Enhancing PV efficiency using direct cooling with CuO nanofluid
Abstract
This study investigates the potential of copper oxide (CuO)–water nanofluid as a direct cooling medium for photovoltaic thermal (PVT) systems, compared against conventional water cooling. CuO nanoparticles were synthesized using a two-step method and characterized via scanning electron microscopy (SEM). Experimental tests were performed across nanoparticle concentrations of 1%–5% and mass flow rates of 0.07–0.11 kg/s to evaluate their effects on panel surface temperature, electrical efficiency, power generation, and coolant stability.
The CuO nanofluid achieved a minimum surface temperature of 33.05 °C at 0.11 kg/s, significantly outperforming water cooling (40.5 °C). At 5% concentration, electrical efficiency improved to 17.6% with maximum output power of 51.75 W, exceeding water cooling (16.32%, 47.98 W). Reduced evaporative losses further highlighted thermal durability. These findings confirm that nanofluid cooling enhances PV performance, offering practical value for sustainable energy applications. While limited to laboratory-scale experiments, the study provides novel experimental evidence supporting CuO nanofluid as an effective coolant and a foundation for future optimization in large-scale PVT systems.
Received: 01 September 2025
Accepted: 11 October 2025
Published: 23 October 2025
Keywords
Full Text:
PDFReferences
F. Ahmad and M. S. Alam, “Economic and ecological aspects for microgrids deployment in India,” Sustain Cities Soc, vol. 37, pp. 407–419, Feb. 2018, doi: 10.1016/j.scs.2017.11.027.
U. of Michigan, “Solar PV Energy Factsheet,” 2022. [Online]. Available: https://css.umich.edu/publications/factsheets/energy/solar-pv-energy-factsheet
E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Solar Energy, vol. 83, no. 5, pp. 614–624, May 2009, doi: 10.1016/j.solener.2008.10.008.
M. R. Hasan, D. Mahdi, Ahmed, and Z. Abdulkareem, “PV panel Water Cooling Using Different Jet Nozzle Diameter,” Journal of Science and Engineering Applications, vol. 4, 2022, [Online]. Available: https://journals.iunajaf.edu.iq/index.php/JSEA/article/view/7
S. Bouafia and M. Si Abdallah, “Numerical study of a solar PV/thermal collector under several conditions in Algeria,” Renewable Energy and Sustainable Development, vol. 10, no. 2, p. 233, Sep. 2024, doi: 10.21622/resd.2024.10.2.900.
L. Dorobanțu, M. O. Popescu, C. L. Popescu, and A. Crăciunescu, “Experimental Assessment of PV Panels Front Water Cooling Strategy,” RE&PQJ, vol. 11, no. 7, Jan. 2024, doi: 10.24084/repqj11.510.
K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Engineering Journal, vol. 4, no. 4, pp. 869–877, Dec. 2013, doi: 10.1016/j.asej.2013.03.005.
S. A. Abdulgafar, O. S. Omar, and K. M. Yousif, “Improving The Efficiency Of Polycrystalline Solar Panel Via Water Immersion Method ,” Int J Innov Res Sci Eng Technol, vol. 3, no. 1, pp. 8127–8132, 2014.
K. Sornek, W. Goryl, and A. Głowacka, “Improving the performance of photovoltaic panels using a direct water cooling system,” Journal of Sustainable Development of Energy, Water and Environment Systems, vol. 11, no. 4, pp. 1–24, Dec. 2023, doi: 10.13044/j.sdewes.d11.0468.
C.-Y. Mah, B.-H. Lim, C.-W. Wong, M.-H. Tan, K.-K. Chong, and A.-C. Lai, “Investigating the Performance Improvement of a Photovoltaic System in a Tropical Climate using Water Cooling Method,” Energy Procedia, vol. 159, pp. 78–83, Feb. 2019, doi: 10.1016/j.egypro.2018.12.022.
P. Bevilacqua, R. Bruno, A. Rollo, and V. Ferraro, “A novel thermal model for PV panels with back surface spray cooling,” Energy, vol. 255, p. 124401, Sep. 2022, doi: 10.1016/j.energy.2022.124401.
O. T. Laseinde and M. D. Ramere, “Efficiency Improvement in polycrystalline solar panel using thermal control water spraying cooling,” Procedia Comput Sci, vol. 180, pp. 239–248, 2021, doi: 10.1016/j.procs.2021.01.161.
A. Hadipour, M. Rajabi Zargarabadi, and S. Rashidi, “An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis,” Renew Energy, vol. 164, pp. 867–875, Feb. 2021, doi: 10.1016/j.renene.2020.09.021.
S. Nižetić, D. Čoko, A. Yadav, and F. Grubišić-Čabo, “Water spray cooling technique applied on a photovoltaic panel: The performance response,” Energy Convers Manag, vol. 108, pp. 287–296, Jan. 2016, doi: 10.1016/j.enconman.2015.10.079.
