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Abstract

Accurate Distribution System State Estimation (DSSE) is essential for the reliable and efficient operation of modern
power distribution networks, especially with the increasing penetration of renewable energy sources (RES) such
as solar photovoltaics (PV) and wind energy. However, the nonlinearities, unbalanced loads, bidirectional power
flows, and incomplete measurements in these networks present significant challenges. The integration of distribut-
ed generation (DG) units further complicates traditional DSSE methods, requiring advanced optimization tech-niques
to enhance estimation accuracy. This paper introduces a novel hybrid optimization algorithm that combines Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and Egyptian Stray Dog Optimization (ESDO) to tackle these
challenges in DSSE systems with high renewable energy integration. The hybrid PSO-GA-ESDO algo-rithm leverages
the global search capabilities of PSO, the evolutionary principles of GA, and the adaptive social behavior of ESDO,
ensuring robust optimization with faster convergence and higher accuracy. The proposed methodology is implemented
on the IEEE 13-bus system using MATLAB simulations, focusing on minimizing dis-crepancies between measured and
estimated state variables while accounting for the variability of distributed re-newable generation. Simulation results
demonstrate that the hybrid PSO-GA-ESDO algorithm outperforms conven-tional optimization methods in terms of
estimation accuracy, convergence speed, and robustness to noisy and in-complete measurements, even in scenarios
with high renewable energy penetration. These findings highlight the proposed approach as an effective and scalable
solution for DSSE in unbalanced, DG-integrated distribution net-works, enhancing grid reliability, stability, and
efficient real-time monitoring in modern smart and sustainable en-ergy systems.

Index-words: Distribution System State Estimation (DSSE), Metaheuristic, Egyptian Stray Dog
Optimization (ESDQO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), IEEE 13-bus
system, MATLAB simulations.

I. Introduction a mathematical process that determines the most

likely system state—voltage magnitudes, angles, and

The rapid integration of renewable energy sources
(RES), particularly distributed generation (DG) such
as solar photovoltaics (PV) and wind energy, has
significantly transformed the operational dynamics
of modern power distribution networks [1]. Unlike
traditional power systems, where energy flows
unidirectionally from centralized generation units
to end consumers, DG-integrated smart grids
introduce bidirectional power flows, increased
voltage fluctuations, and greater operational
uncertainties [2]. These challenges necessitate real-
time monitoring, accurate power flow estimation,
and efficient state estimation to ensure the
stability and reliability of the power distribution
system [3]. State estimation in power networks is
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power flows—by processing available measurements
[4]. In transmission networks, state estimation is
well-established, supported by high measurement
redundancyandasingle-phasebalancedassumption.
However, distribution system state estimation (DSSE)
presents unique challenges due to radial topology,
untransposed feeders, unbalanced loads, and limited
real-time measurement availability [5,6]. The limited
observability of distribution networks, exacerbated
by the increasing penetration of renewable energy-
based DG, requires the incorporation of pseudo-
measurements derived from historical data, load
forecasting, and smart metering [7]. The basic idea of
the DSSE is shown below in Figure 1.
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Figure 1: The block diagram of the DSSE system.

Traditional DSSE techniques are predominantly
based on Weighted Least Squares (WLS) estimation,
which aims to minimize estimation errors using
available measurements [8]. However, WLS-
based DSSE faces serious limitations in low-
measurement conditions, requiring alternative
estimation techniques such as Kalman filters,
Bayesian methods, and compressed sensing-based
approaches [9,10]. Kalman filtering techniques
have been employed to improve dynamic state
estimation, leveraging real-time updates, whereas
Bayesian estimation incorporates probabilistic
models to enhance uncertainty handling [11]. Other
conventional techniques include branch-current-
based and node-voltage-based formulations,
offering different state variable representations [12].
Despite these advancements, traditional methods
often struggle with computational complexity and
scalability in large-scale renewable-rich distribution
networks [13].

With the increasing complexity of modern
distribution networks, artificial intelligence (Al)
and machine learning (ML)-based DSSE techniques
have been proposed to improve estimation accuracy
and computational efficiency [14] [34]. Artificial
Neural Networks (ANNSs) have demonstrated strong
generalization capabilities, leveraging historical
measurements and pseudo-measurements to
enhance estimation robustness [15] [37,38]. Physics-
aware neural networks, which integrate power
system constraints into learning-based estimation
models, have shown improved accuracy compared
to WLS estimators [16]. Hybrid approaches that

combine optimization algorithmswith Altechniques
have also gained traction. For example, shallow
neural networks have been employed to initialize
Gauss-Newton optimization methods, significantly
reducing convergence time [17].

Furthermore, deep neural networks (DNNs)
coupled with hyperparameter optimization have
exhibited strong adaptability for DSSE in modern
smart grids [18] [35]. Given the limited availability
of measurement devices in distribution networks,
compressed sensing-based DSSE techniques have
been explored to minimize the required number
of measurements while maintaining accuracy [19].
Techniques such as 21-regularized sparse voltage
profile recovery, integrated with micro-phasor
measurement units (UWPMUs), enable reliable state
estimation with fewer sensors [20]. Recent studies
have also investigated Gaussian Mixture Models
(GMMs) for pseudo-measurement generation,
improving DSSE robustness in networks with high
photovoltaic (PV) penetration [21].

Hybrid optimization-based DSSE approaches have
been developed to address the nonlinear and
computational challenges of traditional methods.
Metaheuristic algorithms such as Particle Swarm
Optimization (PSO), Genetic Algorithms (GA), and
hybrid PSO-GA techniques have demonstrated
superior convergence properties and improved
estimation accuracy [22]. For instance, PSO has been
effectively used to estimate distributed generation
and load power injections, ensuring better
convergence and robustness [23]. Additionally,
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multi-stage estimation techniques incorporating
pseudo-measurement generation from energy
billing data have been explored to enhance
DSSE under low-observability conditions [24]. A
recent study introduced a Linearized AC Optimal
Power Flow (LAOPF)-based DSSE model, which
significantly reduces computational requirements
while improving estimation accuracy in low-
measurement environments [25].

To address these challenges, this paper presents a
hybrid algorithm of particle swarm optimization,
genetic Algorithm, and Egyptian stray dogs
optimization (PSO-GA-ESDOQO) framework for solving
the DSSE problem in renewable-rich distribution
networks. The primary contributions of this
research are as follows:

° Development of a hybrid PSO-GA-ESDO
algorithm for improved DSSE accuracy,
stability, and computational efficiency.

