Diseases. ACS Appl Bio Mater 2024;7:2070–85. https://doi.org/10.1021/acsabm.3c01289.

Balendra SI, Zollet P, Cisa Asinari Di Gresy E Casasca G, Cordeiro MF. Personalized approaches for the management of glaucoma. Expert Rev Precis Med Drug Dev 2020;5:145–64. https://doi.org/10.1080/23808993.2020.1756770.

Patel A, Cholkar K, Mitra AK. Recent Developments in Protein and Peptide Parenteral Delivery Approaches. Ther Deliv 2014;5:337–65. https://doi.org/10.4155/tde.14.5




DOI: https://dx.doi.org/10.21622/AMPDR.2025.05.2.1736

Refbacks



Copyright (c) 2025 Maram Mohamed ElToukhy, Mozen Elsir, Waleed Mohammed Khattab


Advances in Medical, Pharmaceutical and Dental Research

E-ISSN: 2812-4898

P-ISSN: 2812-488X

 

Published by:

Academy Publishing Center (APC)

Arab Academy for Science, Technology and Maritime Transport (AASTMT)

Alexandria, Egypt

ampdr@aast.edu