H. Raad, S. Ali, J. Faraj, C. Castelain, K. Chahine, and M. Khaled, “Enhancing photovoltaic panel efficiency through Water-Cooling: A parametric comparative evaluation of energetic, economic, and environmental benefits,” Unconventional Resources, vol. 7, p. 100208, Jul. 2025, doi: 10.1016/j.uncres.2025.100208.
S. Lee, S. U.-S. Choi, S. Li, and J. A. Eastman, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” J Heat Transfer, vol. 121, no. 2, pp. 280–289, May 1999, doi: 10.1115/1.2825978.
H. L. Azeez, A. Ibrahim, J. Kasprzak, B. O. Ahmed, A. H. A. Al-Waeli, and M. Jaber, “Economic and environmental feasibility analysis of a photovoltaic thermal system with passive cooling techniques, nanofluid, and phase changing materials,” Appl Therm Eng, vol. 274, p. 126782, Sep. 2025, doi: 10.1016/j.applthermaleng.2025.126782.
A. Prakash, R. Kukreja, and P. Kumar, “Improving the performance of PV panel by using PCM with nanoparticles and Bifluid-A comprehensive review,” Materials Chemistry and Physics: Sustainability and Energy, vol. 2, p. 100005, Mar. 2025, doi: 10.1016/j.macse.2024.100005.
N. United, “Transforming our world: The 2030 agenda for sustainable development,” 2015. [Online]. Available: https://sdgs.un.org/goals.
F. Fuso Nerini et al., “Mapping synergies and trade-offs between energy and the Sustainable Development Goals,” Nat Energy, vol. 3, no. 1, pp. 10–15, Nov. 2017, doi: 10.1038/s41560-017-0036-5.
N. A. Moharram, A. H. Konsowa, A. I. Shehata, and W. M. El-Maghlany, “Sustainable seascapes: An in-depth analysis of multigeneration plants utilizing supercritical zero liquid discharge desalination and a combined cycle power plant,” Alexandria Engineering Journal, vol. 118, pp. 523–542, Apr. 2025, doi: 10.1016/j.aej.2025.01.091.
T. H. Tran and V. T. Nguyen, “Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review,” Int Sch Res Notices, vol. 2014, pp. 1–14, Dec. 2014, doi: 10.1155/2014/856592.
R. Ramesh Kumar et al., “Enhancing automotive cooling systems: composite fins and nanoparticles analysis in radiators,” Sci Rep, vol. 14, no. 1, p. 3650, Feb. 2024, doi: 10.1038/s41598-024-52141-0.
J. Buongiorno, “Convective Transport in Nanofluids,” J Heat Transfer, vol. 128, no. 3, pp. 240–250, Mar. 2006, doi: 10.1115/1.2150834.
R. L. Hamilton and O. K. Crosser, “Thermal Conductivity of Heterogeneous Two-Component Systems,” Industrial & Engineering Chemistry Fundamentals, vol. 1, no. 3, pp. 187–191, Aug. 1962, doi: 10.1021/i160003a005.
A. Mani and O. Chacko, “Solar radiation climate of India,” Solar Energy, vol. 14, no. 2, pp. 139–156, Jan. 1973, doi: 10.1016/0038-092X(73)90030-3.
S. P. P. Sukhatme, J. K. Nayak, and J. K. Naik, Solar Energy Principles of Thermal Collection and Storage. 2014.
J. Facão and A. C. Oliveira, “Experimental uncertainty analysis in solar collectors,” International Journal of Ambient Energy, vol. 27, no. 2, pp. 59–64, Apr. 2006, doi: 10.1080/01430750.2006.9675004.
C. Wells and N. R. E. Laboratory, “Measurement techniques applied to PV Performance Uncertainty analysis,” 1992. [Online]. Available: https://docs.nrel.gov/docs/legosti/old/5125.pdf
S. A. Mirnezami, N. Huda, R. Saidur, and V. Strezov, “A comprehensive review in pursuit of optimal solar performance: Nanofluids, solar hybrid systems, and challenges ahead,” Sustainable Energy Technologies and Assessments, vol. 81, p. 104420, Sep. 2025, doi: 10.1016/j.seta.2025.104420.
F. Khan, M. N. Karimi, and O. Khan, “Exploring the scalability and commercial viability of biosynthesized nanoparticles for cooling panels with the help of Artificial Intelligence and solar energy systems,” Green Technologies and Sustainability, vol. 1, no. 3, p. 100036, Sep. 2023, doi: 10.1016/j.grets.2023.100036.
S. H. Majeed et al., “Cooling of a PVT System Using an Underground Heat Exchanger: An Experimental Study,” ACS Omega, vol. 8, no. 33, pp. 29926–29938, Aug. 2023, doi: 10.1021/acsomega.2c07900.
DOI: https://dx.doi.org/10.21622/resd.2025.11.2.1655
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Nikhil Kondibhau Purwant, Avinash M. Badadhe
Renewable Energy and Sustainable Development
E-ISSN: 2356-8569
P-ISSN: 2356-8518
Published by:
Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt




