Customer active power consumption prediction for the next day based on historical profile

Ahmad A. Goudah, Mohamed El-Habrouk, Dieter Schramm, Yasser G. Dessouky

Abstract


Energy consumption prediction application is one of the most important fields
that is artificially controlled with Artificial Intelligence technologies to maintain
accuracy for electricity market costs reduction. This work presents a way to build
and apply a model to each costumer in residential buildings. This model is built by using Long Short Term Memory (LSTM) networks to address a demonstration of time-series prediction problem and Deep Learning to take into consideration the historical consumption of customers and hourly load profiles in order to predict future consumption. Using this model, the most probable sequence of a certain industrial customer’s consumption levels for a coming day is predicted. In the case of residential customers, determining the particular period of the prediction in terms of either a year or a month would be helpful and more accurate due to changes in consumption according to the changes in temperature and weather conditions in general. Both of them are used together in this research work to make a wide or narrow prediction window.


A test data set for a set of customers is used. Consumption readings for any
customer in the test data set applying LSTM model are varying between minimum and maximum values of active power consumption. These values are always alternating during the day according to customer consumption behavior. This consumption variation leads to leveling all readings to be determined in a finite set and deterministic values. These levels could be then used in building the prediction model. Levels of consumption’s are modeling states in the transition matrix. Twenty five readings are recorded per day on each hour and cover leap years extra ones. Emission matrix is built using twenty five values numbered from one to twenty five and represent the observations. Calculating probabilities of being in each level (node) is also covered. Logistic Regression Algorithm is used to determine the most probable nodes for the next 25 hours in case of residential or industrial customers.

Index Terms—Smart Grids, Load Forecasting, Consumption Prediction, Long Short Term Memory (LSTM), Logistic Regression Algorithm, Load Profile, Electrical Consumption.


Keywords


Smart Grids; Load Forecasting; Consumption Prediction; Hidden Markov Model; Viterbi Algorithm; LoadProfile; Electrical Consumption

Full Text:

PDF

References


C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, “A review on time series forecasting techniques for building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 902–924, 2017. [Online]. Available:

http://www.sciencedirect.com/science/article/ pii/S1364032117303155

T. Teeraratkul, D. O’Neill, and S. Lall, “Shape-Based Approach to Household Electric Load Curve Clustering and Prediction,” IEEE Transactions on Smart Grid, p. 1, 2017.

S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, “Time-series clustering – A decade review,” Information Systems, vol. 53, pp. 16–38, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/ pii/S0306437915000733

P. Wang, B. Liu, and T. Hong, “Electric load forecasting with recency effect: A big data approach,” International Journal of Forecasting, vol. 32, no. 3, pp. 585–597, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169207015001557

Y. Goude, R. Nedellec, and N. Kong, “Local Short and Middle Term Electricity Load Forecasting With Semi-Parametric Additive Models,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 440–446, 2014.

B.-J. Chen, M.-W. Chang, and C.-J. Lin, “Load forecasting using support vector Machines: a study on EUNITE competition 2001,” IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 1821–1830, 2004.

A. Khotanzad, R. Afkhami-Rohani, T.-L. Lu, A. Abaye, M. Davis, and D. J. Maratukulam, “ANNSTLF-a neural-network-based electric load forecasting

system,” IEEE Transactions on Neural Networks, vol. 8, no. 4, pp. 835–846, 1997.

J. Yang, M. Santamouris, S. E. Lee, and C. Deb, “Energy performance model development and occupancy number identification of institutional buildings,”Energy and Buildings, vol. 123, pp. 192 – 204, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378778815304552

H. xiang Zhao and F. Magoules, “A review on the prediction of building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp.3586 – 3592, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032112001438

Y. Wei, X. Zhang, Y. Shi, L. Xia, S. Pan, J. Wu, M. Han, and X. Zhao, “A review of data-driven approaches for prediction and classification of building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 1027–1047, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S136403211731362X

T. Hong and S. Fan, “Probabilistic electric load forecasting: A tutorial

review,” International Journal of Forecasting, vol. 32, no. 3, pp. 914–938,

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169207015001508

X. Qiu, P. N. Suganthan, and G. A. J. Amaratunga, “Ensemble incremental

learning Random Vector Functional Link network for short-term electric

load forecasting,” Knowledge-Based Systems, vol. 145, pp. 182–196, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0950705118300236