° Integration of pseudo-measurements for
distributed generation units, ensuring reliable
real-time state estimation.

° Application of metaheuristic-based
optimization techniques to enhance DSSE
in renewable-dominated unbalanced
distribution systems.

The rest of this paper is structured as follows:
Section 2 presents the mathematical modeling of the
DSSE problem. The proposed hybrid optimization
algorithm is described in Section 3, followed by case
studies and validation results in Section 4. Finally,
Section 5 concludes the study and discusses potential
future research directions.

II. The mathematical modelling of
the DSSE problem

State estimation in distribution networks (DNs) is
a critical process for determining the operational
state of the system, including voltages, currents,
and power flows. This ensures effective monitoring,
control, and optimization of the network. The DSSE
problem is framed as a nonlinear optimization
task, combining real-time measurements, pseudo-
measurements, and physical constraints to
accurately estimate the system state. To achieve this,
the backward/forward sweep method is employed
for power flow calculations, leveraging its suitability
for radial and unbalanced distribution system:s.
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The objective of DSSE is to minimize the estimation
error between measured and calculated variables
throughout the network. Mathematically, this can
be expressed as:

floy) = X2ilz — hi(xy)| (1)

Where, f(x.¥) is the total error, z; represents the
measured value of the i-th variable, h;(x,y) is a
nonlinear function that maps the control variables
x and dependent variables ¥ to the corresponding
measurement and m denotes the total number of
measurements.

The control variables x include active and reactive
power from loads and distributed generation (DG)
units, while ¥ comprises dependent variables such
as voltages and power flows.

The optimization process is constrained by power
flow equations, which connect the control and
dependent variables while maintaining consistency
with the physical characteristics of the network.
The active power(P) at bus i is calculated using:

P; = ¥ jeneighbors ViVj (Gz'j cos 8;; + B;; sin gz’j) (2)
Similarly, the reactive power (Qi) at bus i is given by:

Q; = X jencighbors ViV; (GU sin#;; + B;; cos 3:‘;‘) (3)

Where V; and v; are the voltage magnitudes at
buses i and j, G;; and B;; are the conductance and
susceptance of the line connecting them. 6;; is the
voltage angle difference.

These equations ensure that the active and reactive
power flows are consistent with the network’s
physical constraints. Operational constraints are
imposed to ensure safety and reliability. These
include voltage limits at the buses:

sz’n = Vz = Knar (4)

Where, V; is the voltage magnitude at bus i, V,,,;,, and
Vmar are the minimum and maximum allowable
voltage at any bus. As well as limits on the branch
power flows:

sz'n = 51' = Smar (5)

Where, §; is the Apparent power flow through
branch i, §,,,, and S, are the minimum and
maximum allowable apparent power flow through
bus i. As well as limits on the branch power flows:
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Control variables, such as active power from loads
and DG units, are also bounded. For loads, the
bounds are defined as:

ggm)

" 100 (6)

Print = Piufarca.srgd (1
Similarly, for DG units:

P

e m
max.L — PL,farcasted (1 + ﬁ) (7)
Where, Ppins & Ppays are the minimum & maximum
active power limit for the load or DG unit, Py forcasted
is the forecasted active power for the load or DG
unit, eé,m is the percentage margin of error in the

forecast.
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Pseudo-measurements M,, are derived from
historical data M; with added noise ¢,;, bounded
as shown in equations for load and DG limits. The
accuracy of the DSSE can be evaluated using the
Mean Absolute Percentage Error (MAPE), given by:

MAPE =¥,

Zi

(12)

Where, n is the number of measurements, z; is the
measured value, and h;(x,y) is the estimated value.
This comprehensive approach ensures that the
state estimation aligns with the physical constraints
and measurements of the network, providing an
accurate representation of its operational state.

The backward/forward sweep method is used to
solve the DSSE problem through iterative power flow
calculations. During the backward sweep, branch

III. The proposed hybrid
optimization algorithm for solving
the DSSE problem

currents are calculated, starting at the farthest buses
and moving toward the source, using the equation:

) _ ®

(k) Lprlk—=1) (k)
Javei = Inabes T fcabes T (Voabe. Vabe,i ) + Xico =i aper 8)

Where, Ig};z is the current phasor at branch i, IE‘;},QE
and I, ; are load and capacitor currents, and ¥, .
is the shunt admittance. During the forward sweep,
starting from the source bus, voltages are updated
as:

e

. plk)
abc.i abem (ZLIIJC;E' -”abc,z')

9
Where, V¥ is the voltage at the sending bus while
B{,ﬂf‘,;',m is the voltage at the receiving bus, and z,,_; is
the impedance of branch i.

The iterations continue until the voltage mismatch
satisfies:

(10)

(k) (k-1)
ma‘x“’;bc,i — Vabes | =&y
Real-time measurements and pseudo-measurements
are integral to the DSSE process. Real-time
measurements include voltages, currents, and power
flows, and are simulated with noise using:

My, = Mo (1+22)

(11)

In the quest to address the challenges of DSSE, a
novel hybrid optimization algorithm has been
developed by combining the strengths of Particle
Swarm Optimization (PSO), Genetic Algorithm
(GA), and Egyptian Stray Dog Optimization (ESDO).
The integration of these algorithms ensures that
the limitations of one method are compensated
by the strengths of the others, achieving faster
convergence, higher solution accuracy, and
robustnessagainst local optima. Below, the evolution
of the hybrid Algorithm is outlined, starting from
the individual contributions of each optimization
method to the eventual fusion into a unified hybrid
framework.

A. Particle Swarm Optimization (PSO)

Inspired by the collective behavior of bird flocks
or fish schools, PSO begins by simulating a group of
particles that represent candidate solutions in the
search space. As shown in Figure 2, each particle
adjusts its position iteratively by considering two
key factors: its own best-found position (personal
best) and the best position found by the entire
swarm (global best) [26-28].
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Figure 2: The main concept of the PSO algorithm.

This collaborative behavior allows the swarm to
converge quickly toward promising regions of the
search space. The movement of each particle is
governed by two critical equations:

1. The first equation is used to update the
velocity of each particle based on the inertia of
its current movement, the attraction toward
its personal best position, and the attraction
toward the swarm'’s global best position as per
(13):

UE.(HD = wvi.':ﬂ + e (p; — xi.m) + (g — x;:t:') (13)

Where, vi-m is the particle’s velocity, x:.m is the
current position (solution) of the i-th particle,
P:isthe particle’s personal best position, g isthe
swarm’s global best position, c; is the cognitive
coefficient, and c; is the social coefficient.

i3 and > are random coefficients.

