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Abstract

Accurate Distribution System State Estimation (DSSE) is essential for the reliable and efficient operation of modern 
power distribution networks, especially with the increasing penetration of renewable energy sources (RES) such 
as solar photovoltaics (PV) and wind energy. However, the nonlinearities, unbalanced loads, bidirectional power 
flows, and incomplete measurements in these networks present significant challenges. The integration of distribut-
ed generation (DG) units further complicates traditional DSSE methods, requiring advanced optimization tech-niques 
to enhance estimation accuracy. This paper introduces a novel hybrid optimization algorithm that combines Particle 
Swarm Optimization (PSO), Genetic Algorithm (GA), and Egyptian Stray Dog Optimization (ESDO) to tackle these 
challenges in DSSE systems with high renewable energy integration. The hybrid PSO-GA-ESDO algo-rithm leverages 
the global search capabilities of PSO, the evolutionary principles of GA, and the adaptive social behavior of ESDO, 
ensuring robust optimization with faster convergence and higher accuracy. The proposed methodology is implemented 
on the IEEE 13-bus system using MATLAB simulations, focusing on minimizing dis-crepancies between measured and 
estimated state variables while accounting for the variability of distributed re-newable generation. Simulation results 
demonstrate that the hybrid PSO-GA-ESDO algorithm outperforms conven-tional optimization methods in terms of 
estimation accuracy, convergence speed, and robustness to noisy and in-complete measurements, even in scenarios 
with high renewable energy penetration. These findings highlight the proposed approach as an effective and scalable 
solution for DSSE in unbalanced, DG-integrated distribution net-works, enhancing grid reliability, stability, and 
efficient real-time monitoring in modern smart and sustainable en-ergy systems.
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I.	 Introduction

The rapid integration of renewable energy sources 
(RES), particularly distributed generation (DG) such 
as solar photovoltaics (PV) and wind energy, has 
significantly transformed the operational dynamics 
of modern power distribution networks [1]. Unlike 
traditional power systems, where energy flows 
unidirectionally from centralized generation units 
to end consumers, DG-integrated smart grids 
introduce bidirectional power flows, increased 
voltage fluctuations, and greater operational 
uncertainties [2]. These challenges necessitate real-
time monitoring, accurate power flow estimation, 
and efficient state estimation to ensure the 
stability and reliability of the power distribution 
system [3]. State estimation in power networks is 

a mathematical process that determines the most 
likely system state—voltage magnitudes, angles, and 
power flows—by processing available measurements 
[4]. In transmission networks, state estimation is 
well-established, supported by high measurement 
redundancy and a single-phase balanced assumption. 
However, distribution system state estimation (DSSE) 
presents unique challenges due to radial topology, 
untransposed feeders, unbalanced loads, and limited 
real-time measurement availability [5,6]. The limited 
observability of distribution networks, exacerbated 
by the increasing penetration of renewable energy-
based DG, requires the incorporation of pseudo-
measurements derived from historical data, load 
forecasting, and smart metering [7]. The basic idea of 
the DSSE is shown below in Figure 1.
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Figure 1: The block diagram of the DSSE system.

Traditional DSSE techniques are predominantly 
based on Weighted Least Squares (WLS) estimation, 
which aims to minimize estimation errors using 
available measurements [8]. However, WLS-
based DSSE faces serious limitations in low-
measurement conditions, requiring alternative 
estimation   techniques   such   as    Kalman   filters, 
Bayesian methods, and compressed sensing-based 
approaches [9,10]. Kalman filtering techniques 
have been employed to improve dynamic state 
estimation, leveraging real-time updates, whereas 
Bayesian estimation incorporates probabilistic 
models to enhance uncertainty handling [11]. Other 
conventional techniques include branch-current-
based and node-voltage-based formulations, 
offering different state variable representations [12]. 
Despite these advancements, traditional methods 
often struggle with computational complexity and 
scalability in large-scale renewable-rich distribution 
networks [13].

With the increasing complexity of modern 
distribution networks, artificial intelligence (AI) 
and machine learning (ML)-based DSSE techniques 
have been proposed to improve estimation accuracy 
and computational efficiency [14] [34]. Artificial 
Neural Networks (ANNs) have demonstrated strong 
generalization capabilities, leveraging historical 
measurements and pseudo-measurements to 
enhance estimation robustness [15] [37,38]. Physics-
aware neural networks, which integrate power 
system constraints into learning-based estimation 
models, have shown improved accuracy compared 
to WLS estimators [16]. Hybrid approaches that 

combine optimization algorithms with AI techniques 
have also gained traction. For example, shallow 
neural networks have been employed to initialize 
Gauss-Newton optimization methods, significantly 
reducing convergence time [17]. 

Furthermore, deep neural networks (DNNs) 
coupled with hyperparameter optimization have 
exhibited strong adaptability for DSSE in modern 
smart grids [18] [35]. Given the limited availability 
of measurement devices in distribution networks, 
compressed sensing-based DSSE techniques have 
been explored to minimize the required number 
of measurements while maintaining accuracy [19]. 
Techniques such as ℓ1-regularized sparse voltage 
profile recovery, integrated with micro-phasor 
measurement units (µPMUs), enable reliable state 
estimation with fewer sensors [20]. Recent studies 
have also investigated Gaussian Mixture Models 
(GMMs) for pseudo-measurement generation, 
improving DSSE robustness in networks with high 
photovoltaic (PV) penetration [21].

Hybrid optimization-based DSSE approaches have 
been developed to address the nonlinear and 
computational challenges of traditional methods. 
Metaheuristic algorithms such as Particle Swarm 
Optimization (PSO), Genetic Algorithms (GA), and 
hybrid PSO-GA techniques have demonstrated 
superior convergence properties and improved 
estimation accuracy [22]. For instance, PSO has been 
effectively used to estimate distributed generation 
and load power injections, ensuring better 
convergence and robustness [23]. Additionally, 
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multi-stage estimation techniques incorporating 
pseudo-measurement generation from energy 
billing data have been explored to enhance 
DSSE under low-observability conditions [24]. A 
recent study introduced a Linearized AC Optimal 
Power Flow (LAOPF)-based DSSE model, which 
significantly reduces computational requirements 
while improving estimation accuracy in low-
measurement environments [25].

