Polyetheretherketone (PEEK): a contemporary modality in cranio maxillofacial reconstruction

Nada M. Fahmy

Abstract


This descriptive review focuses on the evolution of polyetheretherketone [PEEK] for the reconstruction of cranio-maxillofacial defects. This treatment modality
is now trending and growing throughout the different aspects of the oral and maxillofacial specialty to include customized patient specific implants for reconstructive surgeries, and a material that is used in dental implants.

The PEEK implants are created using computer tomography [CT]to reconstruct the defect either in the midface or cranial defects and match with the opposite side, all implants were secured using screws. Cases were followed up for 12 months, and there were no postoperative problems. This came to an end that PEEK is considered
as a safe and good implanted bone substitute for the fixation of complex defects of the cranio-maxillofacial.


Keywords


cranio-maxillofacial reconstruction; polyetheretherketone; PEEK; facial deformities; patient specific implant; PSI

Full Text:

PDF

References


Saponaro G, Doneddu P, Gasparini G, Staderini E, Boniello R, Todaro M, et al. Custom made onlay implants in peek in maxillofacial surgery: a volumetric study. Childs Nerv Syst 2020; 36:385-91.

Honigmann P, Sharma N, Okolo B, Popp U, Msallem B, Thieringer FM. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application. Biomed Res Int 2018; 2018:1-8.

Maas CS, Merwin GE, Wilson J, Frey MD, Maves MD. Comparison of biomaterials for facial bone augmentation. Arch Otolaryngol Head Neck Surg 1990; 116:551-6.

Jackson IT, Helden G, Marx R. Skull bone grafts in maxillofacial and craniofacial surgery. J Oral MaxillofacSurg 1986; 44:949-55.

Berrone M, Aldiano C, Pentenero M, Berrone S. Correction of a mandibular asymmetry after fibula reconstruction using a custom-made polyetheretherketone (PEEK) onlay after implant supported occlusal rehabilitation. Acta Otorhinolaryngo lItal 2015; 35:285-8.

Tie Y, Wang DM, Ji T, Wang CT, Zhang CP. Three-dimensional finite-element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts. J Craniomaxillofac Surg 2006; 34:290-8.

Park JS, Lee KS, Shim JJ, Yoon SM, Choi WR, Doh JW. Large defect may cause infectious complications in cranioplasty. J Korean Neurosurg Soc 2007; 42:89-91.

Jardini AL, Larosa MA, MacielFilho R, Zavaglia CA, Bernardes LF, Lambert CS, et al. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Craniomaxillofac Surg 2014; 42:1877-84.

Egusa H, Ko N, Shimazu T, Yatani H. Suspected association of an allergic reaction with titanium dental implants: a clinical report. J Prosthet Dent 2008; 100:344-7.

Kuttenberger JJ, Hardt N. Long-term results following reconstruction of craniofacial defects with titanium micro-mesh systems. J Craniomaxillofac Surg 2001; 29:75-81.

Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater 2019 5; 84:16-33.

Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci 2014; 15:5426-45.

Frassanito P, Massimi L, Tamburrini G, Bianchi F, Nataloni A, Canella V, et al. Custom-made hydroxyapatite for cranial repair in a specific pediatric age group (7-13 years old): a multicenter post-marketing surveillance study. Childs Nerv Syst 2018; 34:2283-9.

Ridwan-Pramana A, Idema S, TeSlaa S, Verver F, Wolff J, Forouzanfar T, et al. Polymethyl Methacrylate in Patient-Specific Implants: Description of a New Three-Dimension Technique. J Craniofac Surg 2019; 30:408-11. Pinheiro ALB, Junior FAL, Gerbi MEM, Ramalho LMP, Marzola C, Ponzi EAC. Effect of Low-Level Laser Therapy on the Repair of Bone Defects Grafted with Inorganic Bovine Bone. Braz Dent J. 2003; 14:177–218.

Järvinen S, Suojanen J, Kormi E, Wilkman T, Kiukkonen A, Leikola J, et al. The use of patient specific polyetheretherketone implants for reconstruction of maxillofacial deformities. J Craniomaxillofac Surg 2019; 47:1072-6.

Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P, et al. Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. J Biomed Mater Res A 2013;101:465-71.

Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging Applications of Bedside 3D Printing in Plastic Surgery. Front Surg 2015; 2:25.

Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007; 28:4845-69.

