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Abstract

As the world energy sector shifts to renewable energy sources (RES), microgrids (MGs) are becoming more important 
for providing reliable and efficient power. MGs can effectively integrate distributed renewable generation in the grid 
connected and islanded modes and ensure system reliability. This paper presents a new type of Master-Slave (MS) 
allocation algorithm for distributed generation (DG) planning in microgrids. Unlike the conventional methods in which 
all DG units operate at unity power factor (UPF), the MS is implemented with one DG as a master (operating at non-
unity power factor) and two DGs as slaves (operating at UPF). This setup optimizes the allocation of DG and minimizes 
power losses under variable loading conditions. The proposed MS-based model is integrated with the Particle Swarm 
Optimization (PSO)-Fast Decoupled Load Flow (FDLF) algorithm in order to find optimal placement of master and 
slave DGs. Simulation on the IEEE-13 bus test system reveals that the proposed scheme decreases real power losses up 
to 77% compared to the base case without DG and 45% compared to PSO-NR optimization. In addition, the minimum 
bus voltage is increased from 0.90 p.u. (without DG) to 0.973 p.u. (with PSO-FDLF), thus satisfying the voltage stability 
constraints in all load scenarios. Validation in the RTDS/RSCAD platform shows that the optimized MS configuration 
is able to guarantee voltage deviation within ± 3% of nominal values with significant reduction of active power losses as 
well as reactive power losses. These results show that the proposed MS-based optimization framework offers a robust 
and scalable solution for the improvement of microgrid performance, which is of direct interest for utility operators 
operating in renewable embedded environments.
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Nomenclature

BPSO Binary Particle Swarm Optimization

DG Distributed Generation

DERs Distributed Energy Sources

DEO Dolphin Echolocation Optimization

Variable Field Voltage

FDLF Fast Decoupled Load Flow

Objective Function

Demand Level

MG Microgrid

MS Master-Slave

MPPT Maximum Power Point Tracking

PSO Particle Swarm Optimization

Power Loss between bus m and n

Active Power Generation at bus m

Active Power Demand at bus m

PV Photovoltaic

Mechanical Power

Electrical Power

Reactive Power Generation at bus m

Reactive Power Demand at bus m

RSCAD Real Time Digital Simulator Computer Aided Design

RTDS Real Time Digital Simulator

RES Renewable Energy Source

SMA Slime Mould Algorithm

Aggregate Number of DGs

UPF Unity Power Factor

WOA Whale Optimization Algorithm

WT Wind Turbine

Voltage Constraint

NR Newton Raphson
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I.	 Introduction

A.	 Motivation

The introduction of distributed generation to the 
grid boosts interest in microgrids. The independence 
of operation of microgrids is a part of the major 
anticipated characteristics of modern smart grids. 
A common configuration of a microgrid includes 
solar panels, wind turbines (WT), and a diesel 
generator [1]. The study found in [2], [3] investigated 
different approaches to selecting the right location 
and power size for DGs to operate distribution 
systems in the most effective way. The ability of 
microgrids to operate autonomously and integrate 
with the larger grid allows for increased flexibility 
and adaptability in energy management. As the 
world transitions towards a more decentralized 
and sustainable energy future, the examination 
and optimization of microgrid technologies become 
increasingly relevant for achieving a robust and 
environmentally sustainable power infrastructure 
[4]. The intermittent nature of renewable resources 
such as sunlight and wind makes real-time operation 
of microgrids essential in ensuring the stability 
and effectiveness of the process. As mentioned 
in previous research [5], [6], [7],   to enhance the 
flexibility and adaptability of energy management, 
microgrid-based system designs are beneficial. 
However, the intermittent characteristics of 
renewable sources tend to create uncertainty in the 
power production in microgrids, highlighting the 
necessity of powerful operational methodologies 
and optimization models capable of guaranteeing 
a stable and reliable operation of the real-world 
scenario.

B.	 Research gap

Despite    the   progress on   the  development   of  
microgrid technologies and their connection to 
modern power grids, there is a gap in the literature 
related to the real-time operational problems of 
microgrids under variable DG conditions. Previous 
research has been largely focused on steady-state 
control methods or economic optimization, since 
these approaches fail to address the variability of RES. 
In this research work, the IEEE-13 bus system is used 
as a common benchmark test case for validating the 
proposed methodology, but the identified research 
gap is a general application for microgrids regardless 
of the selected test system. Existing literature 
suggests that the optimal placement of distributed 
generators can provide either technical or economic 

