The gut–brain axis in neurodegeneration and neural repair: microbiome-driven modulation of CNS inflammation, neurogenesis, and recovery

Oluwaseye Emmanuel Olayemi, Olusoji Oyesola, Babatunde Okebule, Zainob Sobowale, Elizabeth Anthony

Abstract


Background: The gut–brain axis represents a dynamic, bidirectional communication network linking the gastrointestinal microbiota with central nervous system (CNS) function. Emerging research implicates gut dysbiosis in the progression of neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), as well as in the regulation of neuroinflammatory tone and adult neurogenesis. Understanding the microbial regulation of CNS integrity offers a novel vantage point for both neuropathology and recovery.

Methodology: This review synthesizes findings from recent preclinical and clinical studies that explore the mechanistic underpinnings of the gut–brain axis in neurodegeneration and neural repair. Emphasis is placed on germ-free models, microbiome sequencing in human cohorts, and interventional trials involving probiotics, dietary strategies, and fecal microbiota transplantation (FMT).

Results: Microbiota-derived metabolites such as short-chain fatty acids (SCFAs) and tryptophan catabolites influence neuroimmune responses, blood–brain barrier (BBB) integrity, and neurogenesis in the hippocampus and subventricular zone. Dysbiosis is associated with heightened microglial activation, impaired Aβ clearance, and α-synuclein aggregation. Conversely, modulation of the microbiota through probiotics or dietary interventions can attenuate neuroinflammation and improve cognitive and motor outcomes in both animal models and early-stage clinical trials.

Conclusion: The gut–brain axis is a critical modulator of CNS health, with disruptions contributing to neurodegeneration but also offering a therapeutic window for repair. Future work should address causality, interindividual variability, and ethical considerations of microbiome manipulation to enable precision interventions targeting brain resilience and regeneration.

 

Received: 20 July 2025

Accepted: 07 September 2025

Published: 16 September 2025


Keywords


Gut–brain axis, microbiota, neurogenesis, neurodegeneration, short-chain fatty acids.

Full Text:

PDF

References


Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu K V., Bastiaanssen TFS, Boehme M, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019 Oct 1;99(4):1877–2013.

Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol. 2019 Aug 23;16(8):461–78.

O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research. 2015 Jan;277:32–48.

Dodiya HB, Lutz HL, Weigle IQ, Patel P, Michalkiewicz J, Roman-Santiago CJ, et al. Gut microbiota–driven brain Aβ amyloidosis in mice requires microglia. Journal of Experimental Medicine. 2022 Jan 3;219(1).

Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci. 2023 May 31;24(11):9577.

Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015 Jul 1;18(7):965–77.

Kim MS, Kim Y, Choi H, Kim W, Park S, Lee D, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut. 2020 Feb;69(2):283–94.

Chenghan M, Wanxin L, Bangcheng Z, Yao H, Qinxi L, Ting Z, et al. Short‐chain fatty acids mediate gut microbiota–brain communication and protect the blood–brain barrier integrity. Ann N Y Acad Sci. 2025 Mar 25;1545(1):116–31.

Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF. Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biol Psychiatry. 2015 Aug;78(4):e7–9.

Dandamudi BJ, Dimaano KAM, Shah N, AlQassab O, Al-Sulaitti Z, Nelakuditi B, et al. Neurodegenerative Disorders and the Gut-Microbiome-Brain Axis: A Literature Review. Cureus. 2024 Oct 26;

Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020 Jan 31;11.

Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2018 Dec 10;4(3):396–403.

Colombo AV, Sadler RK, Llovera G, Singh V, Roth S, Heindl S, et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. Elife. 2021 Apr 13;10.

Melbye P, Olsson A, Hansen TH, Søndergaard HB, Bang Oturai A. Short-chain fatty acids and gut microbiota in multiple sclerosis. Acta Neurol Scand. 2019 Mar;139(3):208–19.

Anand N, Gorantla VR, Chidambaram SB. The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells. 2022 Dec 23;12(1):54.

Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014 Nov 19;6(263).

Lee J, d’Aigle J, Atadja L, Quaicoe V, Honarpisheh P, Ganesh BP, et al. Gut Microbiota–Derived Short-Chain Fatty Acids Promote Poststroke Recovery in Aged Mice. Circ Res. 2020 Jul 31;127(4):453–65.

Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016 Jun 9;22(6):586–97.

Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020 Mar 3;11(2):158–71.

Kawabata K, Yoshioka Y, Terao J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules. 2019 Jan 21;24(2):370.

Abdelhamid M, Zhou C, Ohno K, Kuhara T, Taslima F, Abdullah M, et al. Probiotic Bifidobacterium breve Prevents Memory Impairment Through the Reduction of Both Amyloid-β Production and Microglia Activation in APP Knock-In Mouse. Journal of Alzheimer’s Disease. 2022 Feb 15;85(4):1555–71.

Shkoporov AN, Hill C. Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. Cell Host Microbe. 2019 Feb;25(2):195–209.

Nagpal R, Neth BJ, Wang S, Mishra SP, Craft S, Yadav H. Gut mycobiome and its interaction with diet, gut bacteria and alzheimer’s disease markers in subjects with mild cognitive impairment: A pilot study. EBioMedicine. 2020 Sep;59:102950.

Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017 Oct 19;7(1):13537.

Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep. 2017 Feb 8;7(1):41802.

Dodiya HB, Kuntz T, Shaik SM, Baufeld C, Leibowitz J, Zhang X, et al. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. Journal of Experimental Medicine. 2019 Jul 1;216(7):1542–60.

Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, et al. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol. 2016 Aug 4;7.

MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—An emerging role for gut microbiome. Alzheimer’s & Dementia. 2019 Jan 15;15(1):76–92.

Morales I, Guzmán-Martìnez L, Cerda-Troncoso C, Farìas GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimerâ€TMs disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014 Apr 22;8.

Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, et al. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron. 2019 Aug;103(4):627-641.e7.

Svensson E, Horváth‐Puhó E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, et al. Vagotomy and subsequent risk of P arkinson’s disease. Ann Neurol. 2015 Oct 17;78(4):522–9.

Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A, et al. Vagotomy and Parkinson disease. Neurology. 2017 May 23;88(21):1996–2002.

Tysnes O, Kenborg L, Herlofson K, Steding‐Jessen M, Horn A, Olsen JH, et al. Does vagotomy reduce the risk of Parkinson’s disease? Ann Neurol. 2015 Dec 14;78(6):1011–2.

Hill‐Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Movement Disorders. 2017 May 14;32(5):739–49.

Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 2016 Dec;167(6):1469-1480.e12.

Zhao Z, Ning J, Bao X qi, Shang M, Ma J, Li G, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome. 2021 Dec 17;9(1):226.

Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences. 2017 Oct 3;114(40):10713–8.

Tankou SK, Regev K, Healy BC, Tjon E, Laghi L, Cox LM, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol. 2018 Jun 8;83(6):1147–61.

Blacher E, Bashiardes S, Shapiro H, Rothschild D, Mor U, Dori-Bachash M, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature. 2019 Aug 22;572(7770):474–80.

Tognini P. Gut Microbiota: A Potential Regulator of Neurodevelopment. Front Cell Neurosci. 2017 Feb 7;11.

Wang L, Zhao R, Li X, Shao P, Xie J, Su X, et al. Lactobacillus rhamnosus GG improves cognitive impairments in mice with sepsis. PeerJ. 2024 May 28;12:e17427.

Cerna C, Vidal-Herrera N, Silva-Olivares F, Álvarez D, González-Arancibia C, Hidalgo M, et al. Fecal Microbiota Transplantation from Young-Trained Donors Improves Cognitive Function in Old Mice Through Modulation of the Gut-Brain Axis. Aging Dis. 2024;

Amaral WZ, Kokroko N, Treangen TJ, Villapol S, Gomez-Pinilla F. Probiotic therapy modulates the brain-gut-liver microbiota axis in a mouse model of traumatic brain injury. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2024 Dec;1870(8):167483.