Schwitalla A, Muller WD. PEEK dental implants: a review of the literature. J Oral Implantol 2013;39:743-9.

Andreiotelli M, Wenz HJ, Kohal RJ. Are ceramic implants a viable alternative to titanium implants? A systematic literature reviews. Clin Oral Implants Res 2009; 20:32-47.

Schwitalla AD, Zimmermann T, Spintig T, Kallage I, Müller WD. Fatigue limits of different PEEK materials for dental implants. J Mech Behav Biomed Mater 2017; 69:163-8.

Jockisch KA, Brown SA, Bauer TW, Merritt K. Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res 1992; 26:133-46.

Lethaus B, Safi Y, terLaak-Poort M, Kloss-Brandstätter A, Banki F, Robbenmenke C, et al. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. J Neurotrauma 2012; 29:1077-83.

Patel N, Kim B, Zaid W. Use of virtual surgical planning for simultaneous maxillofacial osteotomies and custom polyetheretherketone implant in secondary orbito-frontal reconstruction: Importance of restoring orbital volume. J Craniofac Surg 2017; 28:387-90.

Ersanli S, Karabuda C, Beck F, Leblebicioglu B. Resonance frequency analysis of one-stage dental implant stability during the osseointegration period. J Periodontol. 2005; 76:1066–71.

Kim MM, Boahene KD, Byrne PJ. Use of customized polyetheretherketone (PEEK) implants in the reconstruction of complex maxillofacial defects. Arch Facial Plast Surg 2009; 11:53

Telfeian AE, Moldovan K, Shaaya E, Syed S, Oyelese A, Fridley J, et al. Awake, Endoscopic Revision Surgery for Lumbar Pseudarthrosis After Transforaminal Lumbar Interbody Fusion: Technical Notes. World Neurosurg 2020; 136:117-21.

Morrison C, Macnair R, MacDonald C, Wykman A, Goldie I, Grant MH. In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomaterials 1995; 16:987-92.

Padolino A, Porcellini G, Guollo B, Fabbri E, Kiran Kumar GN, Paladini P, et al. Comparison of CFR-PEEK and conventional titanium locking plates for proximal humeral fractures: a retrospective controlled study of patient outcomes. Musculoskelet Surg 2018; 102:49-56.

Dessoky NY, El-Mahallawy AS, Fahmy MH, Khalil MM. Use of custom-made peek plates for treatment of mandibular fracture. ADJALEXU 2020; 45:125-8.

Skariah GP, Zachariah GP. Polyetheretherketone: A Crystalline Non-Metallic Plate: Past, Present and Future-A Review. J Adv Med Dent Scie Res 2019; 7:31-5.

Bathala L, Majeti V, Rachuri N, Singh N, Gedela S. The Role of Polyether Ether Ketone (Peek) in Dentistry - A Review. J Med Life 2019; 12:5-9.

Fan JP, Tsui CP, Tang CY, Chow CL. Influence of interphaselayer on the overall elasto-plastic behaviors of HA/PEEK biocomposite. Biomaterials2004; 25:5363-73.

Ferguson SJ, Visser JM, Polikeit A. The long-term mechanical integrity of non-reinforced PEEK-OPTIMA polymer for demanding spinal applications: experimental and finite-elementanalysis. Eur Spine J2006; 15:149-56.

Bradley JSH, Hastings GW, Johnson-Nurse C. Carbon fibrereinforced epoxy as a high strength, low modulus material for internal fixation plates. Biomaterials1980; 1:38-40.

Ponnappan RK, Serhan H, Zarda B, Patel R, Albert T, Vaccaro AR. Biomechanical evaluation, and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J 2009; 9:263-7.

Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK Optima—A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 2013; 17:221-8.

Carlile DR, Leach DC, Moore R, Zahlan N. Mechanical properties of the carbon fiber/PEEK composite APC-2/AS-4 for structural application. In: Newaz GM (ed). Advances in Thermoplastic Matrix Composite Materials. Philadelphia: American Society for Testing and Materials; 1989. PP.199-222.

Ha SW, Kirch M, Birchler F, Eckert KL, Mayer J, Wintermantel E, et al. Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation. J Mater Sci Mater Med 1997; 8:683-90.

Abu Bakar MS, Cheang P, Khor KA. Mechanical properties of injection molded hydroxyapatite–polyetheretherketonebiocomposites. Compos Sci Technol 2003; 63:421-5.

van de Vijfeijken SECM, Schreurs R, Dubois L, Becking AG, Becking AG, Dubois L, et al. The use of cranial resection templates with 3D virtual planning and PEEK patient-specific implants: A 3-year follow-up. J Craniomaxillofac Surg 2019; 47:542-7.

