Optimal design of laminated composite and nanocomposite structures using evolutionary optimization techniques: a survey

Ranganai T. Moyo, Pavel Y. Tabakov

Abstract


The optimal design of laminated composite and nanocomposite (LCNC) structures stands at the forefront of materials engineering, offering the potential to revolutionize the development of advanced materials with superior mechanical, thermal, and electrical properties. By tailoring LCNC structures to meet specific performance requirements, optimizing material usage, and exploring innovative design approaches, engineers can create lighter, more efficient, and environmentally friendly structures that excel in diverse applications. Many industries such as automotive, aerospace, and construction are already using composite and nanocomposite materials to develop high-strength and lightweight structures. Thus, this survey delves into evolutionary optimization techniques as powerful tools for achieving optimal configurations in LCNC structures, highlighting the importance of selecting the appropriate technique for a given optimization problem. A strict selection method was employed to come up with this review paper, and only reputable literary sources were used. Common design optimization problems such as buckling load, vibration, and weight & cost minimization are covered.

Received: 16 July 2024

Accepted: 24 August 2024

Published: 05 September 2024


Keywords


LCNC structures; evolutionary optimization; optimal design; advanced materials

Full Text:

PDF

References


J. J. Andrew and H. N. Dhakal, “Sustainable biobased composites for advanced applications: recent trends and future opportunities – A critical review,” 2022. doi: 10.1016/j.jcomc.2021.100220.

S. Zhao, Z. Zhao, Z. Yang, L. L. Ke, S. Kitipornchai, and J. Yang, “Functionally graded graphene reinforced composite structures: A review,” 2020. doi: 10.1016/j.engstruct.2020.110339.

J. Njuguna, F. Ansari, S. Sachse, V. M. Rodriguez, S. Siqqique, and H. Zhu, “Nanomaterials, nanofillers, and nanocomposites: types and properties,” in Health and Environmental Safety of Nanomaterials: Polymer Nanocomposites and Other Materials Containing Nanoparticles, 2021. doi: 10.1016/B978-0-12-820505-1.00011-0.

R. Olayil, V. Arumugaprabu, O. Das, and W. A. Lenin Anselm, “A Brief Review on Effect of Nano fillers on Performance of Composites,” in IOP Conference Series: Materials Science and Engineering, 2021. doi: 10.1088/1757-899X/1059/1/012006.

R. Soni, R. Verma, R. Kumar Garg, and V. Sharma, “A critical review of recent advances in the aerospace materials,” Mater Today Proc, 2023, doi: 10.1016/j.matpr.2023.08.108.

Z. K. Awad, T. Aravinthan, Y. Zhuge, and F. Gonzalez, “A review of optimization techniques used in the design of fibre composite structures for civil engineering applications,” Mater Des, vol. 33, no. 1, 2012, doi: 10.1016/j.matdes.2011.04.061.

M. Rabothata, J. Muthu, and L. Wegner, “Optimum design parameters and mechanical properties of polymeric nanocomposites using NSGA-II optimization method,” J Compos Mater, vol. 55, no. 7, 2021, doi: 10.1177/0021998320960774.

G. A. Drosopoulos, C. Gogos, and G. Foutsitzi, “Multi-objective optimization for maximum fundamental frequency and minimum cost of hybrid graphene/fibre-reinforced nanocomposite laminates,” Structures, vol. 54, 2023, doi: 10.1016/j.istruc.2023.05.118.

L. Wang, A. Kolios, T. Nishino, P. L. Delafin, and T. Bird, “Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm,” Compos Struct, vol. 153, 2016, doi: 10.1016/j.compstruct.2016.06.003.

Z. Z. Wang and A. Sobey, “A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation,” 2020. doi: 10.1016/j.compstruct.2019.111739.

T. Vo-Duy, D. Duong-Gia, V. Ho-Huu, H. C. Vu-Do, and T. Nguyen-Thoi, “Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm,” Compos Struct, vol. 168, 2017, doi: 10.1016/j.compstruct.2017.02.038.