J.-S. Chou and D.-S. Tran, “Forecasting Energy Consumption Time Series

using Machine Learning Techniques based on Usage Patterns of ResidentialHouseholders,” Energy, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360544218319145

L. Wang, R. Kubichek, and X. Zhou, “Adaptive learning based data-driven

models for predicting hourly building energy use,” Energy and Buildings, vol. 159, pp. 454–461, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378778817318728

K. Amasyali and N. M. El-Gohary, “A review of data-driven building energy consumption prediction studies,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1192–1205, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032117306093

P. Lusis, K. R. Khalilpour, L. Andrew, and A. Liebman, “Shortterm residential load forecasting: Impact of calendar effects and forecast granularity,” Applied Energy, vol. 205, pp. 654–669, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0306261917309881

J. Luo, T. Hong, and S.-C. Fang, “Benchmarking robustness of load forecasting models under data integrity attacks,” International Journal of Forecasting, vol. 34, no. 1, pp. 89–104, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169207017300900

Q. Duan, J. Liu, and D. Zhao, “Short term electric load forecasting using an automated system of model choice,” International Journal of Electrical Power & Energy Systems, vol. 91, pp. 92–100, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0142061516300710

Z. Wang, Y. Wang, and R. S. Srinivasan, “A novel ensemble learning approach to support building energy use prediction,” Energy and Buildings, vol. 159, pp. 109–122, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378778817335272

M. A. M. Daut, M. Y. Hassan, H. Abdullah, H. A. Rahman, M. P. Abdullah, and F. Hussin, “Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review,” Renewable and Sustainable Energy Reviews, vol. 70, pp. 1108–1118, 2017. [Online]. Available: http://www. sciencedirect.com/science/article/pii/S1364032116310619

Z. Wang and R. S. Srinivasan, “A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 796–808, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032116307420

J. Zhang, Y.-M. Wei, D. Li, Z. Tan, and J. Zhou, “Short term electricity load

forecasting using a hybrid model,” Energy, vol. 158, pp. 774–781, 2018.

[Online]. Available: http://www.sciencedirect.com/science/article/ pii/

S036054421831065X

P. Vrablecová, A. B. Ezzeddine, V. Rozinajová, S. Sárik, and A. K. Sangaiah, “Smart grid load forecasting using online support vector regression,” Computers & Electrical Engineering, vol. 65, pp. 102–117, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0045790617320645

Y. Liu, W. Wang, and N. Ghadimi, “Electricity load forecasting by an improved forecast engine for building level consumers,” Energy, vol. 139, pp. 18–30, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360544217313348

Y. T. Chae, R. Horesh, Y. Hwang, and Y. M. Lee, “Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings,” Energy and Buildings, vol. 111, pp. 184–194, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0378778815304102

J. Nowotarski, B. Liu, R. Weron, and T. Hong, “Improving short term load forecast accuracy via combining sister forecasts,” Energy, vol. 98, pp. 40–49, 2016. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0360544216000116

G.-F. Fan, L.-L. Peng, and W.-C. Hong, “Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model,” Applied Energy, vol. 224, pp. 13–33, 2018. [Online]. Available: http:// www.sciencedirect.com/science/article/ pii/S0306261918306238

E. Yukseltan, A. Yucekaya, and A. H. Bilge, “Forecasting electricity demand for Turkey: Modeling periodic variations and demand segregation,” Applied Energy, vol. 193, pp. 287–296, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0306261917301848

G.-F. Fan, L.-L. Peng, W.-C. Hong, and F. Sun, “Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression,” Neurocomputing, vol. 173, pp. 958–970, 2016. [Online]. Available: http://www. sciencedirect.com/ science/article/pii/S0925231215012230

Y. Chen, H. Tan, and X. Song, “Day-ahead Forecasting of Non- stationary Electric Power Demand in Commercial Buildings: Hybrid Support Vector Regression Based,” Energy Procedia, vol. 105, pp. 2101–2106, 2017. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S1876610217306422

X. Zhang, J. Wang, and K. Zhang, “Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm,” Electric Power Systems Research, vol. 146, pp. 270–285, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378779617300445

S. Fan and R. J. Hyndman, “Short-Term Load Forecasting Based on a Semi- Parametric Additive Model,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 134–141, 2012.