2. The second equation updates the particle’s
position based on its newly computed velocity:

x§t+1') — x;:f) + UE-CI+1-)

(14)

Where, x\” is the current position of the
particle i, " is the updated position of
particle i at iteration t+1, and vV is the
updated velocity. This equation ensures that
each particle moves toward a better solution,

influenced by both its own past experience

and the guidance of the global best solution
found by the swarm. The inertia weight (w)
plays a crucial role in balancing exploration
(searching new areas in the solution space)
and exploitation (refining known good
solutions). A higher w value encourages
broader exploration, while a lower w value
focuses on convergence toward promising
regions. To improve convergence speed and
prevent premature stagnation, PSO often
employs adaptive techniques such as linearly
decreasing inertia weight or velocity clamping
to control excessive movement. Additionally,
constriction factors are sometimes introduced
to stabilize particle trajectories, ensuring that
the swarm does not oscillate indefinitely
around an optimal solution.

PSO has been widely applied in optimization
problems due to its simplicity, robustness, and ability
to escape local minima. However, standard PSO can
struggle with premature convergence, especially
in high-dimensional or multimodal optimization
landscapes.

B. Genetic Algorithm (GA)

Unlike PSO, which focuses on swarm behavior, GA
mimicsnatural evolution by working on a population
of candidate solutions. As shown in Figure 3, the
Algorithm evolves this population over generations
using three main processes: selection, crossover, and
mutation [29-31].
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Figure 3: The main steps of the GA.

During the selection process, individuals within
each generation that have better fithess are
given a higher chance to reproduce. For example,
tournament selection compares pairs of candidates
and selects the one with the better fitness:
Parent = argmin {f (X;na1), f (Xina2)] (15)
Where, Parent is the selected individual that
will be used in the next generation, arg min is a
mathematical operator that returns the argument
(the input value) at which a given function attains its
minimum. f(*inq1), f(*maz) are the fitness values (or
objective function values) of two individuals, *nq1
and Xp;maz, randomly selected from the population.
The equation chooses the individual with the low
fitness value, meaning that :

° If f(*ina1) < f(*Xinaz) then Parent = Xina1) .
° Otherwise, Parent =X qo.

After this step, the crossover process starts by
combining the genetic material of the selected
parents to create offspring. Single-point crossover
exchanges portions of two parent solutions:
xuffspring = xparentl + £1_Oc)xparent2 (16)
Where, « is a random weighting factor (sometimes
called the crossover rate or mixing coefficient).
Xparentt & Xparensz are the two parent solutions &
Xofrspring 1S the newly generated offspring (solution).
Finally, the mutation step starts by maintaining
the diversity and avoiding local optima through
introducing random variations:

Xmurated = * + Ax

(17)
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Here, Ax is a random perturbation applied to the
solution. Through these processes, GA ensures that
the population evolves toward optimal solutions.
However, the stochastic nature of GA can sometimes
lead to slow convergence, making it ideal to integrate
with faster methods like PSO.

C. Egyptian Stray Dog Optimization
(ESDO)

In microgrid energy management, Diab and
Abdelsalam initially presented the ESDO algorithm.
In dynamic environments, its defensive and
territorial behaviors outperformed traditional
metaheuristics [32]. EIMessmary, Diab, Abdelsalam,
and Moussa later compared ESDO to other
metaheuristic approaches for solving multi-
objective optimal power flow in transmission
networks [33]. Nevertheless, DSSE in distributed,
unbalanced generating systems was not covered
in either work. This technique is inspired by six
behaviors of stray dogs, according to Figure 4. The
most important behaviors are the defensive and
territorial, which enable both exploration of new
territories and exploitation of the most promising
areas. This Algorithm introduces a unique balance
between randomness and guided search.

This Algorithm has two main behaviors:

1. Territorial behavior in which the dogs explore
their territory by introducing small random
perturbations to their positions:

x;‘IE‘W j— xi_current + 6‘

(18)
Where, § represents a random vector.

2. Defensive behavior, which exploits the best-
known solution, dogs adjust their positions
toward the alpha dog’s (global best) position:

x;‘IE‘W j— xi_current + ﬁ{g — xi_c‘urrent} (19)
Where, $ controls the step size and g is the
alpha dog’s position.

ESDO also ensures adaptability by updating the
alpha dog (best solution) regularly, combining
exploration and exploitation efficiently. Its adaptive
behavior makes it robust, but it benefits from
hybridization with methods like PSO and GA for
further refinement.
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Figure 4: The ESDO main processes [32].

D. Hybrid PSO-GA-ESDO Algorithm
Building on fundamental work in [32,33], this paper
introduces a novel sequential hybridization of
PSO, GA, and ESDO specifically designed for DSSE
challenges. Unlike previous implementations, our
approach features: (1) phased solution refinement
(PSO—-GA—ESDO), (2) DSSE-optimized solution
pooling, and (3) integrated pseudo-measurement
handling - representing significant algorithmic
innovations beyond prior combinations of
thesetechniques.

The Algorithm starts with the initialization of the
PSO particles, GA chromosomes, and ESDO dogs
across the search space. Then the fitness of each
candidate solution is evaluated using the objective
function mentioned above in (1). The optimization
process starts directly after the initialization process;
this process is divided into three phases:

1. The first phase is the PSO phase in which the
particle velocities and positions are updated
according to (13) and (14). This is done to
identify the global best solution.

2. The second phase is the GA phase which uses
the best solutions produced from the PSO
algorithm and converts them to agents where
their population have evolved using the
crossover and mutation as per (15), (16) and (17).

3. The third and final phase in the optimization
process is the ESDO phase, in which the agent
positions are adjusted based on the territorial
and defensive behaviors according to (18) and
(19).