To address these challenges, this paper presents a 
hybrid algorithm of particle swarm optimization, 
genetic Algorithm, and Egyptian stray dogs 
optimization (PSO-GA-ESDO) framework for solving 
the DSSE problem in renewable-rich distribution 
networks. The primary contributions of this 
research are as follows:

•	 Development of a hybrid PSO-GA-ESDO 
algorithm for improved DSSE accuracy, 
stability, and computational efficiency.

•	 Integration of pseudo-measurements for 
distributed generation units, ensuring reliable 
real-time state estimation.

•	 Application of metaheuristic-based 
optimization techniques to enhance DSSE 
in renewable-dominated unbalanced 
distribution systems.

The rest of this paper is structured as follows: 
Section 2 presents the mathematical modeling of the 
DSSE problem. The proposed hybrid optimization 
algorithm is described in Section 3, followed by case 
studies and validation results in Section 4. Finally, 
Section 5 concludes the study and discusses potential 
future research directions.

II.	 The mathematical modelling of 
the DSSE problem

State estimation in distribution networks (DNs) is 
a critical process for determining the operational 
state of the system, including voltages, currents, 
and power flows. This ensures effective monitoring, 
control, and optimization of the network. The DSSE 
problem is framed as a nonlinear optimization 
task, combining real-time measurements, pseudo-
measurements, and physical constraints to 
accurately estimate the system state. To achieve this, 
the backward/forward sweep method is employed 
for power flow calculations, leveraging its suitability 
for radial and unbalanced distribution systems.

The objective of DSSE is to minimize the estimation 
error between measured and calculated variables 
throughout the network. Mathematically, this can 
be expressed as:

                                                          (1)

Where,  is the total error,  represents the 
measured value of the i-th variable,  is a 
nonlinear function that maps the control variables  

 and dependent variables  to the corresponding 
measurement and  denotes the total number of 
measurements. 

The control variables  include active and reactive 
power from loads and distributed generation (DG) 
units, while  comprises dependent variables such 
as voltages and power flows.

The optimization process is constrained by power 
flow equations, which connect the control and 
dependent variables while maintaining consistency 
with the physical characteristics of the network. 
The active power(P

i
) at bus i is calculated using:

                        (2)

Similarly, the reactive power (Qi) at bus 𝑖 is given by: 

                         (3)

Where ​ and ​ are the voltage magnitudes at 
buses  𝑖 and 𝑗, ​  and ​  are the conductance and 
susceptance of the line connecting them. ​ is the 
voltage angle difference.

These equations ensure that the active and reactive 
power flows are consistent with the network’s 
physical constraints. Operational constraints are 
imposed to ensure safety and reliability. These 
include voltage limits at the buses:

                                                                           (4) 

Where, ​ is the voltage magnitude at bus 𝑖,  and  
 are the minimum and maximum allowable 

voltage at any bus. As well as limits on the branch 
power flows:

                                                                            (5)

Where, ​ is the Apparent power flow through 
branch 𝑖,  and  are the minimum and 
maximum allowable apparent power flow through 
bus 𝑖. As well as limits on the branch power flows:
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Control variables, such as active power from loads 
and DG units, are also bounded. For loads, the 
bounds are defined as:

	                                              (6)

Similarly, for DG units:

                                                         (7)

Where,  are the minimum & maximum 
active power limit for the load or DG unit, ​  
is the forecasted active power for the load or DG 
unit,   is the percentage margin of error in the 
forecast.

The backward/forward sweep method is used to 
solve the DSSE problem through iterative power flow 
calculations. During the backward sweep, branch 
currents are calculated, starting at the farthest buses 
and moving toward the source, using the equation:

 (8)

Where,  is the current phasor at branch 𝑖,  
and  are load and capacitor currents, and  
is the shunt admittance. During the forward sweep, 
starting from the source bus, voltages are updated 
as:

                                                        (9)

Where,  is the voltage at the sending bus while 
 is the voltage at the receiving bus, and  is 

the impedance of branch 𝑖. 

The iterations continue until the voltage mismatch 
satisfies:

                                                                  (10)

Real-time measurements and pseudo-measurements 
are integral to the DSSE process. Real-time 
measurements include voltages, currents, and power 
flows, and are simulated with noise using:

                                                                       (11)

Pseudo-measurements  are derived from 
historical data  with added noise , bounded 
as shown in equations for load and DG limits. The 
accuracy of the DSSE can be evaluated using the 
Mean Absolute Percentage Error (MAPE), given by:

                                                                (12)

Where,  is the number of measurements,  is the 
measured value, and  is the estimated value. 
This comprehensive approach ensures that the 
state estimation aligns with the physical constraints 
and measurements of the network, providing an 
accurate representation of its operational state.

III.	 The proposed hybrid 
optimization algorithm for solving  
the DSSE problem

In the quest to address the challenges of DSSE, a 
novel hybrid optimization algorithm has been 
developed by combining the strengths of Particle 
Swarm Optimization (PSO), Genetic Algorithm 
(GA), and Egyptian Stray Dog Optimization (ESDO). 
The integration of these algorithms ensures that 
the limitations of one method are compensated 
by the strengths   of the others, achieving faster 
convergence, higher solution accuracy, and 
robustness against local optima. Below, the evolution 
of the hybrid Algorithm is outlined, starting from 
the individual contributions of each optimization 
method to the eventual fusion into a unified hybrid 
framework.

A.	 Particle Swarm Optimization (PSO)

Inspired by the collective behavior of bird flocks 
or fish schools, PSO begins by simulating a group of 
particles that represent candidate solutions in the 
search space. As shown in Figure 2, each particle 
adjusts its position iteratively by considering two 
key factors: its own best-found position (personal 
best) and the best position found by the entire 
swarm (global best) [26-28].
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Figure 2: The main concept of the PSO algorithm.

This collaborative behavior allows the swarm to 
converge quickly toward promising regions of the 
search space. The movement of each particle is 
governed by two critical equations: 

1.	 The first equation is used to update the 
velocity of each particle based on the inertia of 
its current movement, the attraction toward 
its personal best position, and the attraction 
toward the swarm’s global best position as per 
(13):

  (13)

Where,  is the particle’s velocity,  is the 
current position (solution) of the i-th particle,  

 is the particle’s personal best position, g is the 
swarm’s global best position,  is the cognitive 
coefficient, and  is the social coefficient. 

 and  are random coefficients.

2.	 The second equation updates the particle’s 
position based on its newly computed velocity:

                                                          (14)

Where,  is the current position of the 
particle i,    is the updated position of 
particle i at iteration t+1, and  is the 
updated velocity. This equation ensures that 
each particle moves toward a better solution, 
influenced by both its own past experience 

and the guidance of the global best solution 
found by the swarm. The inertia weight (ω) 
plays a crucial role in balancing exploration 
(searching new areas in the solution space) 
and exploitation (refining known good 
solutions). A higher ω value encourages 
broader exploration, while a lower ω value 
focuses on convergence toward promising 
regions. To improve convergence speed and 
prevent premature stagnation, PSO often 
employs adaptive techniques such as linearly 
decreasing inertia weight or velocity clamping 
to control excessive movement. Additionally, 
constriction factors are sometimes introduced 
to stabilize particle trajectories, ensuring that 
the swarm does not oscillate indefinitely 
around an optimal solution.

PSO has been widely applied in optimization 
problems due to its simplicity, robustness, and ability 
to escape local minima. However, standard PSO can 
struggle with premature convergence, especially 
in high-dimensional or multimodal optimization 
landscapes.

B.	 Genetic Algorithm (GA)

Unlike PSO, which focuses on swarm behavior, GA 
mimics natural evolution by working on a population 
of candidate solutions. As shown in Figure 3, the 
Algorithm evolves this population over generations 
using three main processes: selection, crossover, and 
mutation [29-31].
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Figure 3: The main steps of the GA.

During the selection process, individuals within 
each generation that have better fitness are 
given a higher chance to reproduce. For example, 
tournament selection compares pairs of candidates 
and selects the one with the better fitness: 

                                          (15)

Where, Parent is the selected individual that 
will be used in the next generation, arg min is a 
mathematical operator that returns the argument 
(the input value) at which a given function attains its 
minimum.   f( ), f( )  are the fitness values (or 
objective function values) of two individuals, ​ 
and ​,    randomly selected from the population. 
The equation chooses the individual with the low 
fitness value, meaning that :

•	 If f( )  <  f( ) then Parent = ) ​.

•	 Otherwise, Parent =​ .

After this step, the crossover process starts by 
combining the genetic material of the selected 
parents to create offspring. Single-point crossover 
exchanges portions of two parent solutions:

                                    (16)

Where, ∝ is a random weighting factor (sometimes 
called the crossover rate or mixing coefficient). 

&  are the two parent solutions & 
 is the newly generated offspring (solution). 

Finally, the mutation step starts by maintaining 
the diversity and avoiding local optima through 
introducing random variations:

                                                                           (17)

Here,  is a random perturbation applied to the 
solution. Through these processes, GA ensures that 
the population evolves toward optimal solutions. 
However, the stochastic nature of GA can sometimes 
lead to slow convergence, making it ideal to integrate 
with faster methods like PSO.

C.	 Egyptian Stray Dog Optimization 
(ESDO)

In microgrid energy management, Diab and 
Abdelsalam initially presented the ESDO algorithm. 
In dynamic environments,  its defensive and 
territorial behaviors outperformed traditional 
metaheuristics [32]. ElMessmary, Diab, Abdelsalam, 
and Moussa later compared ESDO to other 
metaheuristic approaches for solving multi-
objective optimal power flow in transmission 
networks [33]. Nevertheless, DSSE in distributed, 
unbalanced generating systems was not covered 
in either work. This technique is inspired by six 
behaviors of stray dogs, according to Figure 4. The 
most important behaviors are the defensive and 
territorial, which enable both exploration of new 
territories and exploitation of the most promising 
areas. This Algorithm introduces a unique balance 
between randomness and guided search. 

This Algorithm has two main behaviors:

1.	 Territorial behavior in which the dogs explore 
their territory by introducing small random 
perturbations to their positions:

                                                         (18)

Where, δ represents a random vector. 

2.	 Defensive behavior, which exploits the best-
known solution, dogs adjust their positions 
toward the alpha dog’s (global best) position:

	                                (19)

Where, β controls the step size and g is the 
alpha dog’s position. 

ESDO also ensures adaptability by updating the 
alpha dog (best solution) regularly, combining 
exploration and exploitation efficiently. Its adaptive 
behavior makes it robust, but it benefits from 
hybridization with methods like PSO and GA for 
further refinement.
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Figure 4: The ESDO main processes [32].

D.	 Hybrid PSO-GA-ESDO Algorithm

Building on fundamental work in [32,33], this paper 
introduces a novel sequential hybridization of 
PSO, GA, and ESDO specifically designed for DSSE 
challenges. Unlike previous implementations, our 
approach features: (1) phased solution refinement 
(PSO→GA→ESDO), (2) DSSE-optimized solution 
pooling, and (3) integrated pseudo-measurement 
handling - representing significant algorithmic 
innovations beyond prior combinations of 
these techniques. 

The Algorithm starts with the initialization of the 
PSO particles, GA chromosomes, and ESDO dogs 
across the search space. Then the fitness of each 
candidate solution is evaluated using the objective 
function mentioned above in (1). The optimization 
process starts directly after the initialization process; 
this process is divided into three phases:

1.	 The first phase is the PSO phase in which the 
particle velocities and positions are updated 
according to (13) and (14). This is done to 
identify the global best solution.

2.	 The second phase is the GA phase which uses 
the best solutions produced from the PSO 
algorithm and converts them to agents where 
their population have evolved using the 
crossover and mutation as per (15), (16) and (17).

3.	 The third and final phase in the optimization 
process is the ESDO phase, in which the agent 
positions are adjusted based on the territorial 
and defensive behaviors according to (18) and 
(19).

After the evaluation of the optimization process, 
the following step is the solution pooling in which 
the best solutions from the PSO, GA and ESDO are 
combined into a unified pool. Then the top solutions 
are retained for the next iteration. The final process 
is the convergence check by either repeating the 
hybrid process until the improvements in fitness 
falls below a predefined threshold or the maximum 
number of iterations is reached. Figure 5 shows the 
flowchart of the proposed Algorithm.
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Figure 5: The flowchart of the proposed Algorithm.

As far as we are aware, this study presents 
the first hybrid optimization framework that 
sequentially  integrates PSO, GA, and ESDO to 
address DSSE challenges in renewable-integrated 
distribution networks. Unlike other hybridizations 

that combine two techniques or apply them in 
parallel, our method adopts a phased structure (PSO 
→ GA → ESDO), where each Algorithm addresses 
specific optimization roles: PSO accelerates early 
convergence, GA improves population diversity, 
and ESDO fine-tunes via adaptive social behavior. 
Additionally, this is the first time that ESDO has 
been implemented in a hybrid structure for any 
DSSE-related problem. Additionally, the Algorithm 
incorporates a solution pooling mechanism and DSSE-
specific enhancements like pseudo-measurement 
integration, multi-branch error minimization, and 
robustness to noisy and incomplete data. Table 1 
shows the main parameters for the Algorithm and 
their values.

Table 1: Optimization Algorithm Parameters

Algorithm Parameter Value/Range Justification

PSO Inertia 
weight (ω)

0.4-0.9 
(linear decay)

Balances 
exploration-
exploitation

Cognitive 
Coeff. (c₁)

1.5 Standard literature 
value

Social 
Coeff. (c₂)

1.5 Matches cognitive 
influence

GA Crossover 
rate

0.85 Maintains 
population 
diversity

Mutation 
rate

0.05 Prevents 
premature 
convergence

ESDO Territorial 
Step. (β)

±0.1×(max-
min)

Local search range

IV.	 Test cases and results

The proposed hybrid PSO-GA-ESDO algorithm was 
tested on the IEEE 13-bus test system to solve the 
DSSE  problem. As shown in Figure 6, this system 
consists of 13 buses, 12 branches, and a mix of 
different load types, with various system constraints 
such as voltage limits, branch power flow bounds, 
and control variable restrictions. The test system’s 
structure and operational characteristics make it a 
suitable benchmark for evaluating the performance 
of optimization techniques for DSSE tasks. 
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Figure 6: The diagram of the IEEE 13 bus system.

The IEEE 13 Bus System, a standardized test case 
used to model and analyze electrical distribution 
networks, is depicted in the figure in a simplified 
form. Bus 632, also known as the swing bus or slack 
bus, is at the top of the hierarchy and acts as the 
system’s voltage and angle reference. Numerous 
PQ buses (such as “632 Yg PQ”) are connected to it, 
signifying steady active (P) and reactive (Q) power 
loads. A wye-grounded connection, denoted by the 
notation “Yg,” is frequently employed in distribution 
systems to manage unbalanced loads. Because 
power flows unidirectionally from the swing bus 
downstream to the loads in real-world distribution 
networks, these buses are connected in a radial 
(tree-like) topology.

The transformer (XFM-1),   which connects the 
higher-voltage segment (like Bus 632) to lower-
voltage loads (like Bus 614), is a crucial part of the 
system. It steps down the voltage from 4.16 kV 
to 480 V. Studying voltage regulation at various 
voltage levels is made possible by this transformer. 
The “Z”-designated buses (611 Z, 652 Z, etc.) model 
the resistance and reactance of distribution lines 
by representing line segments with inherent 
impedance.

In the meantime, buses marked “D I” (such as 622 
D I and 672 D I) probably indicate delta-connected 
current injections, which might stand for specialized 

machinery or industrial loads. Additionally, the 
figure contains placeholder labels such as “P1” and 
“PQ,” which in a complete dataset would provide 
precise load values in kW or kVAR. The IEEE 13 Bus 
System, which has radial power flow, mixed voltage 
levels, and unbalanced loads, is intended to resemble 
actual distribution networks. It is frequently 
employed in fault studies, load flow analysis, and the 
integration of dispersed energy resources (such as 
storage or solar panels). Voltage labels, standardized 
symbols for loads and generators, and a legend 
elucidating notations such as “Yg” or “D I” could all 
be added to the figure to improve clarity. It is advised 
to consult the complete IEEE 13-bus documentation 
for in-depth research, as it contains line parameters, 
precise load values, and capacitor banks. This system 
offers a strong framework for comparing theoretical 
models to actual distribution network behavior.

This study tests the performance of the hybrid PSO-
GA-ESDO algorithm for solving the DSSE problem. 
The optimization was performed for five distinct 
test cases, each focusing on different aspects of 
the state estimation. For each case, we applied the 
Particle Swarm Optimization (PSO) algorithm, the 
Genetic Algorithm (GA), the Egyptian Stray Dog 
Optimization (ESDO) algorithm, and the hybrid PSO-
GA-ESDO algorithm, which integrates the strengths 
of all three techniques. The aim was to compare 
their performance in terms of solution accuracy 

http://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br


http://dx.doi.org/10.21622/RESD.2025.11.2.1271

323

http://apc.aast.edu

Journal of Renewable Energy and Sustainable Development (RESD)                                     Volume 11, Issue 2, December 2025 - ISSN 2356-8569

and convergence time. The following five test cases 
were considered to evaluate the performance of 
each optimization algorithm in solving the DSSE 
problem. For each case, the algorithms were applied 
individually first, followed by the hybrid approach 
to assess improvements in both solution quality and 
convergence speed.

By integrating the strengths of three optimization 
techniques, the hybrid algorithm achieves a higher 
level of precision in estimating the DSSE state 
compared to standalone methods. The PSO phase 
ensures rapid initial convergence, while the adaptive 
mechanisms of ESDO and the diversity-enhancing 
properties of GA prevent stagnation and refine the 
search process efficiently. The combination of PSO’s 
global search, GA’s stochastic diversity, and ESDO’s 
adaptive mechanisms significantly reduces the risk 
of getting trapped in local optima. 

The inclusion of ESDO ensures that the Algorithm 
remains flexible and robust even in highly dynamic 
or complex search landscapes. The hybridization 
enables a balanced trade-off between exploration 

(searching new areas) and exploitation (refining 
existing solutions), leading to a more comprehensive 
search of the solution space. The modular design of 
the hybrid Algorithm allows it to scale effectively 
for larger and more complex DSSE problems. By 
combining these advantages, the proposed hybrid 
PSO-GA-ESDO algorithm emerges as a powerful tool 
for solving DSSE problems, providing a compelling 
balance between computational efficiency and 
solution accuracy.

