Utilizing maritime caves for wave energy: wells turbine performance and household power supply from cave-generated electricity

Wilson M. L. Monteiro, António Sarmento, Bruno Semedo, Arider Carvalho, Tomás Tavares, Jakson A. L. Monteiro

Abstract


Maritime Natural Caves (MNCs) are coastal infrastructures that harness ocean wave energy to generate pneumatic power, which drives a turbo-generator to produce electricity. This study focuses on the use of MNCs for wave energy extraction, with the Cidade-Velha MNC identified as the most promising one. The research involved constructing several Wells turbines with varying rotor blade orientations (β) to analyze their impact on energy production during high-energy conditions within the MNC. The characteristic curves of the turbines show a linear trend, with determination coefficients exceeding 75%. However, non-linear behavior was observed at higher flow rates probably due to boundary layer separation on the turbine blades. Quadratic data approximations provided a better fit, with determination coefficients over 93%. Among the turbines tested, the one with a 15° blade inclination (β=15°) was more effective under extreme conditions, while the turbine with a 0° inclination (β=0°) was less suitable. Despite its better performance in high-energy conditions, the turbine with β=15° encountered more start-up difficulties and longer downtime compared to the β=0° turbine, which performed better under low to moderate energy levels. The MNC demonstrated hysteresis, leading to significant inaccuracies in efficiency evaluations. Additionally, the turbines experienced operational issues at high rotational speeds. The initial attempt to use the MNC for household electricity generation revealed several challenges that need to be addressed before MNCs can be considered a reliable energy source.


Received: 17 September 2024

Accepted: 31 October 2024

Published: 27 November 2024


Keywords


Wave energy, Maritime caves, Wells turbine, Renewable energy, Household power supply, Cave-generated electricity

Full Text:

PDF

References


A. Barua and M. Salauddin Rasel, “Advances and challenges in ocean wave energy harvesting,” Sustainable Energy Technologies and Assessments, vol. 61, p. 103599, Jan. 2024, doi: 10.1016/j.seta.2023.103599.

A. F. de O. Falcão, “Wave energy utilization: A review of the technologies,” Renewable and Sustainable Energy Reviews, vol. 14, no. 3, pp. 899–918, Apr. 2010, doi: 10.1016/j.rser.2009.11.003.

A. F. O. Falcão and J. C. C. Henriques, “Oscillating-water-column wave energy converters and air turbines: A review,” 2016. doi: 10.1016/j.renene.2015.07.086.

A. W. Lees, Vibration Problems in Machines. CRC Press, 2020. doi: 10.1201/9780429351372.

B. Holmes, “Bull Rock,” Sustainable Energy Research Group, HMRC, UCC, 1984.

“CorPower Ocean - Wave Power. To Power the Planet.,” Nov. 2021. [Online]. Available: https://corpowerocean.com

H. Lee and C.-H. Chen, “Parametric Study for an Oscillating Water Column Wave Energy Conversion System Installed on a Breakwater,” Energies (Basel), vol. 13, no. 8, p. 1926, Apr. 2020, doi: 10.3390/en13081926.

IEA- International Energy Agency, “Annual Report 2021,” 2021.

I. López, B. Pereiras, F. Castro, and G. Iglesias, “Performance of OWC wave energy converters: influence of turbine damping and tidal variability,” Int J Energy Res, vol. 39, no. 4, pp. 472–483, Mar. 2015, doi: 10.1002/er.3239.

joão m. b. p. cruz and antónio j. n. a. sarmento, “Energia das Ondas: IntroduÁ„o aos Aspectos TecnolÛgicos, EconÛmicos e Ambientais,” Alfragide, Instituto do Ambiente, 2004.

K. Koca et al., “Recent Advances in the Development of Wave Energy Converters,” Conference: The 10th European Wave and Tidal Energy Conference (EWTEC 2013)At: Aalborg, Denmark, 2013.

L. Del Frate, F. Moretti, G. Galassi, and F. D’Auria, “Limitations in the Use of the Equivalent Diameter,” World Journal of Nuclear Science and Technology, vol. 06, no. 01, pp. 53–62, 2016, doi: 10.4236/wjnst.2016.61005.

L. Oliveira and A. Lopes, Mecânica dos Fluidos, 4a Ed., Lide. 2012.

M. Bošnjaković, M. Katinić, R. Santa, and D. Marić, “Wind Turbine Technology Trends,” Applied Sciences, vol. 12, no. 17, p. 8653, Aug. 2022, doi: 10.3390/app12178653.

M. A. Krasnosel’skiǐ and A. V. Pokrovskiǐ, Systems with Hysteresis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. doi: 10.1007/978-3-642-61302-9.

M. Rosati, J. C. C. Henriques, and J. V. Ringwood, “Oscillating-water-column wave energy converters: A critical review of numerical modelling and control,” 2022. doi: 10.1016/j.ecmx.2022.100322.

P. Puddu, M. Paderi, and C. Manca, “Aerodynamic Characterization of a Wells Turbine under Bi-directional Airflow,” Energy Procedia, vol. 45, pp. 278–287, 2014, doi: 10.1016/j.egypro.2014.01.030.