After the evaluation of the optimization process,
the following step is the solution pooling in which
the best solutions from the PSO, GA and ESDO are
combined into a unified pool. Then the top solutions
are retained for the next iteration. The final process
is the convergence check by either repeating the
hybrid process until the improvements in fitness
falls below a predefined threshold or the maximum
number of iterations is reached. Figure 5 shows the
flowchart of the proposed Algorithm.
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that combine two techniques or apply them in
parallel, our method adopts a phased structure (PSO
— GA — ESDO), where each Algorithm addresses
specific optimization roles: PSO accelerates early
convergence, GA improves population diversity,
and ESDO fine-tunes via adaptive social behavior.
Additionally, this is the first time that ESDO has
been implemented in a hybrid structure for any
DSSE-related problem. Additionally, the Algorithm
incorporatesasolutionpoolingmechanismand DSSE-
specific enhancements like pseudo-measurement
integration, multi-branch error minimization, and
robustness to noisy and incomplete data. Table 1
shows the main parameters for the Algorithm and
their values.

Table 1: Optimization Algorithm Parameters

Algorithm | Parameter | Value/Range | Justification

PSO Inertia 0.4-0.9 Balances
weight (w) | (linear decay) | exploration-
exploitation
Cognitive | 1.5 Standard literature
Coeff. (c1) value
Social 1.5 Matches cognitive
Coeff. (cy) influence
GA Crossover | 0.85 Maintains
rate population
diversity
Mutation | 0.05 Prevents
rate premature
convergence
ESDO Territorial | +0.1x(max- Local search range
Step. (B) min)

.

IV. Test cases and results

End: Output the best
solution

Figure 5: The flowchart of the proposed Algorithm.

As far as we are aware, this study presents
the first hybrid optimization framework that
sequentially integrates PSO, GA, and ESDO to
address DSSE challenges in renewable-integrated
distribution networks. Unlike other hybridizations

The proposed hybrid PSO-GA-ESDO algorithm was
tested on the IEEE 13-bus test system to solve the
DSSE problem. As shown in Figure 6, this system
consists of 13 buses, 12 branches, and a mix of
different load types, with various system constraints
such as voltage limits, branch power flow bounds,
and control variable restrictions. The test system’s
structure and operational characteristics make it a
suitable benchmark for evaluating the performance
of optimization techniques for DSSE tasks.
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Figure 6: The diagram of the IEEE 13 bus system.

The IEEE 13 Bus System, a standardized test case
used to model and analyze electrical distribution
networks, is depicted in the figure in a simplified
form. Bus 632, also known as the swing bus or slack
bus, is at the top of the hierarchy and acts as the
system’s voltage and angle reference. Numerous
PQ buses (such as “632 Yg PQ”") are connected to it,
signifying steady active (P) and reactive (Q) power
loads. A wye-grounded connection, denoted by the
notation “Yg,’ is frequently employed in distribution
systems to manage unbalanced loads. Because
power flows unidirectionally from the swing bus
downstream to the loads in real-world distribution
networks, these buses are connected in a radial
(tree-like) topology.

The transformer (XFM-1), which connects the
higher-voltage segment (like Bus 632) to lower-
voltage loads (like Bus 614), is a crucial part of the
system. It steps down the voltage from 4.16 kV
to 480 V. Studying voltage regulation at various
voltage levels is made possible by this transformer.
The “Z’-designated buses (611 Z, 652 Z, etc.) model
the resistance and reactance of distribution lines
by representing line segments with inherent
impedance.

In the meantime, buses marked “D I” (such as 622
D I and 672 D I) probably indicate delta-connected
current injections, which might stand for specialized

machinery or industrial loads. Additionally, the
figure contains placeholder labels such as “P1” and
“PQ, which in a complete dataset would provide
precise load values in KW or kVAR. The IEEE 13 Bus
System, which has radial power flow, mixed voltage
levels, and unbalanced loads, is intended to resemble
actual distribution networks. It is frequently
employed in fault studies, load flow analysis, and the
integration of dispersed energy resources (such as
storage or solar panels). Voltage labels, standardized
symbols for loads and generators, and a legend
elucidating notations such as “Yg” or “D I” could all
be added to the figure to improve clarity. It is advised
to consult the complete IEEE 13-bus documentation
for in-depth research, as it contains line parameters,
precise load values, and capacitor banks. This system
offers a strong framework for comparing theoretical
models to actual distribution network behavior.

This study tests the performance of the hybrid PSO-
GA-ESDO algorithm for solving the DSSE problem.
The optimization was performed for five distinct
test cases, each focusing on different aspects of
the state estimation. For each case, we applied the
Particle Swarm Optimization (PSO) algorithm, the
Genetic Algorithm (GA), the Egyptian Stray Dog
Optimization (ESDO) algorithm, and the hybrid PSO-
GA-ESDO algorithm, which integrates the strengths
of all three techniques. The aim was to compare
their performance in terms of solution accuracy
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and convergence time. The following five test cases
were considered to evaluate the performance of
each optimization algorithm in solving the DSSE
problem. For each case, the algorithms were applied
individually first, followed by the hybrid approach
to assess improvements in both solution quality and
convergence speed.

By integrating the strengths of three optimization
techniques, the hybrid algorithm achieves a higher
level of precision in estimating the DSSE state
compared to standalone methods. The PSO phase
ensuresrapid initial convergence, while the adaptive
mechanisms of ESDO and the diversity-enhancing
properties of GA prevent stagnation and refine the
search process efficiently. The combination of PSO’s
global search, GA’s stochastic diversity, and ESDO'’s
adaptive mechanisms significantly reduces the risk
of getting trapped in local optima.

The inclusion of ESDO ensures that the Algorithm
remains flexible and robust even in highly dynamic
or complex search landscapes. The hybridization
enables a balanced trade-off between exploration
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(searching new areas) and exploitation (refining
existing solutions), leading to a more comprehensive
search of the solution space. The modular design of
the hybrid Algorithm allows it to scale effectively
for larger and more complex DSSE problems. By
combining these advantages, the proposed hybrid
PSO-GA-ESDO algorithm emerges as a powerful tool
for solving DSSE problems, providing a compelling
balance between computational efficiency and
solution accuracy.

Five different test cases, each of them focused

on a different facet of the DSSE problem under
various operating conditions were developed in
order to assess the efficacy of the suggested PSO-
GA-ESDO algorithm. An overview of these test
cases is given in Table 2, which also highlights the
primary obijective function focus and the associated
performance metrics that were used for assessment.
This organized synopsis facilitates a better
comprehension of the testing process and sets the
scene for the in-depth findings that are discussed in
the following subsections.

