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Abstract

Power grids today operate under unpredictable and rapidly changing conditions, making it essential to develop reliable
predictive systems for stability management. This study explores two hybrid learning frameworks that combine deep
feature transformation with ensemble classification to improve grid stability prediction. Specifically, an autoencoder
(AE) and a TabTransformer (TT) are used for feature encoding, followed by Extreme Gradient Boosting (XGBoost)
classifiers. Additionally, two conventional ensemble models (Random Forest and standalone LightGBM) are evaluated
for comparison. Models are assessed using standard classification metrics and stratified cross-validation. The
autoencoder-based hybrid model outperforms others by producing enriched feature representations, while the standard
LightGBM delivers stable and interpretable results. Although the TabTransformer-based model offers architectural
novelty, it exhibits less consistency. These findings highlight that optimal grid stability prediction depends not solely on
model complexity but on synergy between feature processing and learning architecture, supporting the development
of confidence-aware models for smart grid decision systems.

Index-words: Grid stability prediction, Random Forest, Autoencoder-XGBoost, TabTransformer,
Ensemble classifier, Light GBM.

and stability analysis, especially when data are

I Introduction

large, noisy, or imbalanced [4-7]. Deep learning

Modern electric grids are changing rapidly with
the growing share of renewable energy, varying
load behavior, and decentralized generation. These
changes add uncertainty and complexity, making
conventional rule-based controls less effective for
maintaining stability [1-3]. As a result, there is a clear
shift toward data-driven systems that can use real-
time information from generation, transmission, and
distribution layers to predict and manage stability.

Machinelearning (ML) has become a valuable tool for
this task. Ensemble models such as Random Forest,
Gradient Boosting, and LightGBM have shown
strong results in fault diagnosis, load forecasting,
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(DL) methods further extend these capabilities.
Autoencoders, for example, can compress features
while preserving key patterns [8-9], while attention-
based methods like TabTransformer can capture
relationships between variables in tabular data [10-
11].

Still, major challenges remain. Many existing models
have limited interpretability, struggle with class
imbalance, or fail to provide reliable probability
estimates. While some hybrid approaches combining
deep features and ensemble classifiers have been
explored, their use in grid stability is limited.
Most past work has focused mainly on improving
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accuracy, without considering interpretability or
prediction confidence, both of which are critical
in real grid operations. Beyond power-grid studies,
hybrid and ensemble machine learning frameworks
have also been successfully applied in renewable-
energy forecasting, microgrid voltage management,
and sustainable energy systems, reinforcing the
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broader relevance of such hybrid approaches [12-15].

To highlight this gap, Table 1 compares recent
studies. It shows that while earlier works improved
accuracy through Deep Neural Networks (DNNs),
boosting, or optimization, none addressed accuracy,
interpretability, and calibration together.

Table 1: Summary of related works on grid stability prediction compared with this study

Year | Reference Method / Model | Dataset Key Contribution Limitation
2024 | Lahon et al. [4] Deep Neural National power | Improved grid resilience | Limited interpretability; no
Network (DNN) [ system data with DNN-based stability | confidence assessment
analysis
2024 | Rajuetal.[7] Bayesian- Smart Grid Boosted ensemble with Focused only on
optimized Stability (Kaggle) | Bayesian tuning optimization; no hybrid
LightGBM deep features
2025 | Binbusayyis & Sha [11] PSO-optimized Simulated grid Enhanced prediction No interpretability or
XGBoost data using metaheuristic calibration of predictions
tuning
2023 | Yaoetal.[8] LightGBM- Load forecasting | Effective short-term load | Different domain (load), not
XGBoost hybrid | dataset forecasting grid stability
2024 | Lakshmanarao et al. [18] | ML-DL fusion Grid stability Combined ML and DL for | Limited analysis of model
model dataset better prediction interpretability
2024 | Oyucu et al. [20] RNN + LSTM Smart grid Sequence-based learning | High complexity; lacks
hybrid signals for stability estimation calibration and feature
analysis
2025 | This Work AE-XGBoost, Smart Grid Hybrid feature learning | First to jointly address
TT-XGBoost Stability (Kaggle) | with ensemble boosting; | accuracy, interpretability,
interpretable outputs; and calibration in smart grid
confidence calibration stability.

This study builds on these gaps. We propose
two hybrid architectures: one combining an
autoencoder with XGBoost, and another combining
TabTransformer with XGBoost [16]. Unlike earlier
efforts, our work emphasizes three key points:

° Direct comparison of Autoencoder and
TabTransformer hybrids with standard
ensemble baselines.

° Feature importance analysis to provide

operational insights for grid operators.

° Calibration assessment to ensure predictions
are not only accurate but also reliable.

These models are benchmarked against
conventional ensemble methods on a public dataset.
The evaluation includes accuracy, Fl-score, class
balance, interpretability, and calibration [13-14].
The results contribute to building smarter and more

reliable ML frameworks for future power grids [19].

