Numerical study of a solar PV/thermal collector under several conditions in Algeria

Sihem Bouafia, Mayouf Si Abdallah

Abstract


The concept of a hybrid panel has been proposed as a solution to the problem of photovoltaic (PV) cells overheating, with the goal of increasing their electrical efficiency. This study used numerical analysis to examine the effects of several parameters on this kind of solar PV panel's efficiency. These parameters include solar radiation, ambient temperature, mass flow rate, and the temperature of the inlet water used as a coolant in the serpentine tubes. The model equations were solved using iterative methods and a FORTRAN programme to calculate the solar radiation, system temperatures and thus the efficiency of the electrical and thermal of the PV/T in M’Sila, Algeria, comparing the numerical results with some experimental data obtained by other authors under the same conditions. The numerical results indicate that when the surrounding temperature is  around 42°C and solar radiation of 1100 W/m2, with cooling water mass flow rate of 300 L/h, the average cell temperature decreases by 22°C and the electrical efficiency increases by approximately 3.1%.

 

Received: 23 June 2024

Accepted: 26 August 2024

Published: 18 September 2024


Keywords


Hybrid solar panels, solar radiation, heat transfer,free and forced convection

Full Text:

PDF

References


C. Good, J. Chen, Y. Dai, and A. G. Hestnes, “Hybrid Photovoltaic-thermal Systems in Buildings-A Review,” in Energy Procedia, 2015. doi: 10.1016/j.egypro.2015.02.176.

J. Ji, T. T. Chow, and W. He, “Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong,” Build Environ, vol. 38, no. 11, 2003, doi: 10.1016/S0360-1323(03)00115-X.

W. G. J. Van Helden, R. J. C. Van Zolingen, and H. A. Zondag, “PV Thermal systems: PV panels supplying renewable electricity and heat,” Progress in Photovoltaics: Research and Applications, vol. 12, no. 6, 2004, doi: 10.1002/pip.559.

R. M. da Silva and J. L. M. Fernandes, “Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab,” Solar Energy, vol. 84, no. 12, 2010, doi: 10.1016/j.solener.2010.10.004.

S. Dubey and A. A. O. Tay, “Testing of two different types of photovoltaic-thermal (PVT) modules with heat flow pattern under tropical climatic conditions,” Energy for Sustainable Development, vol. 17, no. 1, 2013, doi: 10.1016/j.esd.2012.09.001.

A. Nahar, M. Hasanuzzaman, and N. A. Rahim, “Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia,” Solar Energy, vol. 144, 2017, doi: 10.1016/j.solener.2017.01.041.

J. Walshe, P. M. Carron, S. McCormack, J. Doran, and G. Amarandei, “Organic luminescent down-shifting liquid beam splitters for hybrid photovoltaic-thermal (PVT) applications,” Solar Energy Materials and Solar Cells, vol. 219, 2021, doi: 10.1016/j.solmat.2020.110818.

B. Yan et al., “Numerical and Experimental Investigation of Photovoltaic/Thermal Systems: Parameter Analysis and Determination of Optimum Flow,” Sustainability (Switzerland), vol. 14, no. 16, 2022, doi: 10.3390/su141610156.

N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimal control of photovoltaic arrays,” Math Comput Simul, vol. 91, 2013, doi: 10.1016/j.matcom.2012.05.002.

Y. Tripanagnostopoulos, Th. Nousia, M. Souliotis, and P. Yianoulis, “Hybrid photovoltaic/thermal solar systems,” Solar Energy, vol. 72, no. 3, pp. 217–234, Mar. 2002, doi: 10.1016/S0038-092X(01)00096-2.

J. K. Tonui and Y. Tripanagnostopoulos, “Improved PV/T solar collectors with heat extraction by forced or natural air circulation,” Renew Energy, vol. 32, no. 4, 2007, doi: 10.1016/j.renene.2006.03.006.

M. Abbasi Kamazani and C. Aghanajafi, “Multi-objective optimization and exergoeconomic evaluation of a hybrid geothermal-PVT system integrated with PCM,” Energy, vol. 240, 2022, doi: 10.1016/j.energy.2021.122806.