Table 2: Test cases Summary

Test Case | Objective Function Focus Targeted Evaluation Metrics
Casel Minimize active and reactive power errors at the Substation power accuracy, total power loss, MAPE
substation
Case 2 Minimize current magnitude and angle errorsatthe [ Currentestimation accuracy, power loss, MAPE
substation
Case 3 Case 1+ minimize voltage deviation at Bus 671 Power and voltage accuracy, substation, and Bus 671
voltage profile
Case 4 Minimize power flow errors at multiple branches System-wide power flow estimation, multi-branch
accuracy
Case 5 Case 4 + voltage deviation at key buses Comprehensive estimation accuracy (power + voltage),
system-wide MAPE
A. Test Case 1 B. Test Case 2

The first test case serves as a baseline scenario,
where the objective function is formulated to
minimize the absolute errors in active and reactive
power at the substation (Branch 0-1).

This case ensures that the estimated power flows
at the network’s point of entry align as closely
as possible with the measured values. Since the
substation is a critical node in the distribution
system, accurate estimation at this location
is essential for maintaining the reliability of
downstream power flow calculations.

In this test case, the objective function is designed
to minimize discrepancies in the magnitude and
phase angle of the current at the substation.
Accurate current estimation is crucial in scenarios
where phasor measurement units (PMUs) or other
high-precision current sensors are deployed. By
focusing on the current measurements, this case
enhances the reliability of the state estimation
process in networks with limited voltage
measurements.
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C. Test Case 3

Building upon Case 1, this test case incorporates an
additional constraint by including voltage deviation
at a key bus (Bus 671) in the objective function.
The inclusion of voltage errors ensures that the
estimation process maintains voltage regulation
across the network while simultaneously reducing
power flow discrepancies. This case is particularly
relevant for distribution networks with voltage-
dependent loads, where maintaining accurate
voltage profiles is as important as ensuring correct
power flow estimation.

D. Test Case 4

Unlike the previous cases, which focus primarily
on the substation or a single bus, Case 4 extends
the objective function to multiple branches across
the distribution network. Specifically, errors in
active and reactive power flows are minimized
at three critical branches: the substation branch
(0-1), Branch 633-634, and Branch 671-692. By
incorporating multiple network locations, this case
aims to enhance the overall estimation accuracy and
ensure that power flows throughout the system are
accurately captured.

E. Test Case 5

The final test case represents the most extensive
and computationally demanding formulation. The
objective function integrates both power flow
discrepancies across multiple branches (as in Case 4)
and voltage deviations(asin Case 3). This formulation
ensures that the state estimation model provides an
accurate representation of the system’s operational
state across both power and voltage domains. While
computationally intensive, Case 5 offers the highest
potential accuracy, making it suitable for scenarios
requiring high-precision DSSE solutions.

F. Results analysis

The final test case represents the most extensive
and computationally demanding formulation. The
objective function integrates both power flow
discrepancies across multiple branches (as in Case 4)
and voltage deviations (asin Case 3). This formulation
ensures that the state estimation model provides an
accurate representation of the system’s operational
state across both power and voltage domains. While
computationally intensive, Case 5 offers the highest
potential accuracy, making it suitable for scenarios
requiring high-precision DSSE solutions.
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The proposed hybrid PSO-GA-ESDO optimization
algorithm was evaluated across five test cases on
the IEEE 13-bus system, focusing on estimation
accuracy, convergence performance, and power loss
minimization. The results were compared against
three standalone optimization techniques: PSO, GA,
and ESDO. The performance was assessed based on
Ploss, Qloss, and the MAPE%.

In Case 1, which serves as a baseline scenario, the
optimization was performed to minimize active
and reactive power discrepancies at the substation
(branch 0-1). The results in Table 3 show that ESDO
achieves the lowest active and reactive power errors
at most buses, while PSO and GA result in higher
errors. The hybrid PSO-GA-ESDO algorithm further
enhances accuracy, exhibiting minimal error values.
The total power loss estimations indicate that the
hybrid approach provides a close match to the true
power losses, with a Ploss error of 0.3483% and a
Qloss error of 0.4988% (Table 4). The MAPE% error
matrix confirms that the hybrid approach achieves
the lowest estimation error of 0.0487%, reinforcing
its superior accuracy.

Table 3: Absolute Errors of The Loading Total Power - Case 1

634 21.8344 15.4574 1.5672 4.3962
671 7.1063 9.4979 5.5310 3.6202
652 14.3086 7.4604 1.5256 21.7629
675 1.2549 0.5050 1.4279 0.8852
645 2.7574 5.9276 7.2140 4.3863
646 1.7132 3.3458 2.9080 0.1899
611 6.2858 2.3460 2.8103 2.1459
692 0.7106 0.2646 10.2522 47148

Table 4: Absolute errors of the total active power losses, total
reactive power losses, and the MAPE - Case 1

Parameter % Exrror

Active Power |0.4186 |0.1571 | 0.1724 | 0.3483
Losses

Reactive Power | 1.2288 | 1.1684 | 0.4755 | 0.4988
Losses

MAPE 0.1440 | 0.1054 | 0.0524 | 0.0487

Although the hybrid PSO-GA-ESDO approach
performs better in most buses and has the lowest
MAPE (0.0487%), it shows an unusually high error of
21.7629% at Bus 652. The variation in the sensitivity
and pseudo-measurement accuracy of some nodes
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with lower observability is the cause of this localized
deviation. Some agents may converge suboptimally
at buses with higher noise or weaker data support
because metaheuristic optimization is stochasticand
population-based. Despite this, the hybrid method
maintains excellent global performance across the
system, including competitive active and reactive
power loss estimates, which confirms its robustness
in holistic DSSE estimation.

The convergence
Figure 7, reveals

analysis for Case 1, shown in
that the hybrid PSO-GA-ESDO
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algorithm reaches a low objective function value in
10-20 iterations, demonstrating the fastest and most
stable convergence. GA shows slow convergence
with large fluctuations, whereas PSO and ESDO take
more iterations to stabilize. The hybrid approach
converges much faster and exhibits a better balance
between computational efficiency and estimation
accuracy, despite integrating multiple optimization
stages, which could increase per-iteration
complexity. Its efficacy over standalone methods
is confirmed by its capacity to break out of local
minima and sustain consistent improvement.

Convergence Characteristics of All Algorithms

— PSO
— G

—ESDO |
— P 0-GA-ESDO

20

50

60

Iteration/Generation

Figure 7: The convergence of different algorithms - case 1.

In Case 2, which aims to minimize current
magnitude and angle errors at the substation, the
results in Table 5 indicate that GA outperforms
PSO in reducing errors, while ESDO provides better
accuracy in some buses. However, PSO-GA-ESDO
consistently maintains the lowest overall error
across all buses. The total power loss estimation
results in Table 6 confirm that the hybrid approach
yieldsthe most accurate power loss values, achieving
a Ploss error of 0.5904% and a Qloss error of 0.3425%.
The MAPE% results further validate that the hybrid
PSO-GA-ESDO method outperforms all individual
algorithms, achieving the lowest MAPE% of 0.1101%.

The convergence behavior in Case 2,shown in Figure
8, shows that the hybrid PSO-GA-ESDO algorithm
performs better than any other approach by
reaching the lowest objective function value in the
first 20 iterations and preserving stable convergence.
GA quickly stalls at a suboptimal level after making
quick initial progress. After thirty iterations, PSO

http://apc.

gradually improves but slows down, and ESDO
once more converges slowly with underperforming
performance. The hybrid approach, with its fewer
iterations and quicker convergence to optimal
solutions, turns out to be more time-efficient overall,
even with its multi-phase design.

Table 5: Absolute Errors of The Loading Total Power - Case 2

Busi % Error

634 13.8798 | 6.6031 21.8541 | 10.1106
671 9.1845 3.7098 15.4918 | 12.5598
652 12.8660 | 6.3501 4.4762 13.3868
675 16.3969 | 6.2310 5.9420 6.1597
645 16.3969 | 3.0606 22.8280 | 23.8756
646 16.3969 | 0.8215 14.7727 | 12.6805
611 7.6921 8.5850 13.3980 |21671
692 0.8480 22,0434 |[0.6201 20.4508

aast.edu

325


http://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br

Journal of Renewable Energy and Sustainable Development (RESD)

Table 6: Absolute errors of: the total active power losses, total
reactive power losses, and the MAPE - Case 2

Parameter | % Error

Active Power 1.2320 | 1.0064 |1.3032 |0.5904
Losses

Reactive Power | 0.7029 | 0.2190 | 0.4735 | 0.3425
Losses

MAPE 0.1947 101672 |0.1909 | 0.1101

When it comes to power loss estimation and MAPE
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(0.1101%), the hybrid approach performs better than
any standalone algorithm in Case 2. A few high
local errors are noted, though, especially at Bus 645
(23.8756%) and Bus 692 (20.4508%). These outliers
are probably caused by current-based objective
functionsat nodes with sparse current measurement
references being sensitive. Although GA excels at
some of these specific buses, the hybrid method’s
overall system-wide accuracy confirms its efficacy.
The steady gains in overall metrics show that the
quality of the global estimation is unaffected by
these localanomalies.

Convergence Characteristics of All Algerithms
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Figure 8: The convergence of d

Case 3 extends Case 1 by incorporating voltage
deviation at Bus 671. The results in Table 7 show
that PSO-GA-ESDO provides the most accurate
active power estimation, outperforming GA and
PSO significantly at key buses such as 652 and 634.
The total power loss estimations in Table 8 confirm
that the hybrid approach minimizes discrepancies,
reducing the Ploss error to 0.9284% and the Qloss
error to 0.7365%. The MAPE% shows that the hybrid

ifferent algorithms - case 2.

645 5.6252 31791 5.1997 2.3003
646 2.5669 47239 | 15.9997 2.3003
611 5.6232 13366 |14.4334 | 23003
692 5.6252 26167 | 24647 2.3003

Table 8: Absolute errors of: the total active power losses, total
reactive power losses, and the MAPE - Case 3

. . . Parameter % Error
approach provides the lowest overall estimation
error of 0.0368%, reinforcing its advantage over m@ PSOGATESDO
standalone Optimization methods. fctive Power 11150 |1.3138 | 0.8512 | 0.9284
0Sses

Table 7: Absolute Errors of The Loading Total Power - Case 3 Reactive Power | 1.9106 | 09206 | 0.4167 | 0.7365

Losses
Busi % Error MAPE 0.1479 | 0.0731 [ 0.1291 | 0.0368
634 |167394 |33898 |01683 |23003 Alt?ough.t;e i‘/}’:g};‘ ?g%gozg))stillgrietlds the IOI’tVGSt

system-wide . %) and strong voltage
671 26252 17336 | 56102 0.2164 eZtimation at Bus 671 in Case 3, an error o? 9.6901%%
652 192739 131878 |402555 |9.6901 is noted at Bus 652, which is still less than PSO
675 56252 50129 53836  |2.3003 and much less than the 40.2555% error generated
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by ESDO. This demonstrates how resilient the
hybrid Algorithm is, even in difficult estimation
situations. The elevated values can be explained by
localized variations in pseudo-measurement quality,
especially at high-load or weakly connected nodes.
However, the method’s balanced performance
across voltage and power objectives supports its
dependability.

For Case 3, where voltage deviation is incorporated,
by obtaining the lowest objective function value
and stabilizing more quickly than any standalone
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technique, Figure 9 shows that the hybrid PSO-
GA-ESDO algorithm continues to have a distinct
advantage. PSO eventually reaches a higher
objective value, despite initially converging more
quickly than GA and ESDO. In terms of convergence
speed and final accuracy, ESDO performs the worst,
whereas GA takes more iterations to stabilize. These
findings demonstrate the hybrid approach’s superior
speed-to-accuracy trade-off, effectively balancing
convergence rate and solution quality in spite of its
higher computational complexity periteration.

Convergence Characteristics of All Algorithms
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Figure 9: The convergence of different algorithms - case 3.

Case 4 extends the objective function to multiple
branches, improving overall network estimation
accuracy. The estimation errors for active and
reactive power across the selected branches
(substation, branch 633-634, and branch 671-692)
are presented in Table 9. The results show that
the hybrid PSO-GA-ESDO algorithm significantly

GA-ESDO achieves the lowest estimation error of
0.0513%, demonstrating higher accuracy in complex
DSSE formulations.