Z. Liu, J. Lu, and P. Zhu, “Lightweight design of automotive composite bumper system using modified particle swarm optimizer,” Compos Struct, vol. 140, 2016, doi: 10.1016/j.compstruct.2015.12.031.

H. Li and K. Chandrashekhara, “Particle swarm-based structural optimization of laminated composite hydrokinetic turbine blades,” Engineering Optimization, vol. 47, no. 9, 2015, doi: 10.1080/0305215X.2014.954567.

S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the State-of-the-Art,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4–31, Feb. 2011, doi: 10.1109/TEVC.2010.2059031.

D. Delahaye, S. Chaimatanan, and M. Mongeau, “Simulated annealing: From basics to applications,” in International Series in Operations Research and Management Science, vol. 272, 2019. doi: 10.1007/978-3-319-91086-4_1.

M. Dorigo and T. Stützle, “Ant colony optimization: Overview and recent advances,” in International Series in Operations Research and Management Science, vol. 272, 2019. doi: 10.1007/978-3-319-91086-4_10.

I. Lotfy, M. Farhat, M. A. Issa, and M. Al-Obaidi, “Flexural behavior of high-density polyethylene railroad crossties,” Proc Inst Mech Eng F J Rail Rapid Transit, vol. 230, no. 3, 2016, doi: 10.1177/0954409714565655.

G. Zhu, Z. Wang, A. Cheng, and G. Li, “Design optimisation of composite bumper beam with variable cross-sections for automotive vehicle,” International Journal of Crashworthiness, vol. 22, no. 4, 2017, doi: 10.1080/13588265.2016.1267552.

Z. Qin, J. Wang, K. Yang, G. Yu, Y. Xu, and J. Xu, “Design and nonlinear structural responses of multi-bolted joint composite box-beam for sectional wind turbine blades,” Compos Struct, vol. 206, 2018, doi: 10.1016/j.compstruct.2018.08.073.

C. Y. Lee and W. Yu, “Homogenization and dimensional reduction of composite plates with in-plane heterogeneity,” Int J Solids Struct, vol. 48, no. 10, 2011, doi: 10.1016/j.ijsolstr.2011.01.032.

P. Pushparaj and B. Suresha, “Free vibration analysis of laminated composite plates using finite element method,” Polymers and Polymer Composites, vol. 24, no. 7, 2016, doi: 10.1177/096739111602400712.

A. Houmat, “Three-dimensional free vibration analysis of variable stiffness laminated composite rectangular plates,” Compos Struct, vol. 194, 2018, doi: 10.1016/j.compstruct.2018.04.028.

J. L. Mantari and M. Ore, “Free vibration of single and sandwich laminated composite plates by using a simplified FSDT,” Compos Struct, vol. 132, 2015, doi: 10.1016/j.compstruct.2015.06.035.

R. L. Wankhade and S. B. Niyogi, “Buckling analysis of symmetric laminated composite plates for various thickness ratios and modes,” Innovative Infrastructure Solutions, vol. 5, no. 3, 2020, doi: 10.1007/s41062-020-00317-8.

K. Shiva, P. Raghu, A. Rajagopal, and J. N. Reddy, “Nonlocal buckling analysis of laminated composite plates considering surface stress effects,” Compos Struct, vol. 226, 2019, doi: 10.1016/j.compstruct.2019.111216.

Osman Yassin Osman and Suleiman Osama Mohammed Elmardi, “Buckling Analysis of Thin Laminated Composite Plates using Finite Element Method,” International Journal of Engineering Research and Advanced Technology (IJERAT), vol. 3, no. 3, pp. 1–18, 2017.

V. M. Sreehari and D. K. Maiti, “Buckling and post buckling characteristics of laminated composite plates with damage under thermo-mechanical loading,” Structures, vol. 6, 2016, doi: 10.1016/j.istruc.2016.01.002.

M. Saadatmorad, R. A. Jafari-Talookolaei, M. H. Pashaei, and S. Khatir, “Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique,” Compos Struct, vol. 278, 2021, doi: 10.1016/j.compstruct.2021.114656.

M. R. Ashory, A. Ghasemi-Ghalebahman, and M. J. Kokabi, “An efficient modal strain energy-based damage detection for laminated composite plates,” Advanced Composite Materials, vol. 27, no. 2, 2018, doi: 10.1080/09243046.2017.1301069.

L. W. Zhang, K. M. Liew, and J. N. Reddy, “Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory,” Compos Struct, vol. 152, 2016, doi: 10.1016/j.compstruct.2016.05.040.

B. Saiah, M. Bachene, M. Guemana, Y. Chiker, and B. Attaf, “On the free vibration behavior of nanocomposite laminated plates contained piece-wise functionally graded graphene-reinforced composite plies,” Eng Struct, vol. 253, 2022, doi: 10.1016/j.engstruct.2021.113784.

V. Zeighami and M. Jafari, “A closed-form solution for thermoelastic stress analysis of perforated asymmetric functionally graded nanocomposite plates,” Theoretical and Applied Fracture Mechanics, vol. 118, 2022, doi: 10.1016/j.tafmec.2022.103251.

M. Jafari and A. Rohani, “Optimization of perforated composite plates under tensile stress using genetic algorithm,” J Compos Mater, vol. 50, no. 20, 2016, doi: 10.1177/0021998315612540.

T. Farsadi, D. Asadi, and H. Kurtaran, “Fundamental frequency optimization of variable stiffness composite skew plates,” Acta Mech, vol. 232, no. 2, 2021, doi: 10.1007/s00707-020-02871-9.

L. W. Zhang and L. N. Xiao, “Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading,” Compos B Eng, vol. 122, 2017, doi: 10.1016/j.compositesb.2017.03.041.

N. D. Duc, S. E. Kim, T. Q. Quan, D. T. Manh, and N. H. Cuong, “Nonlinear buckling of eccentrically stiffened nanocomposite cylindrical panels in thermal environments,” Thin-Walled Structures, vol. 146, 2020, doi: 10.1016/j.tws.2019.106428.

D. Balkan, Ö. Demir, and A. Arıkoğlu, “Dynamic analysis of a stiffened composite plate under blast load: A new model and experimental validation,” Int J Impact Eng, vol. 143, 2020, doi: 10.1016/j.ijimpeng.2020.103591.

D. Shi, D. He, Q. Wang, C. Ma, and H. Shu, “Free vibration analysis of closed moderately thick cross-ply composite laminated cylindrical shell with arbitrary boundary conditions,” Materials, vol. 13, no. 4, 2020, doi: 10.3390/ma13040884.

M. Zarei, G. H. Rahimi, and M. Hemmatnezhad, “Free vibrational characteristics of grid-stiffened truncated composite conical shells,” Aerosp Sci Technol, vol. 99, 2020, doi: 10.1016/j.ast.2020.105717.

R. Ansari and J. Torabi, “Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading,” Compos B Eng, vol. 95, 2016, doi: 10.1016/j.compositesb.2016.03.080.

L. W. Zhang, Z. G. Song, P. Qiao, and K. M. Liew, “Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads,” Comput Methods Appl Mech Eng, vol. 313, 2017, doi: 10.1016/j.cma.2016.10.020.

E. Viola, L. Rossetti, N. Fantuzzi, and F. Tornabene, “Generalized stress–strain recovery formulation applied to functionally graded spherical shells and panels under static loading,” Compos Struct, vol. 156, 2016, doi: 10.1016/j.compstruct.2015.12.060.

J. Lu, Q. Yang, Z. Meng, K. Yang, W. Xu, and C. V. Chiu, “Modeling and dynamic analysis of functionally graded porous spherical shell based on Chebyshev-Ritz approach,” Science and Engineering of Composite Materials, vol. 30, no. 1, 2023, doi: 10.1515/secm-2022-0214.