Five different test cases, each of them focused 
on a different facet of the DSSE problem under 
various operating conditions were developed in 
order to assess the efficacy of the suggested PSO-
GA-ESDO algorithm. An overview of these test 
cases is given in Table 2, which also highlights the 
primary objective function focus and the associated 
performance metrics that were used for assessment. 
This organized synopsis facilitates a better 
comprehension of the testing process and sets the 
scene for the in-depth findings that are discussed in 
the following subsections.

Table 2: Test cases Summary

Test Case Objective Function Focus Targeted Evaluation Metrics

Case 1 Minimize active and reactive power errors at the 
substation

Substation power accuracy, total power loss, MAPE

Case 2 Minimize current magnitude and angle   errors at the 
substation

Current estimation accuracy, power loss, MAPE

Case 3 Case 1 + minimize voltage deviation at Bus 671 Power and voltage accuracy, substation, and Bus 671 
voltage profile

Case 4 Minimize power flow errors at multiple branches System-wide power flow estimation, multi-branch    
accuracy

Case 5 Case 4 + voltage deviation at key buses Comprehensive estimation accuracy (power + voltage), 
system-wide MAPE

A.	 Test Case 1

The first test case serves as a baseline scenario,   
where the objective function is formulated to 
minimize the absolute errors in active and reactive 
power at the substation (Branch 0-1). 

This case ensures that the estimated power flows 
at the network’s point of entry align as closely 
as possible with the measured values. Since the 
substation  is    a  critical   node  in  the distribution 
system, accurate estimation at this location 
is essential for maintaining the reliability of 
downstream power flow calculations.

B.	 Test Case 2

In  this  test  case,  the  objective function is designed 
to minimize discrepancies in the magnitude and 
phase angle of the current at the substation.                                   
Accurate current estimation is crucial in scenarios 
where phasor measurement units (PMUs) or other 
high-precision current sensors are deployed. By 
focusing on the current measurements, this case 
enhances the reliability of the state estimation 
process in networks with limited voltage 
measurements.
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C.	 Test Case 3

Building upon Case 1, this test case incorporates an 
additional constraint by including voltage deviation 
at a key bus (Bus 671) in the objective function. 
The inclusion of voltage errors ensures that the 
estimation process maintains voltage regulation 
across the network while simultaneously reducing 
power flow discrepancies. This case is particularly 
relevant for distribution networks with voltage-
dependent loads, where maintaining accurate 
voltage profiles is as important as ensuring correct 
power flow estimation.

D.	 Test Case 4

Unlike the previous cases, which focus primarily 
on the substation or a single bus, Case 4 extends 
the objective function to multiple branches across 
the distribution network. Specifically, errors in 
active and reactive power flows are minimized 
at three critical branches: the substation branch 
(0-1), Branch 633-634, and Branch 671-692. By 
incorporating multiple network locations, this case 
aims to enhance the overall estimation accuracy and 
ensure that power flows throughout the system are 
accurately captured.

E.	 Test Case 5

The final test case represents the most extensive 
and computationally demanding formulation. The 
objective function integrates both power flow 
discrepancies across multiple branches (as in Case 4) 
and voltage deviations (as in Case 3). This formulation 
ensures that the state estimation model provides an 
accurate representation of the system’s operational 
state across both power and voltage domains. While 
computationally intensive, Case 5 offers the highest 
potential accuracy, making it suitable for scenarios 
requiring high-precision DSSE solutions.

F.	 Results analysis

The final test case represents the most extensive 
and computationally demanding formulation. The 
objective function integrates both power flow 
discrepancies across multiple branches (as in Case 4) 
and voltage deviations (as in Case 3). This formulation 
ensures that the state estimation model provides an 
accurate representation of the system’s operational 
state across both power and voltage domains. While 
computationally intensive, Case 5 offers the highest 
potential accuracy, making it suitable for scenarios 
requiring high-precision DSSE solutions.

The proposed hybrid PSO-GA-ESDO optimization 
algorithm was evaluated across five test cases on 
the IEEE 13-bus system, focusing on estimation 
accuracy, convergence performance, and power loss 
minimization. The results were compared against 
three standalone optimization techniques: PSO, GA, 
and ESDO. The performance was assessed based on 
Ploss, Qloss, and the MAPE%.

In Case 1, which serves as a baseline scenario, the 
optimization was performed to minimize active 
and reactive power discrepancies at the substation 
(branch 0–1). The results in Table 3 show that ESDO 
achieves the lowest active and reactive power errors 
at most buses, while PSO and GA result in higher 
errors. The hybrid PSO-GA-ESDO algorithm further 
enhances accuracy, exhibiting minimal error values. 
The total power loss estimations indicate that the 
hybrid approach provides a close match to the true 
power losses, with a Ploss error of 0.3483% and a 
Qloss error of 0.4988% (Table 4). The MAPE% error 
matrix confirms that the hybrid approach achieves 
the lowest estimation error of 0.0487%, reinforcing 
its superior accuracy.

Table 3: Absolute Errors of The Loading Total Power – Case 1

Bus i % Error 

PSO GA ESDO PSO-GA-ESDO

634 21.8344 15.4574 1.5672 4.3962

671 7.1063 9.4979 5.5310 3.6202

652 14.3086 7.4604 1.5256 21.7629

675 1.2549 0.5050 1.4279 0.8852

645 2.7574 5.9276 7.2140 4.3863

646 1.7132 3.3458 2.9080 0.1899

611 6.2858 2.3460 2.8103 2.1459

692 0.7106 0.2646 10.2522 4.7148

Table 4: Absolute errors of the total active power losses, total 
reactive power losses, and the MAPE – Case 1

Parameter % Error

PSO GA ESDO PSO-GA-ESDO

Active Power 
Losses

0.4186 0.1571 0.1724 0.3483

Reactive Power 
Losses

1.2288 1.1684 0.4755 0.4988

MAPE 0.1440 0.1054 0.0524 0.0487

Although the hybrid PSO-GA-ESDO approach 
performs better in most buses and has the lowest 
MAPE (0.0487%), it shows an unusually high error of 
21.7629% at Bus 652. The variation in the sensitivity 
and pseudo-measurement accuracy of some nodes 
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with lower observability is the cause of this localized 
deviation. Some agents may converge suboptimally 
at buses with higher noise or weaker data support 
because metaheuristic optimization is stochastic and 
population-based. Despite this, the hybrid method 
maintains excellent global performance across the 
system, including competitive active and reactive 
power loss estimates, which confirms its robustness 
in holistic DSSE estimation.