benefits, but methods for microgrid control [8] or 
the influence of component placement on system 
stability [9] do not offer a comprehensive approach 
to operating microgrids, as energy from solar 
and wind power sources fluctuates in real-time. 
Economic objectives, such as profit maximization 
and operational cost minimization, are commonly 
considered in DG allocation studies [10].  Most 
existing research on autonomous microgrid 
operation is now focusing on its operational 
aspects. Previous research [11], [12] focused on 
enhancing stability, developing control methods 
for maintaining stable operation, and improving 
power quality by reducing harmonic distortion 
[13], [14]. According to the planning approach [15], 
the  most  suitable  type  of  DG  is  selected for a 
grid-connected microgrid, which considers fixed-
size DGs operated with UPF to minimize the losses 
and investment cost of distributed energy sources. 
Genetic algorithm [16] is used to optimize DGs 
placement and sizing to reduce power loss and 
improve voltage profile; however, it did not focus on 
real-time control. A two-stage robust optimization 
approach [17] accommodates the uncertainties in the 
energy generated by the DG and the energy needed 
by the grid. Since Mixed-Integer Programming 
can be very complex, the solution might take too 
much time for real-time situations. A proposed 
energy management [18] operational strategy 
was proposed that entails the most appropriate 
combination and diversity of DERs. However, this 
study did not account for the optimization of the 
distributed generation locations. A cost-effective 
method is employed by installing an optimal size DG 
at strategic locations with an estimated reliability 
standard [19]. This approach failed to tackle the 
practical difficulties associated with integrating 
such solutions into current distribution systems. In 
the existing study [20], the researcher exclusively 
focused on variations in real power generation and 
demand. A comprehensive study in [21] explored 
the optimization of reactive power planning within 
microgrids. The performance of microgrids is 
determined by looking at voltage limit constraints, 
especially at times when distributed generators are 
operating at UPF. To improve solar PV source power 
forecasting and minimize uncertainty, a hybrid 
EMD-PSO-ANFIS model is suggested to handle the 
variability of renewable DG sources. Likewise, 
ANFIS-based strategies have been implemented to 
guarantee the reliability of PV systems, considering 
the sustainability of the performance and well-
being of DG assets embedded in microgrids [22], [23]. 
The work in [24] emphasizes the importance and 
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excellence of the Computational Intelligence (CI) 
technologies, including PSO, to renewable energy 
systems. It gives the selected methodology a good 
basis and connects the specific application to a bigger 
and long-established trend of using CI in power 
systems.

An approach in [25] determines the optimal location 
of DGs within a standalone microgrid to meet real-
time active power demands, supported by distributed 
reactive power sources for injecting reactive power. 
Droop control [26] and the Master–slave technique 
with Particle Swarm Optimization-Newton Raphson 
(PSO-NR) [27] are applied to handle DG insertion 
and placement in isolated microgrids. In droop-
based control, the system frequency and voltage are 
adjusted using only the actual and reactive power, 
and this action can change the system’s voltage and 
frequency levels. A small microgrid was optimized 
using genetic algorithms [28], and the efficiency 
depended on both the number of iterations and 
how the objective function scores were configured. 
However, the study does not focus on issues such as 
the loss of battery capacity, natural battery drains, 
and the cost of storage space. The method presented 
in [29] leads to less energy loss from DGs when 
compared with traditional solutions. The report fails 
to address the economic implications of variations 
in renewable energy supply. The previous study 
suggested different approaches as described in [30] 
for the design of a stochastic DG allocation scheme. 
However, the study did not address operational 
issues and provided little insight into how the 
model could be implemented in the field. Advanced 
control strategies [31] improve the efficiency and 
reliability of DC microgrids by integrating DG. 
Integrating multiple DG technologies is recognized 
as a challenging process, with a viable solution 
currently accessible only to a limited degree. For 
DG allocation, Particle Swarm Optimization (PSO), 
Whale Optimization Algorithm (WOA), Dolphin 
Echolocation Optimization (DEO), and Slime Mould 
Algorithm (SMA) [32] were tested, and SMA yielded 
the greatest decrease in losses and a better voltage 
profile. Still, inadequately sized or placed DG units 
can cause negative consequences and expensive 
installations. The Adaptive Bayesian Sparse 
Polynomial Chaos Expansion (APSPCE) technique 
presented in [33] is used to address the voltage 
balance in an isolated microgrid under challenging 
peak load conditions.

The load generation model [34] states that 

deterministic planning poses a significant challenge 
when considering wind-powered, intermittent, and 
distributed generators as well as stochastic loads. 
The controlled method [35] has been proposed to 
improve the allocation and selection of renewable 
energy types within a designated distribution 
network. Despite the abundance of existing 
research, none of the previous studies considered the 
most effective operational method (Master versus 
Slave) of distributed generators when determining 
the optimal placement of distributed generation in 
microgrids. The components of a microgrid and their 
associated challenges are relatively straightforward 
to understand and categorize. However, the 
integration of these components creates a real-
time microgrid system, making the study more 
challenging [36].