II.

Methodology

A. Dataset description

This study uses a publicly available dataset titled
“Smart Grid Stability”, sourced from Kaggle. It
contains 60,000 records, each representing a
specific operational state of an electric power grid.
The dataset includes 12 continuous input features,
categorized into three layers of the power system:

° Generation layer: Four internal damping
coefficients ( 71 to 74)

° Transmission layer: Four power output

readings (p1 to p4)
phase

° Distribution layer: Four

indicators (g1 to g4)

angle
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Two target outputs are provided:

. A continuous stability index (stab)

° A categorical label (stabf) indicating whether
the grid state is “stable” or “unstable”

This study focuses on the binary classification task
using the stabf label. All features are continuous, and
the dataset contains no missing values. Before model
training, input features were normalized using
standard scaling. The diversity of grid conditions
in the dataset provides a rich environment for
evaluating the performance and robustness of
predictive models [6], [20]. Figure 1 illustrates the
mapping of generation (r1 to t4), transmission (p1

Transmission

Generation

o (Input
Féa';l‘:res: Features:
tau1-taud) p1, p2, p3, p4)

)

Frauirl
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to p4), and distribution (g1 to g4) variables to their
respective phases in the electric grid, leading to a
binary grid stability output.

To prepare the data for training and evaluation,
two slightly different splitting strategies were
applied depending on the model. For the AE-
XGBoost experiments, the dataset was divided into
80% training and 20% testing. For the TT-XGBoost
experiments, a three-way split was used with 60%
training, 20% validation, and 20% testing. In both
cases, a stratified splitting strategy was used to
maintain class balance across subsets, and the sets
were kept fully independent with no overlap to
ensure unbiased evaluation.

Target Variable:
Grid Stability

Distribution

(Input tabf Label
Features: | Stable |
a1, g2, g3, g4) g y
N

Figure 1: Feature groups in the dataset, showing generation, transmission, and distribution variables
that determine grid stability.

B. TabTransformer with Extreme

Gradient Boosting (TT-XGBoost)

This hybrid approach combines TabTransformer
for feature transformation with XGBoost for
Classification, aiming to capture feature interactions
and improve prediction confidence in grid stability
[22].

1. Feature transformation using
TabTransformer

TabTransformer applies multi-head self-attention
to model dependencies among features. In this
work, it was adapted for continuous grid variables
by embedding each of the 12 features into a
32-dimensional vector [23]. The model used four
attention heads, two transformer layers, and a
dropout rate of 0.2.

The embeddings are passed through the attention
layers, where dependencies are captured as shown
in Eq. (2).

KT
Attention(Q,K,V) = Softmax (Q,ldikl ) Vv 1)
\‘.'
Where Q, K, and V are the query, key, and value
matrices, respectively. The enriched feature
representation is then concatenated and projected
as shown in Eq. (2).

Z = Concat (head,, -+, head, )W° 2)

Here, the enriched matrix Z encodes contextual
information among features, which is later passed to
the XGBoost classifier.

2. Classification using XGBoost

XGBoost is a gradient-boosted ensemble of decision
trees that improves performance through iterative
learning and is widely known for its scalability and
interpretability [23].

The objective function for each boosting round is
given in Eq. (3).
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£0 =30 1(y, 9570 + i00)) + )

Where:
° l is a differentiable loss function (e.g., logistic
loss)

(3)

° ft is the tree added at iteration t

. Q(f;) penalizes model complexity

Predictions are updated as shown in Eq. (4).

~ (B

- (-1
9 (t=1)

= ¥ + nfe(x;) (4)

N is the learning rate used to control step size during
optimization.

3. TT-XGBoost Workflow
The workflow has two phases:

Training + Inference
Fam

-
Input Features (X)
(tau1-taud,
P1—P4, 91—gs)

v

Tab Transformer
(Embedding + Multi-
Head Attention)

Enriched
Features
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° Training: Input features are embedded by
TabTransformer to generate enriched vectors
Z, which are used to train the XGBoost
classifier.

° Inference: For a new sample x ' its enriched
form z'is passed to the trained XGBoost model
for prediction.

For a new instance x|, its enriched form z' is
generated. The trained XGBoost model predicts the
grid’s stability class using z .

This hybrid model effectively captures feature
dependencies using attention while leveraging the
predictive strength and interpretability of XGBoost
[24]. The end-to-end training and inference flow of
this hybrid model is illustrated in Figure 2.

Training

D stability Labels |

Trained with Labels

| Stable I Llnstablel

Inference

Figure 2: Architecture of the TT-XGBoost hybrid model, where TabTransformer extracts enriched feature representations
that are classified by XGBoost during training and inference.