N. Ghadimi, A. Akbarimajd, H. Shayeghi, and O. Abedinia, “Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting,” Energy, 2018. [Online]. Available: http://www. sciencedirect.com/science/article/ pii/S0360544218313859

A. I. Saleh, A. H. Rabie, and K. M. Abo-Al-Ez, “A data mining based load forecasting strategy for smart electrical grids,” Advanced Engineering Informatics, vol. 30, no. 3, pp. 422–448, 2016. [Online]. Available: http://www. sciencedirect.com/science/article/ pii/S1474034616301331

F. Zhang, C. Deb, S. E. Lee, J. Yang, and K. W. Shah, “Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique,” Energy and Buildings, vol. 126, pp. 94–103, 2016. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0378778816303899

A. Lahouar and J. B. H. Slama, “Day-ahead load forecast using random forest and expert input selection,” Energy Conversion and Management, vol. 103, pp. 1040–1051, 2015. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0196890415006925

Y. Chen, P. Xu, Y. Chu, W. Li, Y. Wu, L. Ni, Y. Bao, and K. Wang, “Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings,” Applied Energy, vol. 195, pp. 659–670, 2017. [Online]. Available: http://www.sciencedirect.com/ science/article/ pii/S0306261917302581

S. Mishra and V. K. Singh, “Monthly Energy Consumption Forecasting Based On Windowed Momentum Neural Network,” IFAC- PapersOnLine, vol. 48, no. 30, pp. 433–438, 2015. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S2405896315030591

K. Gajowniczek and T. Zabkowski, “Short Term Electricity Forecasting Using Individual Smart Meter Data,” Procedia Computer Science, vol. 35, pp. 589–597, 2014. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S1877050914011053

M. Mordjaoui, S. Haddad, A. Medoued, and A. Laouafi, “Electric load forecasting by using dynamic neural network,” International Journal of Hydrogen Energy, vol. 42, no. 28, pp. 17 655–17 663, 2017. [Online]. Available: http://www. sciencedirect.com/science/article/ pii/S0360319917310455

W.-C. Hong, “Electric load forecasting by support vector model,” Applied Mathematical Modelling, vol. 33, no. 5, pp. 2444–2454, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0307904X08001844

M. Rana and I. Koprinska, “Forecasting electricity load with advanced wavelet neural networks,” Neurocomputing, vol. 182, pp. 118–132, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0925231215019141

J.-S. Chou and N.-T. Ngo, “Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns,” Applied Energy, vol. 177, pp. 751–770, 2016. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/ S0306261916306717

C. Kuster, Y. Rezgui, and M. Mourshed, “Electrical load forecasting models: A critical systematic review,” Sustainable Cities and Society, vol. 35, pp. 257– 270, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2210670717305899

S. Aman, Y. Simmhan, and V. K. Prasanna, “Holistic Measures for Evaluating Prediction Models in Smart Grids,” IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 2, pp. 475–488, 2015.

J.-S. Chou and N.-T. Ngo, “Smart grid data analytics framework for increasing energy savings in residential buildings,” Automation in Construction, vol. 72, pp. 247–257, 2016. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0926580516000030

M. Q. Raza and A. Khosravi, “A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings,” Renewable and Sustainable Energy Reviews, vol. 50, pp. 1352–1372, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S1364032115003354

S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly detection for streaming data,” Neurocomputing, vol. 262, pp. 134–147, 2017. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/ S0925231217309864

C. Lynch, M. J.O’Mahony, and R. A. Guinee, “Electrical Load Forecasting Using An Expanded Kalman Filter Bank Methodology,” IFAC- PapersOnLine, vol. 49, no. 25, pp. 358–365, 2016. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S2405896316327070

Z. Guo, K. Zhou, X. Zhang, and S. Yang, “A deep learning model for short-term power load and probability density forecasting,” Energy, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0360544218313872

W. He, “Load Forecasting via Deep Neural Networks,” Procedia Computer Science, vol. 122, pp. 308–314, 2017. [Online]. Available: http://www. sciencedirect.com/science/article/pii/S1877050917326170

N. Ding, Y. Besanger, and F. Wurtz, “Next-day MV/LV substation load forecaster using time series method,” Electric Power Systems Research, vol. 119, pp. 345– 354, 2015. [Online]. Available: http: //www.sciencedirect.com/science/article/ pii/S0378779614003575

A. S. Ahmad, M. Y. Hassan, M. P. Abdullah, H. A. Rahman, F. Hussin, H. Abdullah, and R. Saidur, “A review on applications of ANN and SVM for building electrical energy consumption forecasting,” Renewable and Sustainable Energy Reviews, vol. 33, pp. 102–109, 2014. [Online]. Available: http://www. sciencedirect.com/science/article/ pii/S1364032114000914

H. Jiang, Y. Zhang, E. Muljadi, J. J. Zhang, and D. W. Gao, “A Short-Term and High-Resolution Distribution System Load Forecasting Approach Using Support Vector Regression With Hybrid Parameters Optimization,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3341–3350, 2018.