C.	 Contribution

Unlike conventional distributed generation 
planning methods in which all units operate at 
UPF, this study proposes a Master–Slave allocation 
strategy where one DG operates at a non-unity 
power factor while the remaining units function as 
slaves at UPF. This configuration, when integrated 
with the PSO–FDLF algorithm, enables optimal DG 
placement to minimize power losses and enhance 
voltage stability under varying load conditions. 
The performance of the proposed model is tested 
through real-time simulations on RTDS using the 
RSCAD platform, ensuring its practical applicability 
for microgrid operation. While prior study [37] 
focused on mathematical models and interactive-
level simulations, no existing work has combined 
microgrid optimization with real-time simulation 
frameworks of this kind. In the first phase, the PSO–
FDLF algorithm identifies the optimal DG locations 
within the IEEE 13-bus distribution system, reducing 
system losses and improving voltage profiles. In the 
second phase, RTDS/RSCAD simulations provide 
real-time validation of the proposed method, 
offering accurate dynamic assessments under 
diverse loading conditions. The final contribution 
of this work is the establishment of a Master–Slave 
allocation framework for DGs utilizing diesel, solar, 
and wind energy sources. By employing this strategy, 
the microgrid demonstrates improved operational 
reliability, reduced losses, and stable voltage 
regulation across a wide range of load scenarios. The 
proposed approach thus offers a robust and scalable 
solution for enhancing microgrid performance in 
renewable-integrated environments.
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This research manuscript is described in five 
sections. Section 1 is the introduction section. The 
concepts of the proposed approach and modelling 
of microgrids are discussed in detail in Sections 2 
and 3. The proposed approach is illustrated with 
its simulation and results in Section 4. Section 5 
summarizes the study’s overall conclusions.

II.	 Purposed approach

The main purpose of the proposed technique is 
to find out the optimal location of DGs to improve 
the voltage profile and reduce energy losses in 
autonomous microgrids. The optimization algorithm 
is designed to strategically position DGs within the 
microgrid and determine their operating mode 
(whether master or slave mode), with the objective 
of achieving minimal energy losses. Therefore, the 
objective function of the optimization problem [38] 
is,

                                (1)

In this context, d represents the index of the specific 
state (d ∈ D), while the power loss obtained between 
the sending and receiving ends of the transmission 
line that links bus m to bus n is represented by 

, specifically in the   state.

A.	 Constraints for active and reactive 
power balance

Standard load flow analysis, as described in [39], is 
utilized under stable operating conditions, and it is 
depicted as follows:

    (2)

   (3)

The voltage at bus m is represented by its magnitude, 
denoted as , and its phase angle, denoted as . 
For bus m and bus n linking the branch of the bus 
admittance matrix, the angle is denoted by , and 
the magnitude is represented by .  and 
signify the active power generation and the active 
power demand, respectively, at bus m for a given 
state. For the specified state, the reactive power 
generated at bus m and the reactive power required 
at bus m are denoted as  and  , respectively. 
In Table 1, the p.u. Values of demand level ( ) are 
related to the peak consumption. Furthermore, 
the system must be designed by observing the 

restrictions set by the flow of the lines, as explained 
below: 

	                                             (4)

Where  stands for active power and  stands 
for reactive power, which is the flow between 
bus m and bus n, while the thermal limit of the 
transmission line capacity is denoted by  and 
measured in megavolt-amperes (MVA).

Table 1: Demand states

Demand state (d) Demand level ( ld ) MW

1 1.70

2 2.40

3 3.47

B.	 Constraints for DG mode selection

 and   are two binary variables,  used  to  
ascertain the operational mode of the DG unit, 
determining whether it operates as a Master or 
Slave, as well as its placement. The configuration of 
these variables determines the role of DGs, whether 
they operate as a master or Slave, is linked to bus m, 
and set in the corresponding mode. When DG unit is 
installation at a bus, the variable  is automatically 
assigned a value of 1. If the DG unit is designated as 
a Master,  is set to 1; otherwise, if it functions as a 
Slave,  is set to the initial value 0. The constraint 
allowed in the system for determining the total 
number of Master DGs and salve DGs is as follows:

                                                                           (5)

                                                                      (6)

The number of Master distributed generators in 
the system is denoted by k. The system maintains 
a constant value of k, which is always 1, when 
configured to support only a single master unit. 
Thus, s represent the aggregate number of 
DGs installations necessary to fulfill the demand 
of the selected modified system. In the modified 
system,  signifies the total number of 
DGs employed for determining the overall number 
of DGs. For each Master DG at a bus,   is set to 1 
(when ), a required additional constraint is 
implemented as follows:

                                                                                       (7)
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C.	 Constraints for Master-Slave generation

The master-slave DG unit has the capability to 
operate in either a master or a slave mode. When a 
master DG is set at master mode, it supplies the active 
and reactive power required by the load. Slave DGs 
only operate at UPFs, and they supply active power. 
The permissible time intervals for generating both 
active and reactive power differ based on the DG’s 
master-slave mode, as illustrated by the following 
information:

                                        (8)

                                   (9)

                                                              (10)

	                                                                 (11)

 and  represent the lowest and 
highest  permissible limits for the active power 
output ( ) of the Master distributed 
generator. In parallel,  and  
represent the permissible minimum and maximum 
limits of the reactive power output ( )   
of  the master DG unit. Conversely,   the Slave DG 
consistently supplies an active power output  of 

 and zero reactive power ( ). 
 and  are continuous variables, 

whereas  is a fixed parameter set at a 
constant value .