Q. Yao, S. M. Wang, and H. P. Hu, “Development and Prospect of Wave Power Generation Devices,” Ocean Dev. Manag, vol. 33, pp. 86–92, 2016, [Online]. Available: https://scholar.google.com/scholar_lookup?title=Development+and+Prospect+of+Wave+Power+Generation+Devices&author=Yao,+Q.&author=Wang,+S.M.&author=Hu,+H.P.&publication_year=2016&journal=Ocean+Dev.+Manag.&volume=33&pages=86%E2%80%9392

T. Ghisu, F. Cambuli, P. Puddu, I. Virdis, M. Carta, and F. Licheri, “A lumped parameter model to explain the cause of the hysteresis in OWC-Wells turbine systems for wave energy conversion,” Applied Ocean Research, vol. 94, 2020, doi: 10.1016/j.apor.2019.101994.

T. Ghisu, P. Puddu, and F. Cambuli, “Physical Explanation of the Hysteresis in Wells Turbines: A Critical Reconsideration,” J Fluids Eng, vol. 138, no. 11, Nov. 2016, doi: 10.1115/1.4033320.

T. Ghisu, P. Puddu, and F. Cambuli, “A detailed analysis of the unsteady flow within a Wells turbine,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 231, no. 3, pp. 197–214, May 2017, doi: 10.1177/0957650917691640.

T. Setoguchi, M. Takao, and K. Kaneko, “Hysteresis on wells turbine characteristics in reciprocating flow,” International Journal of Rotating Machinery, vol. 4, no. 1, 1998, doi: 10.1155/S1023621X98000025.

T. R. Kuphaldt., “Lessons in Electric Curcuits, Volume I - DC", 5 ed., ch.6 - Divider Circuits and Kirchhoff’s Law,” 2006. [Online]. Available: https://www.ibiblio.org/kuphaldt/electricCircuits/DC/index.html

T. R. Kuphaldt, “Lessons in Electric Circuits, Volume I - Direct Current", 5 ed, ch.6 - Divider Circuits and Kirchhoff’s Law,” 2009. [Online]. Available: https://workforce.libretexts.org/Bookshelves/Electronics_Technology/Book%3A_Electric_Circuits_I_-_Direct_Current_(Kuphaldt)

Z. L. Wang, “New wave power,” Nature 2017 542:7640, vol. 542, no. 7640, 2017, [Online]. Available: https://scholar.google.com/scholar_lookup?title=New+wave+power&author=Wang,+Z.L.&publication_year=2017&journal=Nature&volume=542&pages=159%E2%80%93160&doi=10.1038/542159a

W. M. L. Monteiro and A. J. N. A. Sarmento, ““Cabo Verde Offshore Wave Energy Resources Characterization,” in proc. Of Grand Renewable Energy,Japan, 2014.

W. M. L. Monteiro, A. Sarmento, C. P. Monteiro, and J. A. L. Monteiro, “Wave energy production by a maritime Natural Cave: performance characterization and the power take-off design,” J Ocean Eng Mar Energy, vol. 7, no. 3, pp. 327–337, Aug. 2021, doi: 10.1007/s40722-021-00196-w.

W. M. L. Monteiro, A. Sarmento, J. A. L. Monteiro, and C. P. Monteiro, “Wave energy production by a maritime natural cave equipped with Wells turbine,” J Ocean Eng Mar Energy, vol. 8, no. 3, pp. 457–467, Aug. 2022, doi: 10.1007/s40722-022-00234-1.

W. M. Leger Monteiro and A. Sarmento, “Analysing the Possibility of Extracting Energy from Ocean Waves in Cabo-Verde to Produce Clean Electricity - Case-Study: the Leeward Islands,” International Journal of Renewable Energy Development, vol. 8, no. 1, pp. 103–112, Feb. 2019, doi: 10.14710/ijred.8.1.103-112.

“WaveNet Results from the European Thematic Network on Wave Energy, Final Report, ERK5-CT-1999-20001, European Commission, Energy, Environment and Sustainable Development Programme.,” 2003.

Y. Kinoue, T. Setoguchi, T. H. Kim, K. Kaneko, and M. Inoue, “Mechanism of Hysteretic Characteristics of Wells Turbine for Wave Power Conversion,” J Fluids Eng, vol. 125, no. 2, pp. 302–307, Mar. 2003, doi: 10.1115/1.1538629.

Y. Wang, Y. Yang, and Z. L. Wang, “Triboelectric nanogenerators as flexible power sources,” npj Flexible Electronics, vol. 1, no. 1, p. 10, Nov. 2017, doi: 10.1038/s41528-017-0007-8.




DOI: http://dx.doi.org/10.21622/resd.2024.10.2.1019

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Wilson M. L. Monteiro, António Sarmento, Bruno Semedo, Arider Carvalho, Tomás Tavares, Jakson A. L. Monteiro


Renewable Energy and Sustainable Development

E-ISSN: 2356-8569

P-ISSN: 2356-8518

 

Published by:

Academy Publishing Center (APC)

Arab Academy for Science, Technology and Maritime Transport (AASTMT)

Alexandria, Egypt

resd@aast.edu