X. Fu, X.-J. Zeng, P. Feng, and X. Cai, “Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China,” Energy, vol. 165, pp. 76–89, 2018. [Online]. Available: http:// www.sciencedirect.com/science/article/pii/S0360544218319285

W. Ma, S. Fang, G. Liu, and R. Zhou, “Modeling of district load forecasting for distributed energy system,” Applied Energy, vol. 204, pp. 181–205, 2017. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/ S0306261917308747

H. Shiraki, S. Nakamura, S. Ashina, and K. Honjo, “Estimating the hourly electricity profile of Japanese households – Coupling of engineering and statistical methods,” Energy, vol. 114, pp. 478–491, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0360544216311227

L. M. Candanedo, V. Feldheim, and D. Deramaix, “Data driven prediction models of energy use of appliances in a low-energy house,” Energy and Buildings, vol. 140, pp. 81–97, 2017. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0378778816308970

S. Naji, A. Keivani, S. Shamshirband, U. J. Alengaram, M. Z. Jumaat, Z. Mansor, and M. Lee, “Estimating building energy consumption using extreme learning machine method,” Energy, vol. 97, pp. 506–516, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S036054421501587X

C. Tu, X. He, Z. Shuai, and F. Jiang, “Big data issues in smart grid – A review,” Renewable and Sustainable Energy Reviews, vol. 79, pp. 1099–1107, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032117307748

O. C. Ozerdem, E. O. Olaniyi, and O. K. Oyedotun, “Short term load forecasting using particle swarm optimization neural network,” Procedia Computer Science, vol. 120, pp. 382–393, 2017. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S1877050917324663

A. R. Khan, A. Mahmood, A. Safdar, Z. A. Khan, and N. A. Khan, “Load forecasting, dynamic pricing and DSM in smart grid: A review,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 1311–1322, 2016. [Online]. Available: http://www. sciencedirect.com/science/article/ pii/S136403211501196X

C. Tong, J. Li, C. Lang, F. Kong, J. Niu, and J. J. P. C. Rodrigues, “An efficient deep model for day-ahead electricity load forecasting with stacked denoising autoencoders,” Journal of Parallel and Distributed Computing, vol. 117, pp. 267–273, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S074373151730196X

Y. Yang, J. Che, Y. Li, Y. Zhao, and S. Zhu, “An incremental electric load forecasting model based on support vector regression,” Energy, vol. 113, pp. 796–808, 2016. [Online]. Available: http: //www.sciencedirect.com/science/ article/pii/S0360544216310167

Y. Chen, Y. Yang, C. Liu, C. Li, and L. Li, “A hybrid application algorithm based on the support vector machine and artificial intelligence: An example of electric load forecasting,” Applied Mathematical Modelling, vol. 39, no. 9, pp. 2617– 2632, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0307904X14005769

C. Robinson, B. Dilkina, J. Hubbs, W. Zhang, S. Guhathakurta, M. A. Brown, and R. M. Pendyala, “Machine learning approaches for estimating commercial building energy consumption,” Applied Energy, vol. 208, pp. 889– 904, 2017. [Online]. Available: http: //www.sciencedirect.com/science/article/ pii/S0306261917313429

L. Hernández, C. Baladron, J. M. Aguiar, B. Carro, A. Sánchez- Esguevillas, and J. Lloret, “Artificial neural networks for short-term load forecasting in microgrids environment,” Energy, vol. 75, pp. 252– 264, 2014. [Online]. Available: http:// www.sciencedirect.com/science/ article/pii/S0360544214008871

I. M. Coelho, V. N. Coelho, E. J. da S. Luz, L. S. Ochi, F. G. Guimarães, and E. Rios, “A GPU deep learning metaheuristic based model for time series forecasting,” Applied Energy, vol. 201, pp. 412– 418, 2017. [Online]. Available: http://www. sciencedirect.com/science/ article/pii/S0306261917300041

T. Yang, M. Ren, and K. Zhou, “Identifying household electricity consumption patterns: A case study of Kunshan, China,” Renewable and Sustainable Energy Reviews, vol. 91, pp. 861–868, 2018. [Online]. Available: http://www. sciencedirect.com/science/article/pii/ S136403211830265X

A. Boustani, A. Maiti, S. Y. Jazi, M. Jadliwala, and V. Namboodiri, “Seer Grid: Privacy and Utility Implications of Two-Level Load Prediction in Smart Grids,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 2, pp. 546– 557, 2017.