The constraints described in Eqs. (8)  (10) have 
been restructured to provide new constraints in the 
scope of power restriction limitations, which can be 
expressed as follows:

      (12)

       (13)

     (14)

    (15)

Here,  is assigned a value of 0 p.u. to 
simulate the operation of the Slave DG at UPF. The 

constraints in Eqs. (12)  (15) illustrate the relation 
between the permissible lower and upper limits of 
active and reactive power in relation to the location 
and operational mode of each DG.

D.	 Constraint for MG voltage

The modified IEEE-13 bus system imposes voltage 
regulation constraints, requiring the voltage levels at 
the buses to remain within a span of ± 5%. Thus, the 
maximum and minimum permissible voltage limits 
are defined as 1.05 p.u. and 0.95 p.u. Respectively. 
The voltage at the connected node is maintained 
at 1.0 p.u. However, slave DG acts as a controlled 
current sources, which provide a constant active 
power. Therefore, the voltage limit constraints for 
any bus, whether connected to a Slave DG or not, 
are as follows:

                                                               (16)

                                                                                       (17)

                                                                            (18)

To elaborate on this, consider a scenario where 
a Master DG has been assigned to bus 1 ( ), 
according to Eqs. (17) and (18), the voltage limits 
become  and ; bus one voltage is set 
to 1 p.u. by default. If bus one is linked to a Slave-
controlled DG, then . Substituting this 
into Eqs. (17) and (18), the voltage limit becomes 

. The limitations of Eq. (16) also apply to 
bus 1, which makes the voltage not exceed the stated 
limits of 0.95 and 1.05 p.u. 

E.	 PSO-FDLF optimization

The proposed methodology, PSO, is used in the MG 
system to address the location and optimal position of 
the master and slave DG units. The FDLF algorithm 
is used to estimate the load flow, voltage profile, and 
power losses of each candidate solution generated 
by PSO. To determine the optimal arrangement of 
the Master and Slave DGs in the IEEE 13-bus system, 
a PSO-FDLF based optimization model is suggested 
and the objective is expressed in Eq. (1). The proposed 
algorithm achieves near-optimal results by utilizing 
the principles of swarm intelligence from PSO, which 
is influenced by both the individual best results 
of each particle and the global best results of the 
swarm, as first described in [40]. The optimization 
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process begins with a random arrangement of the 
DG locations, which are represented by particles’ 
positions. The Fast Decoupled Load Flow method 
is employed in each iteration to determine system 
losses and evaluate particle fitness. The velocity of 
each particle is adjusted in accordance with three 
Master considerations: previous velocity ( ), best 
known position ( ), and the global best position 
( ) found so far. These are adjusted by using 
two random coefficients (  and ) and 
three weighting parameters ,  and , where 
the parameter ,  are set to 2 and parameter  is 
gradually decreases from 0.9 to 0.4 during iterations 
to balance the algorithm’s ability to search and 
pick the best option. The position vector ( ) is 
described by the given equation:

                                                         (19)

  (20)

The velocity vector of each particle throughout the 
optimization is updated with the help of Eqs. (20).

The Binary Particle Swarm Optimization (BPSO) 
approach, using a sigmoid function, is applied to 
judge the best way to allocate slave DGs ( ). The 
sigmoid function is used to map the continuous 
velocity into a quick decision, ensuring the correct 
handling of placement variables. The sigmoid 
function is defined as,

                                 (21)

The calculation of the particle’s new position is done 
with this probabilistic rule based on the updated 
velocity:

                                (22)

where  is a number chosen randomly from 
the range [0,1].

For this problem, BPSO initializes a binary matrix to 
decide on a slave bus location, which is denoted by 

. The fitness function is defined as,

                                   (23)

Where  is denoted as the time of the multi-period 
demand state (d). In the proposed optimization, the 
interaction between PSO and FDLF is considered 
as the core of the optimization. PSO investigates 
possible DG allocations, updating particle positions, 
and FDLF is implemented after every iteration to 
quickly calculate bus voltages, line flows, and power 
losses. Such a mixed interaction is vital so that the 
search in the swarm is always informed based on 
realistic power flow results, and not mere heuristic 
guesses. In contrast to traditional NR-based load 
flow, FDLF has less computational complexity 
and evaluates more quickly, allowing the nearly 
real-time optimization of DG location in changing 
load conditions. The PSO algorithm, which makes 
use of the FDLF approach, is explained in detail in 
Algorithm 1.

Algorithm 1: PSO with Fast Decoupled Load Flow

Initialize a particle vector with integer constants
For each bus having a single Master unit, do
    while iterations ≠ maxiterations do
        for each particle do
           Update the bus data using initial conditions
            Perform Fast Decoupled Load Flow to calculate                         
           the losses
           Calculate the fitness
           if fitness > best value then
                Update the value and new kbest
            end if
        end for
        Choose the particle with the best fitness value of  
        all particles as gbest
        Calculate the Sigmoid function
     Update the new velocity and particle velocity      
     vector
    end while
end for
Select the maximum fitness for all buses
Calculate losses using Fast Decoupled Load Flow

The flowchart of the overall proposed methodology 
is depicted in Fig. 1.
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Figure 1: Flowchart of proposed approach.