G. Imbalzano, P. Tran, T. D. Ngo, and P. V. S. Lee, “A numerical study of auxetic composite panels under blast loadings,” Compos Struct, vol. 135, 2016, doi: 10.1016/j.compstruct.2015.09.038.

M. S. H. Al-Furjan et al., “A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel,” Eng Comput, vol. 38, no. 2, 2022, doi: 10.1007/s00366-020-01130-8.

T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic optimization: A survey of the state of the art,” Swarm Evol Comput, vol. 6, 2012, doi: 10.1016/j.swevo.2012.05.001.

G. Abdullah and Z. A. Haddi Hassan, “A Comparison between Genetic Algorithm and Practical Swarm to Investigate the Reliability Allocation of Complex Network,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1818/1/012163.

G. Guariso and M. Sangiorgio, “Improving the performance of multiobjective genetic algorithms: An elitism-based approach,” Information (Switzerland), vol. 11, no. 12, 2020, doi: 10.3390/info11120587.

C. Yang, Q. Qian, F. Wang, and M. Sun, “An improved adaptive genetic algorithm for function optimization,” in 2016 IEEE International Conference on Information and Automation, IEEE ICIA 2016, 2017. doi: 10.1109/ICInfA.2016.7831905.

S. Mahmoudinazlou and C. Kwon, “A hybrid genetic algorithm for the min–max Multiple Traveling Salesman Problem,” Comput Oper Res, vol. 162, 2024, doi: 10.1016/j.cor.2023.106455.

A. Kaveh, “Particle Swarm Optimization,” in Advances in Metaheuristic Algorithms for Optimal Design of Structures, Cham: Springer International Publishing, 2017, pp. 11–43. doi: 10.1007/978-3-319-46173-1_2.

D. Sedighizadeh, E. Masehian, M. Sedighizadeh, and H. Akbaripour, “GEPSO: A new generalized particle swarm optimization algorithm,” Math Comput Simul, vol. 179, 2021, doi: 10.1016/j.matcom.2020.08.013.

T. Li, J. Shi, W. Deng, and Z. Hu, “Pyramid particle swarm optimization with novel strategies of competition and cooperation,” Appl Soft Comput, vol. 121, 2022, doi: 10.1016/j.asoc.2022.108731.

D. Yazdani, D. Yazdani, D. Yazdani, M. N. Omidvar, A. H. Gandomi, and X. Yao, “A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic Optimization Problems,” ACM Transactions on Evolutionary Learning and Optimization, vol. 3, no. 4, 2023, doi: 10.1145/3604812.

S. Chakraborty, A. K. Saha, A. E. Ezugwu, J. O. Agushaka, R. A. Zitar, and L. Abualigah, “Differential Evolution and Its Applications in Image Processing Problems: A Comprehensive Review,” Archives of Computational Methods in Engineering, vol. 30, no. 2, pp. 985–1040, Mar. 2023, doi: 10.1007/s11831-022-09825-5.

W. L. Liu, Y. J. Gong, W. N. Chen, Z. Liu, and ..., “Coordinated charging scheduling of electric vehicles: a mixed-variable differential evolution approach,” … Transportation …, 2019.

L. Cui, G. Li, Q. Lin, J. Chen, and N. Lu, “Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations,” Comput Oper Res, vol. 67, 2016, doi: 10.1016/j.cor.2015.09.006.

A. Draa, S. Bouzoubia, and I. Boukhalfa, “A sinusoidal differential evolution algorithm for numerical optimisation,” Applied Soft Computing Journal, vol. 27, 2015, doi: 10.1016/j.asoc.2014.11.003.

A. W. Mohamed and A. K. Mohamed, “Adaptive guided differential evolution algorithm with novel mutation for numerical optimization,” International Journal of Machine Learning and Cybernetics, vol. 10, no. 2, pp. 253–277, Feb. 2019, doi: 10.1007/s13042-017-0711-7.

