Modelling and Energy Analysis of Solar Charging Facility for Electric Vehicles in Chile

Scarlett Allende

Abstract


This paper presents simulation and energy evaluation of a photovoltaic charging centre intended to supply the demand of 244,000 electric vehicles in Chile. According to the obtained results, the transportation system was feasible from the solar radiation, energy consumption, geographic zone, type of PV farm and other sources. Notably, the studied region has a solar potential to supply 10% of the total domestic cars existing in Santiago, providing a total energy of 253.723 GWh/yr. Furthermore, based on the study factors, the design of the system consists of approximately 428,590 PV modules and an average power generation of 31.89 W/hour for one single module. Finally, the configuration of a solar charging facility allows applying a new method of energy supply to electric cars that improves the environmental conditions of the city and encourages sustainable development in the transport sector.


Keywords


Electric cars; Photovoltaic; Energy demand; Solar radiation; Design system; Power generation

Full Text:

PDF

References


G. Aymeric and S. François. “Case study for Chile: The electric vehicle penetration in Chile,” in Electric Vehicles: Prospects and Challenges, 2017, pp. 245–285.

J. M. Vilches. “Emol,” 2017. [Online]. Available: https://www.emol.com/noticias/Tecnologia/2017/07/13/866601/El-panorama-de-los-autos-electricos-en-Chile-Cuantos-son-y-donde-se-cargan.html. [Accessed 1st Oct 2018].

T. Muneer, R. Milligan, I. Smith, A. Doyle, M. Pozuelo and M. Knez. «Energetic, environmental and economic performance of electric,» Transportation Research Part D: Transport and Environment, Vol.35, pp 40-61, 2015.

CausaDirecta. (2013) “Investigación y reconstrucción de accidentes de tráfico.” [Online]. Available: https://causadirecta.com/especial/calculo-de-velocidades/tablas/tabla-de-factores-de-rozamiento-del-pavimento-para-neumaticos-de-goma. [Accessed 8th Oct 2018].

WindPower. (2003) “Danish wind industry associacion” [Online]. Available: https://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/es/tour/wres/enerwind.htm. [Accessed 8th Oct 2018].

D. Goos. “Feasibility study of a solar charging facility for electric vehicles in Munich.” Master thesis, School of Engineering & the Built Environment Edinburgh Napier University, Edinburgh, 2015.

Facultad de ciencias físicas y matemáticas, Universidad de Chile, “Explorador solar,” 2018. [Online]. Available: https://ernc.dgf.uchile.cl:48080/exploracion. [Accessed 11 Oct 2017].

R. Escobar, J. M. Cardemil, C. Cortés and A. Pino, “Atlas solar de Chile,” Pontificia universidad católica de Chile, Santiago, 2013.

M. Jeffrey, I. Kelly, T. Muneer and I. Smith, “Evaluation of solar modelling techniques through experiment on a 627 kWp photovoltaic,” School of Engineering and Built Environment, Edinburgh Napier University, Edinburgh, 2015.

D. a. Beckmann, Solar engineering of thermal process, Madison: University of Wisconsin, 1991.

Advanced Solar Photonics. “ASP-400GSM - Smart moduletm series - high efficiency frameless monocrystalline solar modules”. (2012). [Online]. Available: https://www.enfsolar.com/Product/pdf/Crystalline/50bd9203a2fc0.pdf. [Accessed 1st Oct 2018].

S. Allende. "Energy Analysis of a Solid Oxide Fuel Cell (Sofc) Operated by PV System in the Residential Sector, in Highland." Master thesis, School of Engineering & the Built Environment, Edinburgh Napier University, Munich: GRIN Verlag, 2018.

S. Henriquez, “Red de electrolineras ya cubre en forma continua desde Coquimbo a Biobío”.(2019). [Online]. Available: https://www.economiaynegocios.cl/noticias/noticias.asp?id=550309. [Accessed 1st Mar 2019].

Comisión Nacional de Energía. (2015), “Informe costos de inversión por tecnologia de generación”. [Online]. Available: https://www.cne.cl/wp-content/uploads/2015/11/Informe-Costos-de-Inversi%C3%B3n-Tec-de-Generaci%C3%B3n-Ago-2015.pdf. [Accessed 1st Oct 2018].

Comité Nacional, Gobierno de Chile (2017). “Estudio Benchmarking de plantas solares fotovoltaicas en Chile." [Online]. Available: https://www.comitesolar.cl/wp-content/uploads/2017/04/Informe-Benchmarking-Plantas-Solares-Fotovoltaicas_actualizaci%C3%B3n.pdf. [Accessed 16th Oct 2018].

Asociación Chilena de energias enovables. (2017) “Energía solar: prometedor futuro para chile” [Online]. Available: https://www.acera.cl/energia-solar-prometedor-futuro-para-chile/. [Accessed 1st Oct 2018].

M.Gutierrez. (2017). “Economía y negocios.” [Online]. Available: https://www.economiaynegocios.cl/noticias/noticias.asp?id=341770. [Accessed 8th Oct 2018].

J. V. F. Serra. «Electric vehicles: Technology, Policy and Commercial Development,» 1st ed. London: Routledge, 2012..

M. Mruzek, IgorGajdáč, Ľ. Kučera and D.Barta. «Analysis of Parameters Influencing Electric Vehicle Range,» Procedia Engineering, vol. 134, pp.165-174, 2016.

E.S. Rubin and C.I. Davidson. Introduction to Engineering and the Environment, 1st ed. Boson: McGraw-Hill, 2001.

T. Muneer, C. Gueymard and H. Kambezidis. Solar Radiation and Daylight Models, 2nd ed. Amsterdam: Elsevier, 2004.




DOI: https://dx.doi.org/10.21622/resd.2019.05.1.015

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Scarlett Allende

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Renewable Energy and Sustainable Development

E-ISSN: 2356-8569

P-ISSN: 2356-8518

 

Published by:

Academy Publishing Center (APC)

Arab Academy for Science, Technology and Maritime Transport (AASTMT)

Alexandria, Egypt

resd@aast.edu