The convergence analysis for Case 1, shown in  
Figure 7, reveals that the hybrid PSO-GA-ESDO 

algorithm reaches a low objective function value in 
10–20 iterations, demonstrating the fastest and most 
stable convergence. GA shows slow convergence 
with large fluctuations, whereas PSO and ESDO take 
more iterations to stabilize. The hybrid approach 
converges much faster and exhibits a better balance 
between computational efficiency and estimation 
accuracy, despite integrating multiple optimization 
stages, which could increase per-iteration 
complexity. Its efficacy over standalone methods 
is confirmed by its capacity to break out of local 
minima and sustain consistent improvement.

Figure 7: The convergence of different algorithms – case 1.

In Case 2,  which aims to minimize current 
magnitude and angle errors at the substation, the 
results in Table 5 indicate that GA outperforms 
PSO in reducing errors, while ESDO provides better 
accuracy in some buses. However, PSO-GA-ESDO 
consistently maintains the lowest overall error 
across all buses. The total power loss estimation 
results in Table 6 confirm that the hybrid approach 
yields the most accurate power loss values, achieving 
a Ploss error of 0.5904% and a Qloss error of 0.3425%. 
The MAPE% results further validate that the hybrid 
PSO-GA-ESDO method outperforms all individual 
algorithms, achieving the lowest MAPE% of 0.1101%.

The convergence behavior in Case 2, shown in Figure 
8, shows that the hybrid PSO-GA-ESDO algorithm 
performs better than any other approach by 
reaching the lowest objective function value in the 
first 20 iterations and preserving stable convergence. 
GA quickly stalls at a suboptimal level after making 
quick initial progress. After thirty iterations, PSO 

gradually improves but slows down, and ESDO 
once more converges slowly with underperforming 
performance. The hybrid approach, with its fewer 
iterations and quicker convergence to optimal 
solutions, turns out to be more time-efficient overall, 
even with its multi-phase design.

Table 5: Absolute Errors of The Loading Total Power – Case 2

Bus i % Error 

PSO GA ESDO PSO-GA-ESDO

634 13.8798 6.6031 21.8541 10.1106

671 9.1845 3.7098 15.4918 12.5598

652 12.8660 6.3501 4.4762 13.3868

675 16.3969 6.2310 5.9420 6.1597

645 16.3969 3.0606 22.8280 23.8756

646 16.3969 0.8215 14.7727 12.6805

611 7.6921 8.5850 13.3980 2.1671

692 0.8480 22.0434 0.6201 20.4508
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Table 6: Absolute errors of: the total active power losses, total 
reactive power losses, and the MAPE – Case 2

Parameter % Error

PSO GA ESDO PSO-GA-ESDO

Active Power 
Losses

1.2320 1.0064 1.3032 0.5904

Reactive Power 
Losses

0.7029 0.2190 0.4735 0.3425

MAPE 0.1947 0.1672 0.1909 0.1101

When it comes to power loss estimation and MAPE 

(0.1101%), the hybrid approach performs better than 
any standalone algorithm in Case 2. A few high 
local errors are noted, though, especially at Bus 645 
(23.8756%) and Bus 692 (20.4508%). These outliers 
are probably caused by current-based objective 
functions at nodes with sparse current measurement 
references being sensitive. Although GA excels at 
some of these specific buses, the hybrid method’s 
overall system-wide accuracy confirms its efficacy. 
The steady gains in overall metrics show that the 
quality of the global estimation is unaffected by 
these local anomalies. 

Figure 8: The convergence of different algorithms – case 2.

Case 3 extends Case 1 by incorporating voltage 
deviation at Bus 671. The results in Table 7 show 
that PSO-GA-ESDO provides the most accurate 
active power estimation, outperforming GA and 
PSO significantly at key buses such as 652 and 634. 
The total power loss estimations in Table 8 confirm 
that the hybrid approach minimizes discrepancies, 
reducing the Ploss error to 0.9284% and the Qloss 
error to 0.7365%. The MAPE% shows that the hybrid 
approach provides the lowest overall estimation 
error of 0.0368%, reinforcing its advantage over 
standalone optimization methods.

Table 7: Absolute Errors of The Loading Total Power – Case 3

Bus i % Error

PSO GA ESDO PSO-GA-ESDO

634 16.7394 3.3898 0.1683 2.3003

671 5.6252 1.7336 5.6102 0.2164

652 19.2739 13.1878 40.2555 9.6901

675 5.6252 5.0129 5.3836 2.3003

645 5.6252 3.1791 5.1997 2.3003

646 2.5669 4.7239 15.9997 2.3003

611 5.6232 1.3366 14.4334 2.3003

692 5.6252 2.6167 2.4647 2.3003

Table 8: Absolute errors of: the total active power losses, total 
reactive power losses, and the MAPE – Case 3

Parameter % Error

PSO GA ESDO PSO-GA-ESDO

Active Power 
Losses

1.1150 1.3138 0.8512 0.9284

Reactive Power 
Losses

1.9106 0.9206 0.4167 0.7365

MAPE 0.1479 0.0731 0.1291 0.0368

Although the hybrid approach still yields the lowest 
system-wide MAPE (0.0368%) and strong voltage 
estimation at Bus 671 in Case 3, an error of 9.6901% 
is noted at Bus 652, which is still less than PSO 
and much less than the 40.2555% error generated 
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by ESDO. This demonstrates how resilient the 
hybrid Algorithm is, even in difficult estimation 
situations. The elevated values can be explained by 
localized variations in pseudo-measurement quality, 
especially at high-load or weakly connected nodes. 
However, the method’s balanced performance 
across voltage and power objectives supports its 
dependability.