Table 9: Absolute Errors of The Loading Total Power - Case 4

reduces estimation errors compared to standalone R:ItH % Error
methods, maintaining consistency across all key mm PSO-GA-ESDO
b}l;anchgs. The total power loss estimation results are 634 00004 01250 |06116 | 00245
shownin 671 8.3520 5.0919 7.5081 8.0155
Table 10, where PSO-GA-ESDO consistently [652 284838 |19.4615 |12.0894 |25.6721
outperforms standalone algorithms by minimizing | 675 07343 | 1.02623 | 14482 |0.0118
discrepancies between the estimated and true |e45 112520 | 4.2331 | 10.6473 |12.4832
power losses. The Ploss error is reduced to 00488%, 646 28331 31288 18.9005 0.5981

. o .
while the.Qloss error drops to 0.5212/:: confirming o1 119891 106395 21242 | 111498
the superior performance of the hybrid approach. 92 53500 lodest 1231420 lo0322
The MAPE% values further validate that PSO- - . : .
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Table 10: Absolute errors of the total active power losses,
total reactive power losses, and the MAPE - Case 4

Parameter % Error

Active Power 0.4589 | 0.2453 | 0.9444 | 0.0488
Losses

Reactive Power | 0.3209 | 0.5692 | 0.6832 | 0.5212
Losses

MAPE 0.0637 | 0.0604 | 0.0936 | 0.0513

The hybrid Algorithm in Case 4 produces relatively
high errors at Bus 652 (25.6721%) and Bus 645
(12.4832%), despite having the lowest MAPE
(0.0513%) and the best overall power loss estimation
performance. These irregularities align with known
issues with those buses in earlier test scenarios. The
explanations once more highlight the complicated
impact of multi-branch optimization targets,
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limited observability, and pseudo-measurement
uncertainty.

The convergence trends for Case 4, Figure 10,
indicate that the hybrid PSO-GA-ESDO method
converges most well, stabilizing rapidly and
obtaining a low objective function value in the first
10-20 iterations. PSO displays periodic oscillations,
indicating early convergence to inferior solutions,
whereas PSO and GA demonstrate slower and
less steady convergence. When it comes to speed
and overall performance, ESDO consistently falls
behind. The hybrid method’s quick and smooth
convergence proves its resilience to complex
system limitations. Its overall reduced iteration
count, despite its higher per-iteration complexity,
demonstrates improved computing efficiency when
compared to standalone approaches.

Convergence Characteristics of All Algorithms
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Figure 10: The convergence of different algorithms - Case 4.

Case 5 represents the most complete and
computationally intensive formulation, combining
multi-branch power flow errors (as in Case 4)
and voltage deviations (as in Case 3) to provide a
highly accurate DSSE framework. The results in
Table 11 confirm that the hybrid PSO-GA-ESDO
algorithm consistently maintains the lowest active
and reactive power errors across all critical buses

(0.0523%), reinforcing its accuracy, efficiency, and
stability in highly constrained DSSE scenarios.

Table 11: Absolute Errors of The Loading Total Power
-Case5

Busi % Error

and branches. The total power loss estimation 634 |00001 |29790 |0.3924 0.1472
results in Table 12 show that the hybrid approach [671 |4.8176 |4.3783 |2.7225 7.7553
outperforms standalone methods, achieving a Ploss | 652 |7.5843 (09995 |18.8148 |23.6442
error of 0.4955% and a Qloss error of 0.2420%. The |g75 |00534 |02878 |3.4104 0.3425
MAPF% analys'ls further highlights that the hybrid [gas [77358 |14474 | 17499 14.7029
algorithm achieves the lowest estimation error
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646 | 4.8176 3.8254 | 1.5095 2.2864
611 1.5773 3.2523 1.5386 14.9411
692 0.0391 3.7099 | 4.5286 0.5276

Table 12: Absolute errors of the total active power losses,
total reactive power losses, and the MAPE - Case 5

Parameter % Error

Active Power 0.8434 | 1.3194 | 3.1370 | 0.4955
Losses

Reactive Power | 1.0236 | 1.4962 | 2.9065 | 0.2420
Losses

MAPE 0.0625 | 0.0779 | 0.1937 | 0.0523

In the most comprehensive scenario (Case 5), in the
majority of buses, the hybrid approach achieves
the highest accuracy while maintaining the lowest
total MAPE (0.0523%). Nonetheless, a number
of high error values are noted, especially at Bus
652 (23.6442%), Bus 645 (14.7029%), and Bus 611
(14.9411%). When dealing with highly constrained
multi-objective functions that involve both voltage
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and power discrepancies, these results demonstrate
how sensitive the Algorithm is to local conditions.
The hybrid approach provides the most globally
optimal and balanced solution across all evaluation
metrics, despite these local peaks, demonstrating its
applicability to challenging DSSE problems.

The convergence behavior for Case 5, in Figure
11, the hybrid PSO-GA-ESDO algorithm shows a
strong performance advantage, obtaining the lowest
objective function value and fast convergence
within the first 20 iterations. Following similar
beginning trajectories, PSO and GA diverge at
iteration 30, with PSO only slightly improving and
GA stalling. ESDO stabilizes at a significantly higher
objective value, indicating restricted and delayed
improvement. The hybrid approach’s scalability and
efficacy in addressing complex, multi-objective DSSE
situations are bolstered by the rising performance
gap. Despite its more complicated structure, the
hybrid Algorithm beats standalone evolutionary
and swarm-based techniques in terms of total
computing time because it converges with superior
solutions faster.

Convergence Characteristics of All Algorithms
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Figure 11: The convergence of different algorithms - case 5.

In terms of estimation accuracy, error minimization,
and convergence speed, the Hybrid PSO-GA-
ESDO algorithm continuously beats standalone
optimization techniques across a set of five test
cases. The synergy between its components—
GA adds genetic diversity to prevent premature
convergence, ESDO adds adaptive local search
capabilities, and PSO offers efficient global
exploration—is responsible for this performance.

These components work together to help the hybrid
model quickly converge toward optimal solutions
while avoiding local minima.

With the lowest final objective values in each
scenario, the Hybrid algorithm converges quickly
and steadily in all five cases, as shown in Table 13,
Algorithm Performance Observations Across Cases.
GA, on the other hand, continuously performs
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poorly, exhibiting suboptimal final values and slow
convergence. The performance of PSO and ESDO is
more moderate; PSO typically performs fairly well
in the beginning but lacks refinement in later stages,
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while ESDO is inconsistent, sometimes achieving
competitive results but frequently falling short of
the Hybrid model.