C. Autoencoder with Extreme Gradient
Boosting (AE-XGBoost)

This hybrid model combines an Autoencoder
for dimensionality reduction and XGBoost for
Classification. The Autoencoder transforms high-
dimensional inputs into compressed representations
that preserve essential structure while removing
redundancy [25].

1. Feature Extraction using Autoencoder
The Autoencoder compresses the 12 input features

into a lower-dimensional latent space while
minimizing reconstruction loss [26]. The encoder
transforms each input x; as shown in Eq. (5).

= fen:: (xi) = G(Wencxi + benc) (5)

Zj

And the decoder reconstructs it as represented in
Eq. (6).

X; = fenc (Zi) = G'(Wdec z; + bdec)

The training objective is to minimize the
reconstruction error, as given in Eq. (7).

(6)
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1 -~
Lag :HZ?ﬂHXi_KiHZ (7)

In this study, the encoder used layers of
size 64 — 32 — 16 with ReLU activations, and the
decoder used layers 32 — 64 — 12 with a sigmoid
output to preserve normalized ranges. Training was
carried out for 50 epochs with a batch size of 256,
using the Adam optimizer (learning rate = 0.001).
The final 16-dimensional latent vector was passed to
the XGBoost classifier.

2. Classification using XGBoost

The compressed latent vectors z; produced by the
Autoencoder are passed to the XGBoost classifier for
training and prediction [27]. The classifier follows
the same boosting objective and iterative update
rule already described in Section 2.2.2, but here it

---------
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operates on the compact representations rather than
raw features.

3. AE-XGBoost workflow

The AE-XGBoost workflow has two phases:
° Training: The Autoencoder compresses the
input features into compact latent vectors,
which are then used to train the XGBoost
classifier with stability labels.

Inference: For a new input sample
x, the encoder generates its compressed
representation z , which the trained XGBoost
model classifies as stable or unstable.

This setup reduces feature noise and emphasizes
meaningful patterns, while preserving the predictive
strength and interpretability of XGBoost [28-29]. The
overall architecture is shown in Figure 3.

- - LY
Training L
L}

B

w Reconstructed
Input

-

s

__________________

Input Features (X)
(tau1-tau4,

P—P+, 9—g4)

Compact

Enocder Features (2)

_______________________________ -
]
Trained
- ; ] XGBoost
[. Stability Labels} ngg;s -E Classifior
]

Training

-

i Stable | Llnstablel

Inference

Figure 3: Architecture of the AE-XGBoost hybrid model, where the Autoencoder compresses input features into latent
vectors that are used by XGBoost for final Classification.

D. Hyperparameter tuning

Hyperparameters were tuned through a
combination of small grid search and manual
adjustment. For XGBoost, we tested the number of
trees(100, 300, 500), maximum depth (4, 6,8),learning

rate (0.01, 0.05, 0.1), and subsample ratios (0.7, 0.8,
1.0). The best setup used 300 trees, depth 6, learning
rate 0.1, and subsample 0.8. For the Autoencoder,
latent sizes (8, 16, 32), epochs (30, 50, 70), and batch
sizes (256, 512) were explored. The final choice was
16 latent dimensions, 50 epochs, batch size 256,
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with Adam optimizer at learning rate 0.001. For the
TabTransformer, we experimented with embedding
dimensions (16, 32, 64), attention heads (2, 4, 8), and
dropout rates (0.1, 0.2). The selected model used 32
dimensions, four heads, and a dropout of 0.2.

III. Results & discussion
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We evaluated the proposed hybrid models against
common machine learning techniques for grid
stability prediction. Standard metrics such as
validation accuracy, test accuracy, precision,
recall, and Fl-score (Table 2) were used, along
with additional checks like statistical testing and
calibration analysis, discussed later in this section.

Table 2: Performance metrics of baseline and hybrid models for grid stability prediction

Validation Test Precision Recall F1-Score
Random Forest 0.945 0.939 0.940 0.930 0.960 0.900 0.950 0.910
LightGBM 0.957 0.958 0.960 0.950 0.970 0.930 0.970 0.940
TT-XGBoost 0.892 0.894 0.910 0.870 0.930 0.840 0.920 0.850
AE-XGBoost 0.977 0.977 0.980 0.970 0.980 0.970 0.980 0.970

AE-XGBoost achieved the best performance, with
97.7% accuracy and an Fl-score of 0.98 for both
classes, showing a strong balance between precision
and recall. In contrast, TT-XGBoost reached only
89.4% accuracy and performed poorly on Class 1,
indicating difficulty in identifying unstable grid
states.

Table 3 shows composite metrics (MCC, balanced
accuracy, ROC AUC). AE-XGBoost again leads across
all three, confirming its reliability in distinguishing
stable from unstable states. LightGBM also performs
strongly, while TT-XGBoost falls behind, especially
in MCC and balanced accuracy.