. Yang, C. Ning, C. Deb, F. Zhang, D. Cheong, S. E. Lee, C. Sekhar, and K. W. Tham, “k-Shape clustering algorithm for building energy usage patterns analysis and forecasting model accuracy improvement,” Energy and Buildings, vol. 146, pp. 27–37, 2017. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0378778817305352

M. W. Ahmad, M. Mourshed, and Y. Rezgui, “Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption,” Energy and Buildings, vol. 147, pp. 77–89, 2017. [Online]. Available: http://www.sciencedirect. com/science/article/pii/ S0378778816313937

S. Deng, C. Yuan, L. Yang, and L. Zhang, “Distributed electricity load forecasting model mining based on hybrid gene expression programming and cloud computing,” Pattern Recognition Letters, vol. 109, pp. 72–80, 2018. [Online]. Available: http://www.sciencedirect. com/science/article/pii/ S0167865517303665

Y. Chen, M. Kloft, Y. Yang, C. Li, and L. Li, “Mixed kernel based extreme learning machine for electric load forecasting,” Neurocomputing, vol. 312, pp. 90–106, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0925231218306532

W. Yu, F. Zhuang, Q. He, and Z. Shi, “Learning deep representations via extreme learning machines,” Neurocomputing, vol. 149, pp. 308–315, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/ S0925231214011461

Z. Ding and M. Fei, “An Anomaly Detection Approach Based on Isolation Forest Algorithm for Streaming Data using Sliding Window,” IFAC Proceedings Volumes, vol. 46, no. 20, pp. 12–17, 2013. [Online]. Available: http://www.sciencedirect. com/science/article/ pii/S1474667016314999

C. Fan, F. Xiao, Y. Zhao, and J. Wang, “Analytical investigation of autoencoderbased methods for unsupervised anomaly detection in building energy data,” Applied Energy, vol. 211, pp. 1123–1135, 2018. [Online]. Available: http://www. sciencedirect.com/science/article/ pii/S0306261917317166

W. Zhang, H. Quan, and D. Srinivasan, “Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination,” Energy, 2018. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/ S0360544218313148

M. Shepero, D. van der Meer, J. Munkhammar, and J. Widen, “Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data,” Applied Energy, vol. 218, pp. 159–172, 2018. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S030626191830299X

C. Lopez, W. Zhong, and M. Zheng, “Short-term Electric Load Forecasting Based on Wavelet Neural Network, Particle Swarm Optimization and Ensemble Empirical Mode Decomposition,” Energy Procedia, vol. 105, pp. 3677–3682, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S1876610217309323

G. Chicco, R. Napoli, and F. Piglione, “Comparisons among clustering techniques for electricity customer classification,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 933–940, 2006.

G. Dudek, “Neural networks for pattern-based short-term load forecasting: A comparative study,” Neurocomputing, vol. 205, pp. 64– 74, 2016. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/ S0925231216302764

V. Thouvenot, A. Pichavant, Y. Goude, A. Antoniadis, and J. M. Poggi, “Electricity Forecasting Using Multi-Stage Estimators of Nonlinear Additive Models,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3665–3673, 2016.

J. Runge and R. Zmeureanu, “A review of deep learning techniques for forecasting energy use in buildings,” Energies 2021, vol. 14, p. 608, 2021. [Online]. Available: https://www.mdpi.com/1996-1073/14/3/608/ pdf

F. M.-A. J. F. Torres and A. Troncoso, “A deep lstm network for the spanish electricity consumption forecasting,” Neural Computing and Applications, 2021. [Online]. Available: https://link.springer.com/ content/pdf/10.1007/ s00521-021-06773-2.pdf




DOI: http://dx.doi.org/10.21622/ace.2022.02.1.017

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ahmad A. Goudah, Mohamed El-Habrouk, Dieter Schramm, Yasser G. Dessouky

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Advances in Computing and Engineering
E-ISSN: 2735-5985
P-ISSN: 2735-5977

Published by:

Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt
ace@aast.edu