Such an iterative process also enables PSO to direct 
the search to solutions with minimum energy 
losses and stable voltages, and FDLF gives the 
correct system-level validation of each solution. The 
approach to PSO and FDLF makes the methodology 
ideal not only in ensuring an optimal allocation of 
DG but also in providing accurate judgments of 
microgrid performance under different conditions 
of load.

III.	 Modelling of microgrid

A  modified  IEEE 13-bus  system,  as  depicted  in 
Fig. 2, is designed to investigate the impact of the MS 
method on system losses. The microgrid is heavily 
loaded with a rated voltage of 4.1 kV for the 13-bus 

feeder. The power losses occurring in the system 
are significantly affected by the kind of distributed 
generation linked to a bus, whether it functions as 
a Master or Slave. To assess the importance of the 
type of connection for distributed generation, three 
arbitrary candidate locations at buses 3, 6, and 8 
were selected in the test system. A single Master DG 
unit with a maximum threshold of 0.6 p.u. for active 
power and 0.354 p.u. for reactive power is featured 
at this location. Furthermore, two Slave distributed 
power generation systems are in operation, with 
photovoltaic (PV) systems supplying 0.348 p.u. of 
constant active power and wind systems supplying 
0.16 p.u. of constant active power, both operated at 
a UPF.
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Figure 2: IEEE-13 bus test system under consideration.

The overall power losses are meticulously 
determined as the Master distributed generation 
location is systematically varied across the three 
possible buses. A detailed examination of the 
operational mode of DGs is crucial, as shown in         
Table 2. This illustrates how relocating the master DG 
across the three possible buses affects the system’s 
power losses. However, the optimal configuration 
is attained when the Master distributed generation 
is coupled with bus 3, while the Slave distributed 
generation is interconnected with buses 6 and 8. 
This configuration results in the lowest power loss, 
measured at 0.0012 per unit (p.u.).

Table 2: Losses of power in different MS arrangements

Master DG Slave DG Power losses based on p.u.

3 6 & 8 0.0012

8 3 & 6 0.0296

6 3 & 8 0.1780

3 6 & 8 0.0012

A.	 Transmission line and load 
modifications

The IEEE-13 bus test feeder represents a heavily 
loaded system, featuring three-phase loads with 

variable real power and reactive power connected 
in a Y-configuration. In Simulation modeling, the 
dynamic response of the three-phase balanced loads 
is simulated through a three-phase dynamic load 
block. The specific details about the transmission line 
parameters and the connected load are illustrated in 
Tables 3 and 4, respectively.

Table 3: Transmission line parameters

Line buses Line Impedance

From To R, p.u. X, p.u.

1 2 0.0379 0.01114

2 3 0.0379 0.01114

3 4 0.019 0.0557

2 5 0.0206 0.0323

5 6 0.11 0.2

2 9 0.0364 0.0369

9 10 0.0218 0.0221

3 7 0.0218 0.0122

7 8 0.0218 0.0122

3 11 0.0217 0.0223

11 12 0.0218 0.0221

11 13 0.0588 0.0224
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Table 4: Three-phase load scenario

Load 
on bus

Load Scenario 1 Load Scenario 2 Load Scenario 3

PD p.u. QD p.u. PD  p.u. QD  p.u. PD  p.u. QD  p.u.

2 0.024 0.0042 0.03 0.004 0.04 0.0232

3 0.0024 0.0022 0.16 0.028 0.231 0.132

6 0.184 0.0024 0.04 0.008 0.08 0.058

7 0.0158 0.0046 0.028 0.004 0.034 0.025

8 0.028 0.0048 0.122 0.02 0.1686 0.0924

9 0.04 0.005 0.028 0.004 0.034 0.025

10 0.024 0.006 0.026 0.0028 0.046 0.0264

12 0.0158 0.0044 0.028 0.004 0.034 0.016

13 0.006 0.0064 0.024 0.0024 0.0256 0.0172

Total 
load

0.3346 0.04 0.486 0.0772 0.6932 0.4152

B.	 Distribution generation system 
modeling

Diesel generators, PV system, and WT models were 
designed for the DG system modeling to show the 
behavior at normal operations. The detailed system 
modeling of each DG model to define the reactions of 
every distributed generator inside the RTDS/RSCAD 
environment is shown below.

1.	 Diesel generator model
The diesel generator is a synchronized machine with 
a governor and an excitation system. The swing 
equation describes how the rotor moves inside the 
turbine [41]:

                                   (24)

Where 𝜔 describes the rotor’s speed (rad/s), 𝐻 
represents the inertia constant, expressed in seconds.  

 and  represent the mechanical input power 
(p.u.) and electrical output power (p.u.), respectively.  

 indicates the damping force, and  represents the 
rotor’s speed (rad/s).