Table 3: Composite evaluation metrics of baseline and hybrid models

B B00 A

MCC 0.867 0.910 0.771 0.951
Balanced Accuracy 0.930 0.953 0.883 0.976
ROC AUC Score 0.989 0.994 0.965 0.998

Table 4 adds two more metrics, Cohen’s Kappa,
which accounts for chance agreement, and Log-loss,
which reflects the quality of probability estimates.
AE-XGBoost and LightGBM have the lowest log-
loss values, showing better calibration. TT-XGBoost
again performs the weakest.

Table 4: Additional evaluation metrics of baseline and hybrid

models
Random Forest 0.882 0.194
LightGBM 0.912 0.133
AE-XGBoost 0.862 0.154
TT-XGBoost 0.764 0.236

To make sure that the observed improvements were
not just due to random variation, we carried out a
statistical validation. A McNemar's test was used to
compare AE-XGBoost with LightGBM, the strongest
baseline model, on the same test set. The test gave
a chi-square statistic of 99.0 with a p-value of 3.7 x
10-%. Since this value is far below the 0.05 threshold,
the result confirms that the performance difference
is statistically significant. This gives us additional
confidence that the superiority of AE-XGBoost is
genuine and not simply a chance effect.

AE-XGBoost shows the cleanest separation, with the
fewest errors. LightGBM and Random Forest are also
reliable, while TT-XGBoost shows more confusion in
unstable states, as shown in Figure 4.
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(b) LightGBM

Confusion Matrix using Autoencoder-XGBoost Hybrid Model
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Figure 4: Confusion matrices of Random Forest, LightGBM, TT-XGBoost, and AE-XGBoost models.

Figure 5 shows the ROC curves of all models. AE-
XGBoost is nearly perfect with an AUC close to 1.0.
LightGBM also performs strongly, while Random

Forest lags slightly in detecting unstable states. TT-
XGBoost dips noticeably, confirming its weaker class
separation.
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ROC Curve using LightGBM
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Figure 5: ROC curves of Random Forest, LightGBM, TT-XGBoost, and AE-XGBoost models.

corner, showing strong balance. Random Forest is
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Figure 6: Precision-Recall curves of Random Forest, LightGBM, TT-XGBoost, and AE-XGBoost models.
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Figure 7: Calibration curves of AE-XGBoost and LightGBM
models with reliability comparison.
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Figure 8 shows the feature importance rankings.
AE-XGBoost and LightGBM both highlight phase
angles and power outputs as key variables, while TT-

Feature Importance using Random Forest
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XGBoost distributes focus more evenly, and Random
Forest is less consistent.

Feature Importance using LightGBM
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Figure 8: Feature importance plots of Random Forest, LightGBM, XGBoost (from AE-XGBoost),
and TabTransformer (from TT-XGBoost) models.

These results also have practical value. Both AE-
XGBoost (through its XGBoost part) and LightGBM
point to phase angles and power outputs as the most
important variables. Random Forest highlights some
of the same features but less consistently, while
TT-XGBoost spreads its focus too widely, which

likely affects its accuracy. For operators, this means
keeping a close eye on phase angles (g1 to g4) can
help spot early signs of instability, and watching
power outputs (p1 to p4) can guide timely actions
like load balancing or generator rescheduling.
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Table 5: Ablation study results comparing baseline, individual components, and hybrid models.

ode A\

RO A

XGBoost 0.961 0.946 0.955 0.916 0.995
AE 0.819 0.740 0.795 0.602 0.899
TT 0.978 0.970 0.978 0.953 0.998
AE-XGBoost 0.977 0.980 0.976 0.951 0.998
TT-XGBoost 0.894 0.850 0.883 0.771 0.965

Note: Results for AE-XGBoost, TT-XGBoost, and XGBoost are consistent with those reported in Tables 2 and 3, and are repeated

here for completeness.

Table 5 compares the baseline, individual
components, and hybrid models. XGBoost alone
already performed strongly (96.1% accuracy, ROC
AUCO0.995). Autoencoderalonereduced performance
(81.9% accuracy), showing that compression by itself
isinsufficient. TabTransformer alone performed best
among individual models (97.8% accuracy, ROC AUC
0.998), confirming the strength of attention-based
feature learning. Among the hybrids, AE-XGBoost
improved over plain XGBoost, while TT-XGBoost did
not show consistent gains. These results show that
combining the Autoencoder with XGBoost gives
the strongest performance, supporting the proposed
hybrid design.

IV. Conclusion

This study evaluated hybrid machine learning
models for predicting grid stability, focusing on both
accuracy andthereliability of predictions. Amongthe
tested approaches, the Autoencoder combined with
XGBoost (AE-XGBoost) consistently outperformed
others, achieving high validation and test accuracy,
excellent ROC separation, and balanced class-wise
metrics. Its performance highlights its potential
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