Camarini ET, Tomeh JK, Dias RR, da Silva EJ.Reconstruction of Frontal Bone Using Specific Implant Polyether-Ether-Ketone. J Craniofac Surg 2011; 22:2205-7.

Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005;36: 20-7.

Jackson IT, Pellett C, Smith JM.The skull as a bone graft donor site. Ann Plast Surg 1983; 11:527-32.

Punchak M, Chung LK, Lagman C, Bui TT, Lazareff J, Rezzadeh K, et al. Outcomes following polyetheretherketone (PEEK) cranioplasty: Systematic review and meta-analysis. J Clin Neurosci 2017 l; 41:30-5.

Jalbert F, Boetto S, Nadon F, Lauwers F, Schmidt E, Lopez R. One-step primary reconstruction for complex craniofacial resection with PEEK custom-made implants. J Craniomaxillofac Surg 2014; 42:141-8.

O'Reilly EB, Barnett S, Madden C, Welch B, Mickey B, Rozen S. Computed tomography modeled polyether ether ketone (PEEK) implants in revision cranioplasty. J Plast Reconstr Aesthet Surg 2015; 68:329-38.

Malivuković A, Novaković N, Lepić M, Minić L, Stepić N, Đorđević B, et al. Cranial reconstruction with prefabricated 3D implant after a gunshot injury: A case report. Vojnosanit Pregl 2016; 73:783-7.

Gerbino G, Zavattero E, Zenga F, Bianchi FA, Garzino-Demo P, Berrone S. Primary and secondary reconstruction of complex craniofacial defects using polyetheretherketone custom-made implants. J Craniomaxillofac Surg 2015; 43:1356-63.

Alasseri N, Alasraj A. Patient-specific implants for maxillofacial defects: challenges and solutions. Maxillofac Plast Reconstr Surg 2020; 42:15.

Binder WJ, Azizzadeh B. Malar and submalar augmentation. Facial Plast Surg Clin North Am 2008; 16:11-32.

Gerbino G, Bianchi FA, Zavattero E, Tartara F, Garbossa D, Ducati A. Single-step resection and reconstruction using patient-specific implants in the treatment of benign cranio-orbital tumors. J Oral Maxillofac Surg2013; 71:1969-82.

Goodson ML, Farr D, Keith D, Banks RJ. Use of two-piece polyetheretherketone (PEEK) implants in orbito zygomatic reconstruction. Br J Oral Maxillofac Surg 2012;50:268-9.

Zain MA, Hakam MM, Abo El Fotouh AH. Validity of Peek Patient Specific Implant (PSI) Containing Autogenous Bone Graft for Maxillary Reconstruction Following Lesion Enucleation-A Pilot study. Adv Dent J 2019; 1:21-6.‏

Mounir M, Shalash M, Mounir S, Nassar Y, El Khatib O. Assessment of three-dimensional bone augmentation of severely atrophied maxillary alveolar ridges using prebent titanium mesh vs customized poly-ether-ether-ketone (PEEK) mesh: A randomized clinical trial. Clin Implant Dent Relat Res 2019; 21:960-7.

El-Hawary H, Mounir M, Mounir S, Gibaly A. Primary reconstruction of resected proximal mandibular segments: a novel protocol using patient-specific poly ether-ether ketone (peek) condylar replicas. EJOMS 2019; 10:77-84.‏

Lin X, Xiao X, Wang Y, Gu C, Wang C, Chen J, et al. Biocompatibility of Bespoke 3D-Printed Titanium Alloy Plates for Treating Acetabular Fractures. Biomed Res Int 2018;2018:2053486.

Berrone M, Aldiano C, Pentenero M, Berrone S. Correction of a mandibular asymmetry after fibula reconstruction using a custom-made polyetheretherketone (PEEK) onlay after implant supported occlusal rehabilitation. Acta Otorhinolaryngol Ital 2015;35:285-8 




DOI: http://dx.doi.org/10.21622/ampdr.2022.02.1.005

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Nada M. Fahmy

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Advances in Medical, Pharmaceutical and Dental Research
E-ISSN: 2812-4898
P-ISSN: 2812-488X 

Published by:

Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt
ampdr@aast.edu