The excitation system generates a variable field 
voltage ( ) of the motor [42], which is described as,

                                                                (25)

In this equation,  means the time constant of 
the exciter,  is the reference voltage, and  
represents the terminal voltage magnitude value. 
The governor’s reaction to the frequency control 
[43] is provided by

                                  (26)

Here, the Governor time constant is denoted by , 
and the droop coefficient is represented by , while ​ 

is referred to as the mechanical power.

2.	 PV system model
A controlled current source for the PV array [44] 
is set according to the irradiance  and the 
temperature . The maximum power ( ) 
from a solar panel [45]  can be found by using the 
standard PV formula.

                                                     (27)

Where  and  represent the efficiency and 
surface area of PV with irradiance ( ).

The Maximum Power Point Tracking (MPPT) 
technique is used to adjust the  to obtain the 
maximum output power from the PV system. 

                                                                   (28)

where  is the proportional gain constant. The 
inverter output is controlled by a UPF; therefore:

,                                                          (29)

3.	 Wind turbine generator model
The wind turbine was simulated using the specified 
aerodynamic power extraction equation [46]:

                                                      (30)

Where p is the air’s density, A refers to the rotor 
area, represents the power coefficient, and  
means the wind speed ( ). The tip-speed ratio 
( ) is directly proportional to the product of the 
rotor radius ( ) and rotor speed ( ), and inversely 
proportional to the wind speed ( ), which is defined 
as,

                                                                                  (31)

A back-to-back converter provides the power to the 
generator. In a balanced state, the WT delivers active 
power at a unity power factor.

,                                          (32)

During overproduction, the plant relies on pitch 
control to allow the turbines to run at the appropriate 
speed.

                                                              (33)

All these equations together show how each DG 
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performs in real time and can be built with RTDS/
RSCAD’s basic components. They give the necessary 
adjustment ability to ensure proper power supply, 
voltage, and regular frequency under changing 
power demands. The power values for the DGs 
parameter connected to the system are summarized 
in Table 5.

Table 5: Distribution generation system parameters

System Maximum capacity

Main grid 100 MW, 115 kV, 50Hz

PV Plant 1.74 MW, 13.2 kV

Wind Generation 0.8 MW, 13.2 kV

Diesel Generator 3.0 MW, 13.2 kV

C.	 Transformer modification for 
alternative generation

Transformers rated at 115/4.16 kV and 13.2/4.16 
kV are used to regulate voltage levels between 
distributed generation sources and the connected 
bus within the distributed generation area. The 
interconnection of distributed generation with bus 
nodes is controlled by a switch or a breaker. The 
installed transformers have a loss of approximately 
3% and are connected in a delta-to-star configuration 
with a neutral reference point of zero (D-YN-0).

IV.	 Result discussion

The proposed Master-Slave DG allocation model is 
tested on the RTDS with the RSCAD interface. RTDS 
offers a hardware-in-the-loop (HIL) platform that 
allows the realistic real-time simulation of microgrid 
behaviour under various loading conditions. The 
IEEE 13-bus system is designed using RSCAD, 
with DG units and control strategies, which are 
connected to the network through a transformer. 
Under this arrangement, dynamic responses of the 
microgrid, including voltage stability and power loss 
variation, can be dynamically viewed and analyzed. 
The main purpose of installing a diesel generator 
is that it should act as a backup to the grid, and its 
output should be scaled to the requirements of the 
network. The diesel generator with a capacity of 2.4 

kV, 3.125 MVA is linked to a feeder by a 5 MVA step-
up transformer that increases the voltage from 2.4 
kV to 4.16 kV. The microgrid operates at 4.16 kV with 
a frequency of 50 Hz. The RTDS/RSCAD platform 
was used to simulate grid-connected conditions at 
different load conditions. The outcomes validate the 
conclusions that the proposed optimization, as it is 
implemented in cooperation with the Master-Slave 
control strategy, works efficiently to improve the 
performance of a microgrid. The RTDS/RSCAD is 
used so that the approach is not limited to theoretical 
simulation but is also practical and applicable to real-
world operations of microgrids. The integration of 
distributed generation systems helps reduce power 
losses, but it can also negatively impact the voltage 
levels. An effective interconnection of DG units is 
necessary to ensure maximum performance and a 
better voltage profile. As shown in Fig. 2, the optimal 
locations for integrating distributed generation are 
bus 3 for the diesel generator, bus 6 for wind energy, 
and bus 8 for the PV array. 

A.	 Variation in active and reactive power 
profile

Active power fluctuations under load conditions 1, 2, 
and 3 are individually shown in Figs. 3, 4, and 5. The 
system updates lead to significant adjustments to the 
active power levels. In load scenario 1, solar and wind 
systems are operating and providing all the required 
energy, while the diesel generator and grid are not in 
use, as seen in fig. 3. In load scenario 2, where demand 
becomes higher, all the maximum power is provided 
by the PV system, and the remaining power is given 
by the diesel generator, wind, and utility grid, as 
shown in Fig. 4. Likewise, during load scenario 3 
when demand rises, each source is contributed the 
supply. Most of the energy is supplied by the diesel 
generator, followed by the PV source, while a small 
amount of power is supplied by the wind and grid, as 
depicted in Fig. 5. These corresponding variations in 
the reactive profiles are depicted in Figs. 3, 4, and 5. 
Although the efficiency of the system has improved, 
there is no appreciable effect on reactive power. The 
cause is the absence of reactive power from the DG 
on the grid.