For Case 3, where voltage deviation is incorporated, 
by obtaining the lowest objective function value 
and stabilizing more quickly than any standalone 

technique, Figure 9 shows that the hybrid PSO-
GA-ESDO algorithm continues to have a distinct 
advantage. PSO eventually reaches a higher 
objective value, despite initially converging more 
quickly than GA and ESDO. In terms of convergence 
speed and final accuracy, ESDO performs the worst, 
whereas GA takes more iterations to stabilize. These 
findings demonstrate the hybrid approach’s superior 
speed-to-accuracy trade-off, effectively balancing 
convergence rate and solution quality in spite of its 
higher computational complexity per iteration.

Figure 9: The convergence of different algorithms – case 3.

Case 4 extends the objective function to multiple 
branches, improving overall network estimation 
accuracy. The estimation errors for active and 
reactive power across the selected branches 
(substation, branch 633–634, and branch 671–692) 
are presented in Table 9. The results show that 
the hybrid PSO-GA-ESDO algorithm significantly 
reduces estimation errors compared to standalone 
methods, maintaining consistency across all key 
branches. The total power loss estimation results are 
shown in 

Table 10, where PSO-GA-ESDO consistently 
outperforms standalone algorithms by minimizing 
discrepancies between the estimated and true 
power losses. The Ploss error is reduced to 0.0488%, 
while the Qloss error drops to 0.5212%, confirming 
the superior performance of the hybrid approach. 
The MAPE% values further validate that PSO-

GA-ESDO achieves the lowest estimation error of 
0.0513%, demonstrating higher accuracy in complex 
DSSE formulations.

Table 9: Absolute Errors of The Loading Total Power – Case 4

Bus i % Error

PSO GA ESDO PSO-GA-ESDO

634 0.0004 0.1250 0.6116 0.0245

671 8.3520 5.0919 7.5081 8.0155

652 28.4838 19.4615 12.0894 25.6721

675 0.7343 1.02623 1.4482 0.0118

645 11.2520 4.2331 10.6473 12.4832

646 2.8331 3.1288 18.9005 0.5981

611 11.9891 0.6395 4.1242 11.1498

692 8.3520 0.4651 23.1420 0.0322
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Table 10: Absolute errors of the total active power losses, 
total reactive power losses, and the MAPE – Case 4

Parameter % Error

PSO GA ESDO PSO-GA-ESDO

Active Power 
Losses

0.4589 0.2453 0.9444 0.0488

Reactive Power 
Losses

0.3209 0.5692 0.6832 0.5212

MAPE 0.0637 0.0604 0.0936 0.0513

The hybrid Algorithm in Case 4 produces relatively 
high errors at Bus 652 (25.6721%) and Bus 645 
(12.4832%), despite having the lowest MAPE 
(0.0513%) and the best overall power loss estimation 
performance. These irregularities align with known 
issues with those buses in earlier test scenarios. The 
explanations once more highlight the complicated 
impact of multi-branch optimization targets, 

limited observability, and pseudo-measurement 
uncertainty.

The  convergence trends for Case 4, Figure 10, 
indicate that the hybrid PSO-GA-ESDO method 
converges most well, stabilizing rapidly and 
obtaining a low objective function value in the first 
10-20 iterations. PSO displays periodic oscillations, 
indicating early convergence to inferior solutions, 
whereas PSO and GA demonstrate slower and 
less steady convergence. When it comes to speed 
and overall performance, ESDO consistently falls 
behind. The hybrid method’s quick and smooth 
convergence proves its resilience to complex 
system limitations. Its overall reduced iteration 
count, despite its higher per-iteration complexity, 
demonstrates improved computing efficiency when 
compared to standalone  approaches.

Figure 10: The convergence of different algorithms – Case 4.

Case 5 represents the most complete and 
computationally intensive formulation, combining 
multi-branch power flow errors (as in Case 4) 
and voltage deviations (as in Case 3) to provide a 
highly accurate DSSE framework. The results in 
Table 11 confirm that the hybrid PSO-GA-ESDO 
algorithm consistently maintains the lowest active 
and reactive power errors across all critical buses 
and branches. The total power loss estimation 
results in Table 12 show that the hybrid approach 
outperforms standalone methods, achieving a Ploss 
error of 0.4955% and a Qloss error of 0.2420%. The 
MAPE% analysis further highlights that the hybrid 
algorithm achieves the lowest estimation error 

(0.0523%), reinforcing its accuracy, efficiency, and 
stability in highly constrained DSSE scenarios. 

Table 11: Absolute Errors of The Loading Total Power               
– Case 5

Bus i % Error

PSO GA ESDO PSO-GA-ESDO

634 0.0001 2.9790 0.3924 0.1472

671 4.8176 4.3783 2.7225 7.7553

652 7.5843 0.9995 18.8148 23.6442

675 0.0534 0.2878 3.4104 0.3425

645 7.7358 1.4474 1.7499 14.7029
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646 4.8176 3.8254 1.5095 2.2864

611 1.5773 3.2523 1.5386 14.9411

692 0.0391 3.7099 4.5286 0.5276

Table 12: Absolute errors of the total active power losses, 
total reactive power losses, and the MAPE – Case 5

Parameter % Error

PSO GA ESDO PSO-GA-ESDO

Active Power 
Losses

0.8434 1.3194 3.1370 0.4955

Reactive Power 
Losses

1.0236 1.4962 2.9065 0.2420

MAPE 0.0625 0.0779 0.1937 0.0523

In the most comprehensive scenario (Case 5), in the 
majority of buses, the hybrid approach achieves 
the highest accuracy while maintaining the lowest 
total MAPE (0.0523%). Nonetheless, a number 
of high error values are noted, especially at Bus 
652 (23.6442%), Bus 645 (14.7029%), and Bus 611 
(14.9411%). When dealing with highly constrained 
multi-objective functions that involve both voltage 

and power discrepancies, these results demonstrate 
how sensitive the Algorithm is to local conditions. 
The hybrid approach provides the most globally 
optimal and balanced solution across all evaluation 
metrics, despite these local peaks, demonstrating its 
applicability to challenging DSSE problems.