Y. Li, M. Jia, X. Han, and X.-S. Bai, “Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA),” Energy, vol. 225, p. 120331, Jun. 2021, doi: 10.1016/j.energy.2021.120331.

S. Sennan, S. Ramasubbareddy, S. Balasubramaniyam, A. Nayyar, M. Abouhawwash, and N. A. Hikal, “T2FL-PSO: Type-2 Fuzzy Logic-Based Particle Swarm Optimization Algorithm Used to Maximize the Lifetime of Internet of Things,” IEEE Access, vol. 9, pp. 63966–63979, 2021, doi: 10.1109/ACCESS.2021.3069455.

G. D’Angelo and F. Palmieri, “GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems,” Inf Sci (N Y), vol. 547, pp. 136–162, Feb. 2021, doi: 10.1016/j.ins.2020.08.040.

Ş. Karakaya and Ö. Soykasap, “Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm,” Structural and Multidisciplinary Optimization, vol. 39, no. 5, 2009, doi: 10.1007/s00158-008-0344-2.

L. Huang, C. T. Ng, A. H. Sheikh, and M. C. Griffith, “Niching particle swarm optimization techniques for multimodal buckling maximization of composite laminates,” Applied Soft Computing Journal, vol. 57, 2017, doi: 10.1016/j.asoc.2017.04.006.

A. R. Ghasemi, A. Tabatabaeian, M. H. Hajmohammad, and F. Tornabene, “Multi-step buckling optimization analysis of stiffened and unstiffened polymer matrix composite shells: A new experimentally validated method,” Compos Struct, vol. 273, 2021, doi: 10.1016/j.compstruct.2021.114280.

R. Kolahchi, S. P. Zhu, B. Keshtegar, and N. T. Trung, “Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial,” Aerosp Sci Technol, vol. 98, 2020, doi: 10.1016/j.ast.2019.105656.

V. Ho-Huu, T. D. Do-Thi, H. Dang-Trung, T. Vo-Duy, and T. Nguyen-Thoi, “Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method,” Compos Struct, vol. 146, 2016, doi: 10.1016/j.compstruct.2016.03.016.

J. Liu, “Multi-objective optimization of multi-layered cylindrical shells with opening under axial load using the NSGA-II genetic algorithm,” Journal of Intelligent and Fuzzy Systems, vol. 45, no. 6, 2023, doi: 10.3233/JIFS-230826.

Khorramabadi Mahdi Karami and Nezamabadi Ali Reza, “Buckling Behavior of Functionally Graded Nano Clay-Reinforced Composite Beams,” Journal of Aerospace Science and Technology, vol. 15, no. 2, pp. 110–117, 2022, doi: https://doi.org/10.22034/jast.2022.341613.1118.

B. Keshtegar, T. Nguyen-Thoi, T. T. Truong, and S. P. Zhu, “Optimization of buckling load for laminated composite plates using adaptive Kriging-improved PSO: A novel hybrid intelligent method,” Defence Technology, vol. 17, no. 1, 2021, doi: 10.1016/j.dt.2020.02.020.

S. Moradi, A. R. Vosoughi, and N. Anjabin, “Maximum buckling load of stiffened laminated composite panel by an improved hybrid PSO-GA optimization technique,” Thin-Walled Structures, vol. 160, 2021, doi: 10.1016/j.tws.2020.107382.

X. Liu et al., “Design optimization of laminated composite structures using artificial neural network and genetic algorithm,” Compos Struct, vol. 305, 2023, doi: 10.1016/j.compstruct.2022.116500.

M. Savran and L. Aydin, “Natural frequency and buckling optimization considering weight saving for hybrid graphite/epoxy-sitka spruce and graphite-flax/epoxy laminated composite plates using stochastic methods,” Mechanics of Advanced Materials and Structures, vol. 30, no. 13, 2023, doi: 10.1080/15376494.2022.2061656.