E. Touti, M. Masmali, M. Fterich, and H. Chouikhi, “Experimental and numerical study of the PVT design impact on the electrical and thermal performances,” Case Studies in Thermal Engineering, vol. 43, 2023, doi: 10.1016/j.csite.2023.102732.

H. J. Joo, Y. S. An, M. H. Kim, and M. Kong, “Long-term performance evaluation of liquid-based photovoltaic thermal (PVT) modules with overheating-prevention technique,” Energy Convers Manag, vol. 296, 2023, doi: 10.1016/j.enconman.2023.117682.

K. Touafek, A. Malek, and M. Haddadi, “Etude expérimentale du capteur hybride photovoltaïque thermique,” Journal of Renewable Energies, vol. 9, no. 3, 2006, doi: 10.54966/jreen.v9i3.825.

V. Ngunzi, F. Njoka, and R. Kinyua, “Modeling, simulation and performance evaluation of a PVT system for the Kenyan manufacturing sector,” Heliyon, vol. 9, no. 8, 2023, doi: 10.1016/j.heliyon.2023.e18823.

A. Hamada, M. Emam, H. A. Refaey, M. Moawed, and M. A. Abdelrahman, “Investigating the performance of a water-based PVT system using encapsulated PCM balls: An experimental study,” Energy, vol. 284, 2023, doi: 10.1016/j.energy.2023.128574.

Z. Wang, G. Hou, H. Taherian, and Y. Song, “Numerical Investigation of Innovative Photovoltaic–Thermal (PVT) Collector Designs for Electrical and Thermal Enhancement,” Energies (Basel), vol. 17, no. 10, p. 2429, May 2024, doi: 10.3390/en17102429.

Z. Zareie, R. Ahmadi, and M. Asadi, “A comprehensive numerical investigation of a branch-inspired channel in roll-bond type PVT system using design of experiments approach,” Energy, vol. 286, 2024, doi: 10.1016/j.energy.2023.129452.

Y. Ali Bhutto et al., “Electrical and thermal performance assessment of photovoltaic thermal system integrated with organic phase change material,” in E3S Web of Conferences, 2024. doi: 10.1051/e3sconf/202448801007.

A. Farzanehnia and M. Sardarabadi, “Exergy in Photovoltaic/Thermal Nanofluid-Based Collector Systems,” in Exergy and Its Application - Toward Green Energy Production and Sustainable Environment, 2019. doi: 10.5772/intechopen.85431.

M. E. A. Slimani, M. Amirat, S. Bahria, I. Kurucz, M. Aouli, and R. Sellami, “Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer,” Energy Convers Manag, vol. 125, 2016, doi: 10.1016/j.enconman.2016.03.059.

F. Sarhaddi, S. Farahat, H. Ajam, A. Behzadmehr, and M. Mahdavi Adeli, “An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector,” Appl Energy, vol. 87, no. 7, 2010, doi: 10.1016/j.apenergy.2010.01.001.

M. Sardarabadi, M. Passandideh-Fard, and S. Zeinali Heris, “Experimental investigation of the effects of silica/water nanofluid onPV/T (photovoltaic thermal units),” Energy, vol. 66, 2014, doi: 10.1016/j.energy.2014.01.102.

Hottel H. C., Heat Transmission 3 ed William H. McAdams, 3rd ed. New York: McGraw-Hill Book Co., 1954.

F. Sobhnamayan, F. Sarhaddi, M. A. Alavi, S. Farahat, and J. Yazdanpanahi, “Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept,” Renew Energy, vol. 68, 2014, doi: 10.1016/j.renene.2014.01.048.

Bernard Jacques, Énergie solaire: calculs et optimisation. Ellipses, 2004.




DOI: http://dx.doi.org/10.21622/resd.2024.10.2.900

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sihem Bouafia, Mayouf Si Abdallah


Renewable Energy and Sustainable Development

E-ISSN: 2356-8569

P-ISSN: 2356-8518

 

Published by:

Academy Publishing Center (APC)

Arab Academy for Science, Technology and Maritime Transport (AASTMT)

Alexandria, Egypt

resd@aast.edu