Chen T, Noto D, Hoshino Y, Mizuno M, Miyake S. Butyrate suppresses demyelination and enhances remyelination. J Neuroinflammation. 2019 Dec 9;16(1):165.

Wallen ZD, Demirkan A, Twa G, Cohen G, Dean MN, Standaert DG, et al. Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat Commun. 2022 Nov 15;13(1):6958.

Yang J, Liang J, Hu N, He N, Liu B, Liu G, et al. The Gut Microbiota Modulates Neuroinflammation in Alzheimer’s Disease: Elucidating Crucial Factors and Mechanistic Underpinnings. CNS Neurosci Ther. 2024 Oct 26;30(10).

Xue LJ, Yang XZ, Tong Q, Shen P, Ma SJ, Wu SN, et al. Fecal microbiota transplantation therapy for Parkinson’s disease. Medicine. 2020 Aug 28;99(35):e22035.

Kuai X yi, Yao X han, Xu L juan, Zhou Y qing, Zhang L ping, Liu Y, et al. Evaluation of fecal microbiota transplantation in Parkinson’s disease patients with constipation. Microb Cell Fact. 2021 Dec 13;20(1):98.

Liao JF, Cheng YF, You ST, Kuo WC, Huang CW, Chiou JJ, et al. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease. Brain Behav Immun. 2020 Nov;90:26–46.

Yang C, Sun J, Li L, Zheng J, Wang C, Zhao Y, et al. Synbiotics of Lactobacillus suilingensis and inulin alleviates cognitive impairment via regulating gut microbiota indole‐3‐lactic acid metabolism in female AD mice. Alzheimer’s & Dementia. 2025 Jul 26;21(7).

Renesteen E, Boyajian JL, Islam P, Kassab A, Abosalha A, Makhlouf S, et al. Microbiome Engineering for Biotherapeutic in Alzheimer’s Disease Through the Gut–Brain Axis: Potentials and Limitations. Int J Mol Sci. 2025 Jun 2;26(11):5351.

Nagpal R, Shively CA, Appt SA, Register TC, Michalson KT, Vitolins MZ, et al. Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Front Nutr. 2018 Apr 25;5.

Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell. 2018 Jun;173(7):1728-1741.e13.

Zhang Y, Yu W, Zhang L, Wang M, Chang W. The Interaction of Polyphenols and the Gut Microbiota in Neurodegenerative Diseases. Nutrients. 2022 Dec 17;14(24):5373.

Qin N, Xie X, Deng R, Gao S, Zhu T. The role of the tryptophan metabolites in gut microbiota-brain axis and potential treatments: a focus on ischemic stroke. Front Pharmacol. 2025 Jun 10;16.

Neil K, Allard N, Roy P, Grenier F, Menendez A, Burrus V, et al. High‐efficiency delivery of CRISPR‐Cas9 by engineered probiotics enables precise microbiome editing. Mol Syst Biol. 2021 Oct 19;17(10).

Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, et al. Precision Microbiome Modulation with Discrete Dietary Fiber Structures Directs Short-Chain Fatty Acid Production. Cell Host Microbe. 2020 Mar;27(3):389-404.e6.




DOI: https://dx.doi.org/10.21622/AMPDR.2025.05.2.1469

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Oluwaseye Emmanuel Olayemi, Olusoji Adebusoye Oyesola, Babatunde Olufemi Okebule, Zainob Oluwaferanmi Sobowale, Elizabeth Chinenye Anthony


Advances in Medical, Pharmaceutical and Dental Research

E-ISSN: 2812-4898

P-ISSN: 2812-488X

 

Published by:

Academy Publishing Center (APC)

Arab Academy for Science, Technology and Maritime Transport (AASTMT)

Alexandria, Egypt

ampdr@aast.edu