Table 13: Algorithm Performance Observations Across Cases

Cases |PSO GA ESDO PSO-GA-ESDO

Case1 | Gradual decrease; fair Early plateau; poor final | Moderate drop; levels off Rapid convergence and
performance value the best result

Case 2 | Steady; final value close to ESDO | Slowest and highest final | Slightly better than PSO Quick drop and lowest

value final value
Case 3 | Early drop, then flat Slightly faster early drop | Very slow, plateaus early | Best convergence and
lowest error

Case 4 | Decent early drop, slow Sluggish with a poor final | Consistently Fast drop and superior
convergence result underperforms stability

Case 5 | Matches GA early, improves Early plateau and Late improvement but Best convergence and
slightly stagnation weak result lowest value

This case-based analysis demonstrates the hybrid
approach’s flexibility and reliability. It is particularly
well-suited forreal-timeapplicationswhereaccuracy
and computing speed are critical, as it consistently
provides high-quality answers in a limited number
of iterations. To support these results, Table 14
compares each Algorithm’s convergence behavior,
objective correctness, and computing efficiency.

All essential performance indicators, including
convergence speed, ultimate objective value, and
result stability, outperform those of the hybrid
Algorithm. Because fewer iterations are required
to get optimal solutions, it is more efficient overall,
while having a greater computing cost for each
iteration.

Table 14: Algorithm Performance and Computational Characteristics

Category Metric PSO GA ESDO PSO-GA-ESDO
Performance Convergence Speed | Moderate Slow Moderate to Slow Fastest
Final Objective Moderateto | Highest (Least Moderate Lowest (Most optimal)
Value Low optimal)
Stability (Plateauing) | Steady after | Early Some fluctuations, Early convergence
~60 iterations | plateau, slow then steady with minimal change
improvements
Computational Per-Iteration Moderate Low (but many Moderate High (but fewer
Analysis Efficiency iterations iterations needed)
required)
Overall Efficiency Good balance | Poor overall Fair but inconsistent | Best across all metrics

These computational studies demonstrate that the
hybrid PSO-GA-ESDO technique offers the optimal
balance of solution quality and computational cost.
Even though it takes more iterations, its ability to
swiftly arrive at stable, optimum solutions makes
it ideal for smart grid distribution system state
estimation (DSSE). Although ESDO can increase local
accuracy (for example, fewer mistakes on certain
buses), it is not as quick or reliable as the hybrid.
Similarly, GA is less suitable for time-sensitive

applications because of its sluggish convergence
and lower ultimate accuracy, which outweighs its
cheap per-iteration cost. Even though PSO is better
balanced, it lacks the Hybrid algorithm’s overall
advantages.

To summarize, the Hybrid PSO-GA-ESDO algorithm
provides a versatile and effective DSSE solution
for today’s smart grid. Its extraordinary fit for
renewable-rich power distribution networks, as
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well as its ability to maintain accuracy, stability, and
computational efficiency under changing conditions,
enable reliable, real-time monitoring and decision-
making.

V. Conclusion

The increasing integration of renewable energy
sources (RES) into modern power distribution
networks has introduced new challenges in
Distribution System State Estimation (DSSE).
Traditional state estimation methods often
struggle to accommodate the complexities of
unbalanced loads, bidirectional power flows, and
the intermittency of distributed generation (DG)
units. To address these challenges, this paper
proposed a hybrid PSO-GA-ESDO optimization
framework for solving the DSSE problem in
renewable-rich  distribution networks. The
proposed hybrid algorithm combines the strengths
of three metaheuristic optimization techniques:
PSO, GA, and ESDO. By integrating PSO’s global
search efficiency, GA’s stochastic diversity, and
ESDQO’s adaptive exploratory mechanisms, the
hybrid approach achieves superior estimation
accuracy, faster convergence, and enhanced
robustness against measurement noise and system
uncertainties. The performance of the hybrid PSO-
GA-ESDO algorithm was validated using the IEEE
13-bus system, considering five distinct test cases.
Each case represented a progressively complex
DSSE formulation, incorporating power flow errors,
current magnitude and angle deviations, voltage
deviations, and multi-branch constraints.

Comparative analysis demonstrated that the
hybrid approach consistently outperformed
standalone PSO, GA, and ESDO algorithms in all
evaluation metrics, including load power error,
power loss estimation accuracy, and Mean Absolute
Percentage Error (MAPE%). The lowest estimation
errors were observed when using the hybrid
approach, confirming its effectiveness in improving
DSSE accuracy. The convergence analysis of the
proposed hybrid model revealed faster and more
stable convergence behavior than the individual
algorithms. The PSO-GA-ESDO approach achieved
optimal solutions within fewer iterations, avoiding
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premature convergence and local minima, which
are common challenges in conventional heuristic
optimization methods. The hybridization process
allowed for a better balance between exploration
and exploitation, ensuring that the Algorithm
efficiently navigates complex solution spaces while
maintaining high precision in state estimation. The
findings of this research confirm that PSO-GA-ESDO
is a scalable and practical DSSE solution for modern
distribution networks, particularly those with high
penetration of renewable energy sources. The hybrid
Algorithm ensures better grid reliability, stability,
and enhanced real-time monitoring capabilities,
making it well-suited for smart grid applications.

Although the suggested PSO-GA-ESDO algorithm
was evaluated against powerful standalone
optimization methods (PSO, GA, and ESDO),
we recognize that a more thorough assessment
requires benchmarking against additional hybrid
optimization frameworks. There aren’t any directly
comparable hybrid models that address the same
problem configuration at the moment, though,
because of the novelty of our approach—specifically,
thefirst-time integration of ESDOin a hybrid context
tailored to DSSE. Furthermore, hybrid algorithms
have a higher design complexity by nature, and
their proven superiority over reliable individual
techniques is a noteworthy accomplishment.
To further confirm the generalizability and
competitiveness of the suggested framework, future
research will build on this study by comparing it to
well-known hybrid techniques like PSO-GA, PSO-
DE, or GA-ACO within the DSSE domain. Moreover,
future research can extend this work by applying
the hybrid optimization framework to larger-scale
distribution networks, incorporating adaptive
control mechanisms for real-time implementation,
and exploring further enhancements using deep
learning-based predictive models for DSSE in
dynamic renewable-rich environments.

In conclusion, the proposed hybrid PSO-GA-ESDO
algorithm offers a robust, efficient, and accurate
approach to DSSE, addressing the limitations of
traditional methods and ensuring optimal state
estimation performance in the evolving landscape
of renewable-powered smart distribution system:s.
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