A. R. Vosoughi, H. Dehghani Forkhorji, and H. Roohbakhsh, “Maximum fundamental frequency of thick laminated composite plates by a hybrid optimization method,” Compos B Eng, vol. 86, 2016, doi: 10.1016/j.compositesb.2015.10.010.

K. Kalita, R. K. Ghadai, and S. Chakraborty, “A comparative study on the metaheuristic-based optimization of skew composite laminates,” Eng Comput, vol. 38, no. 4, 2022, doi: 10.1007/s00366-021-01401-y.

S. Pal, K. Kalita, and S. Haldar, “Genetic Algorithm-Based Fundamental Frequency Optimization of Laminated Composite Shells Carrying Distributed Mass,” Journal of The Institution of Engineers (India): Series C, vol. 103, no. 3, 2022, doi: 10.1007/s40032-021-00801-9.

S. Peng, M. Habibi, and A. Pourjabari, “Generalized differential quadrature element solution, swarm, and GA optimization technique to obtain the optimum frequency of the laminated rotary nanostructure,” Eng Anal Bound Elem, vol. 151, 2023, doi: 10.1016/j.enganabound.2023.02.052.

L. Le-Anh, T. Nguyen-Thoi, V. Ho-Huu, H. Dang-Trung, and T. Bui-Xuan, “Static and frequency optimization of folded laminated composite plates using an adjusted Differential Evolution algorithm and a smoothed triangular plate element,” Compos Struct, vol. 127, 2015, doi: 10.1016/j.compstruct.2015.02.069.

T. Vo-Duy, T. Truong-Thi, V. Ho-Huu, and T. Nguyen-Thoi, “Frequency optimization of laminated functionally graded carbon nanotube reinforced composite quadrilateral plates using smoothed FEM and evolution algorithm,” J Compos Mater, vol. 52, no. 14, 2018, doi: 10.1177/0021998317737831.

N. D. Duc, K. Foroutan, S. M. Varedi-Koulaei, and H. Ahmadi, “Nonlinear Vibration Analysis of Laminated Composite Cylindrical Shell Under External Loading Utilizing Meta-Heuristic Optimization Algorithms,” Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, vol. 48, no. 2, 2024, doi: 10.1007/s40997-023-00685-3.

R. Xiang, Z. Z. Pan, H. Ouyang, and L. W. Zhang, “A study of the vibration and lay-up optimization of rotating cross-ply laminated nanocomposite blades,” Compos Struct, vol. 235, 2020, doi: 10.1016/j.compstruct.2019.111775.

M. De Munck, S. De Sutter, S. Verbruggen, T. Tysmans, and R. F. Coelho, “Multi-objective weight and cost optimization of hybrid composite-concrete beams,” Compos Struct, vol. 134, 2015, doi: 10.1016/j.compstruct.2015.08.089.

M. Gholami, R. A. Alashti, and A. Fathi, “Optimal design of a honeycomb core composite sandwich panel using evolutionary optimization algorithms,” Compos Struct, vol. 139, 2016, doi: 10.1016/j.compstruct.2015.12.019.

S. Shrivastava, P. M. Mohite, T. Yadav, and A. Malagaudanavar, “Multi-objective multi-laminate design and optimization of a Carbon Fibre Composite wing torsion box using evolutionary algorithm,” Compos Struct, vol. 185, 2018, doi: 10.1016/j.compstruct.2017.10.041.

A. Albanesi, N. Roman, F. Bre, and V. Fachinotti, “A metamodel-based optimization approach to reduce the weight of composite laminated wind turbine blades,” Compos Struct, vol. 194, 2018, doi: 10.1016/j.compstruct.2018.04.015.




DOI: https://dx.doi.org/10.21622/ACE.2024.04.2.930

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ranganai T. Moyo, Pavel Y. Tabakov


Advances in Computing and Engineering
E-ISSN: 2735-5985
P-ISSN: 2735-5977

Published by:

Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt
ace@aast.edu