http://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br


http://dx.doi.org/10.21622/RESD.2025.11.2.1572

434

http://apc.aast.edu

Journal of Renewable Energy and Sustainable Development (RESD)                                     Volume 11, Issue 2, December 2025 - ISSN 2356-8569

(a)

(b)

Figure 3: Variation in generation for load scenario 1 (a) active power profile (b) reactive power profile.
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(a)

(b)

Figure 4: Variation in generation for load scenario 2 (a) active power profile (b) reactive power profile.
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(a)

(b)

Figure 5: Variation in generation for load scenario 3 (a) active power profile (b) reactive power profile.

B.	 Variation in power losses

Case study 1:
This case study focuses on the results of the use 

of a WT as a distributed generator in the system. 
The PSO-FDLF optimization is used to find out the 
position and size of the DG units, which helps to 
enhance the voltage and reduce the overall power 
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losses. Real and reactive power losses are illustrated 
in Fig. 6 (a) and Fig. 7(b) for the IEEE 13-bus system 
in three conditions: without DG, with DG controlled 
by PSO-NR, and with DG controlled by PSO-FDLF. 

The lack of DG causes greater power losses, with 
buses 3, 6, and 8 experiencing the largest increases, 
compared to all other buses.

(a)

(b)

Figure 6: (a) Real power losses (b) Reactive power losses for the 13-bus using PV.

The active and reactive power losses are substantially 
decreased because of the use of PSO-NR and PSO-
FDLF optimization techniques. Among the two 
methods, PSO-FDLF has less loss, which means that 
it is able to save energy and increase efficiency.

Case study 2:
In the WT configuration, the active and reactive 
power losses in the IEEE 13  bus  system occur 
as shown in Fig. 7(a) and Fig. 7(b). The study 
concentrated on finding the correct placement and 

size of WTs to cut down on energy waste within 
the network. The grid that does not contain the 
DG has higher losses throughout the entire system, 
especially at buses 3, 6, and 8.

When using the PSO-NR and PSO-FDLF algorithms, 
both active and reactive losses are reduced, but PSO-
FDLF gives the greatest loss reduction. As a result, 
the optimization of WT integration leads to a better 
performance of the entire distribution system.
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(a)

(b)

Figure 7: (a) Real power losses (b) Reactive power losses for the 13-bus using WT.

Case study 3:
PV and WT were used as DGs and tested on an IEEE-
13 bus in this case to attain an efficient integration of 
the RES. The integration of DG units, specifically, PV 
and WT, resulted in a significant enhancement of the 
overall network voltage profiles. As shown in Fig. 8 
(a) and (b), the graphical data represent the significant 
reduction in real and reactive power losses across 

the network following the incorporation of PV and 
WT DGs. The active and reactive power losses are 
illustrated in Tables 6 and 7, respectively. The total 
power losses are decreased through the collective 
optimization, without the involvement of DG. The 
reactive power losses followed a similar pattern, 
dropping dramatically from the initial level.
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Table 6: Active Power Losses (kW)

Bus Number Without DG PSO-NR PSO-FDLF

1, 7 & 11 0 0 0

2 12 6 3

3 52 22 12

4 20 3 2

5 18 4 2

6 35 8 3

8 12 13 11

9 8 4 3

10 6 2 2

12 2 1 1

13 0 2 1

Table 7: Reactive Power Losses (kVAr)

Bus Number Without DG PSO-NR PSO-FDLF

1 0 0 0

2 6 3 2

3 30 10 4

4 13 4 1

5 11 2 1

6 32 3 2

7 10 5 9

8 9 6 8

9 5 3 3

10 3 1 1

11 1 0 0

12 1 1 1

13 2 3 2

(a)

(b)

Figure 8: (a) Real power losses (b) Reactive power losses for the 13-bus system using PV and WT.

http://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br


http://dx.doi.org/10.21622/RESD.2025.11.2.1572

440

http://apc.aast.edu

Journal of Renewable Energy and Sustainable Development (RESD)                                     Volume 11, Issue 2, December 2025 - ISSN 2356-8569

Significantly, the PSO-FDLF algorithm demonstrates 
the greatest reduction in loss, showing its effectiveness 
in addressing the multi-source DG optimization 
problem using the MS method. In addition to the 
reduction of real and reactive power losses, the 
results also show that the PSO-FDLF framework 
increases the weakest bus voltage, especially under 
heavy loading conditions. The proposed PSO-FDLF 
algorithm obtained voltage stability margins that 
are 3-5% better than PSO-NR and power losses up to 
40% lower for critical buses. These enhancements 
are ascribed to the complementarity between 
swarm-based exploration and the fast convergence 
of FDLF, which makes the approach computationally 
efficient and operationally viable. Importantly, the 
RTDS/RSCAD real-time implementation confirms 
that the optimization is not just applicable to the 
offline simulations but can be used as well in the 
actual microgrid operation.

C.	 Variation in voltage profile

The voltage profiles of the 13-bus distribution 
network under three different loading conditions 
are shown in Figs. 9, 10, and 11. The effect of 
incorporating DG, specifically via optimization 
techniques such as PSO-NR and PSO-FDLF, is 
examined in comparison to the baseline situation 
without DG. The master DG at bus three is selected 
in the master mode, and the slave DG installed at 
buses 6 and 8 is selected in the slave mode. In the 
conditions of the load scenario 1, the voltage level is 
maximal at buses 3, 6, and 8, and minimal at bus 13. 
Voltage reductions are clearly minimized with the 
incorporation of optimized DGs through PSO-NR 
and PSO-FDLF. The minimum voltages, without DG, 
are observed to be: 0.90 p.u. The PSO-NR records 
0.96 p.u. The PSO-FDLF is characterized by a value 
of 0.970 p.u. as illustrated in Fig. 9.

Figure 9: Variation in voltage profile for load scenario 1 using PV as a DG.

In load condition 2, voltage is relatively high at buses 
3, 6, and 8, and the minimum levels are again at bus 
13, as shown in Fig. 10. The DG interconnection 
increases the minimum voltage levels to 0.90 p.u. 
Without DG, 0.965 p.u. with PSO-NR, and 0.975 p.u. 

with PSO-FDLF. The voltage profiles enhancement 
depicts that the PSO-FDLF algorithm works steadily 
regardless of the load level to ensure that the voltage 
level does not drop below the acceptable level.
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Figure 10: Variation in voltage profile for load scenario 2 using WT as a DG.

Figure 11: Variation in voltage profile for load scenario 2 using PV & WT as DG.

Under a load condition 3, buses 3, 6, and 8 continue 
to show the peak voltage values, and bus 13 again 
shows the lowest voltage. The voltage of the DG-
assisted system is summarized as follows: no DG 
at 0.90 p.u., PSO-NR at 0.965 p.u., and PSO-FDLF at 
0.973 p.u., as depicted in Fig. 11. The obtained results 
show that hybrid-optimized FDLF has the ability to 
maintain the voltage stability of a pressurized power 
system. The results demonstrate that PSO-FDLF 
offers better voltage support than PSO-NR and the 
conventional alternative. The inclusion of a DG in 
the power system maintains the voltage level near 
the standard value of 1.0 p.u., thereby enhancing 
voltage stability and system dependability.

The obtained results evidently show that the 
proposed MS algorithm with the PSO-FDLF 
algorithm is superior to the conventional PSO-NR 

method in terms of reducing the power losses and 
enhancing the voltage stability in the IEEE 13-bus 
test system. The PSO-FDLF produced lower active 
and reactive power losses than the other types 
under different loading scenarios, as illustrated in 
Tables 6 and 7; furthermore, the PSO-FDLF produced 
a voltage profile closer to the nominal value of 1.0 
p.u., as depicted in Figs. 9-11. The advantages of this 
optimization technique are validated by improving 
efficiency with respect to the operational mode of 
DGs (Master and Slave) as well as by the optimized 
placement when compared to methods that assume 
all DGs working at unity power factor.

V.	 Conclusion

This research developed and validated a Master-
Slave approach for distributed generation allocation 
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strategy combined with the PSO-FDLF optimization 
method for microgrid operation. Unlike traditional 
DG allocation techniques, the MS framework allows 
one DG to work at a non-unity power factor (Master), 
and other DGs can be operated at unity power factor 
(Slaves). This configuration, which was tested on 
the system with the IEEE-13 bus system, showed 
significant performance improvements. The results 
show that the proposed approach reduces the real 
power losses by up to 77% with respect to the base 
case without DGs and 45% with respect to PSO-
NR optimization. Furthermore, the minimum bus 
voltage improved from 0.90 p.u. to 0.973 p.u., which 
kept the values within acceptable limits under 
all loading conditions. The proposed method also 
produced voltage stability margins as much as 3% to 
5% higher than conventional allocation methods.

Results from real-time implementation on RTDS/
RSCAD proved the potential of the proposed method, 
with stable operation observed, keeping the voltage 
fluctuations within ± 3% of nominal values under 
variable load conditions. These findings validate the 
proposed optimization framework based on MS to 
improve the efficiency, stability, and reliability of 
the operation of microgrids as a scalable solution 
for power distribution systems integrated with 
renewable energy sources in the future.

Future Scope:
Future  research  will  include economic 
considerations, such as investment and operational 
costs, in the proposed MS-PSOP-FDLF framework 
for a complete cost-benefit analysis. The proposed 
framework will be compared with other 
sophisticated optimization techniques such as the 
WOA, GA, DEO, and SMA methods. Algorithms will 
be evaluated to see if hybrid algorithms that combine 
the benefits from multiple algorithms can improve 
DG allocation performance. This will provide a more 
complete evaluation of the technical and economic 
benefits of the practical microgrid planning.
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