The convergence behavior for Case 5, in Figure 
11, the hybrid PSO-GA-ESDO algorithm shows a 
strong performance advantage, obtaining the lowest 
objective function value and fast convergence 
within the first 20 iterations. Following similar 
beginning trajectories, PSO and GA diverge at 
iteration 30, with PSO only slightly improving and 
GA stalling. ESDO stabilizes at a significantly higher 
objective value, indicating restricted and delayed 
improvement. The hybrid approach’s scalability and 
efficacy in addressing complex, multi-objective DSSE 
situations are bolstered by the rising performance 
gap. Despite its more complicated structure, the 
hybrid Algorithm beats standalone evolutionary 
and swarm-based techniques in terms of total 
computing time because it converges with superior 
solutions faster.

Figure 11: The convergence of different algorithms – case 5.

In terms of estimation accuracy, error minimization, 
and convergence speed, the Hybrid PSO-GA-
ESDO algorithm continuously beats standalone 
optimization techniques across a set of five test   
cases. The synergy between its components—
GA  adds  genetic  diversity to prevent premature    
convergence, ESDO adds adaptive local search 
capabilities, and PSO offers efficient global 
exploration—is responsible for this performance. 

These components work together to help the hybrid 
model quickly converge toward optimal solutions 
while avoiding local minima.

With the lowest final objective values in each 
scenario, the Hybrid algorithm converges quickly 
and steadily in all five cases, as shown in Table 13, 
Algorithm Performance Observations Across Cases. 
GA, on the other hand, continuously performs 
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poorly, exhibiting suboptimal final values and slow 
convergence. The performance of PSO and ESDO is 
more moderate; PSO typically performs fairly well 
in the beginning but lacks refinement in later stages, 

while ESDO is inconsistent, sometimes achieving 
competitive results but frequently falling short of 
the Hybrid model.

Table 13: Algorithm Performance Observations Across Cases

Cases PSO GA ESDO PSO-GA-ESDO

Case 1 Gradual decrease; fair 
performance

Early plateau; poor final 
value

Moderate drop; levels off Rapid convergence and 
the best result

Case 2 Steady; final value close to ESDO Slowest and highest final 
value

Slightly better than PSO Quick drop and lowest 
final value

Case 3 Early drop, then flat Slightly faster early drop Very slow, plateaus early Best convergence and 
lowest error

Case 4 Decent early drop, slow 
convergence

Sluggish with a poor final 
result

Consistently 
underperforms

Fast drop and superior 
stability

Case 5 Matches GA early, improves 
slightly

Early plateau and 
stagnation

Late improvement but 
weak result

Best convergence and 
lowest value

This case-based analysis demonstrates the hybrid 
approach’s flexibility and reliability. It is particularly 
well-suited for real-time applications where accuracy 
and computing speed are critical, as it consistently 
provides high-quality answers in a limited number 
of iterations. To support these results, Table 14 
compares each Algorithm’s convergence behavior, 
objective correctness, and computing efficiency. 

All essential performance indicators, including 
convergence speed, ultimate objective value, and 
result stability, outperform those of the hybrid 
Algorithm. Because fewer iterations are required 
to get optimal solutions, it is more efficient overall, 
while having a greater computing cost for each 
iteration.

Table 14: Algorithm Performance and Computational Characteristics

Category Metric PSO GA ESDO PSO-GA-ESDO

Performance Convergence Speed Moderate Slow Moderate to Slow Fastest

Final Objective 
Value

Moderate to 
Low

Highest (Least 
optimal)

Moderate Lowest (Most optimal)

Stability (Plateauing) Steady after 
~60 iterations

Early 
plateau, slow 
improvements

Some fluctuations, 
then steady

Early convergence 
with minimal change

Computational 
Analysis

Per-Iteration 
Efficiency

Moderate Low (but many 
iterations 
required)

Moderate High (but fewer 
iterations needed)

Overall Efficiency Good balance Poor overall Fair but inconsistent Best across all metrics

These computational studies demonstrate that the 
hybrid PSO-GA-ESDO technique offers the optimal 
balance of solution quality and computational cost. 
Even though it takes more iterations, its ability to 
swiftly arrive at stable, optimum solutions makes 
it ideal for smart grid distribution system state 
estimation (DSSE). Although ESDO can increase local 
accuracy (for example, fewer mistakes on certain 
buses), it is not as quick or reliable as the hybrid. 
Similarly, GA is less suitable for time-sensitive 

applications because of its sluggish convergence 
and lower ultimate accuracy, which outweighs its 
cheap per-iteration cost. Even though PSO is better 
balanced, it lacks the Hybrid algorithm’s overall 
advantages.

To summarize, the Hybrid PSO-GA-ESDO algorithm 
provides a versatile and effective DSSE solution 
for today’s smart grid. Its extraordinary fit for 
renewable-rich power distribution networks, as 
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well as its ability to maintain accuracy, stability, and 
computational efficiency under changing conditions, 
enable reliable, real-time monitoring and decision-
making.

V.	 Conclusion

The increasing integration of renewable energy 
sources (RES) into modern power distribution 
networks has introduced new challenges in 
Distribution System State Estimation (DSSE). 
Traditional    state      estimation     methods    often 
struggle to accommodate the complexities of 
unbalanced loads, bidirectional power flows, and 
the intermittency of distributed generation (DG) 
units.     To address these challenges, this paper 
proposed a hybrid PSO-GA-ESDO optimization 
framework for solving the DSSE problem in 
renewable-rich distribution networks. The 
proposed hybrid algorithm combines the strengths 
of three metaheuristic optimization techniques: 
PSO, GA, and ESDO. By integrating PSO’s global 
search efficiency, GA’s stochastic diversity, and 
ESDO’s adaptive exploratory mechanisms, the 
hybrid approach achieves superior estimation 
accuracy, faster convergence, and enhanced 
robustness against measurement noise and system 
uncertainties. The performance of the hybrid PSO-
GA-ESDO algorithm was validated using the IEEE 
13-bus system, considering five distinct test cases. 
Each case represented a progressively complex 
DSSE formulation, incorporating power flow errors, 
current magnitude and angle deviations, voltage 
deviations, and multi-branch constraints. 

Comparative analysis demonstrated that the 
hybrid approach consistently outperformed 
standalone PSO, GA, and ESDO algorithms in all 
evaluation metrics, including load power error, 
power loss estimation accuracy, and Mean Absolute 
Percentage Error (MAPE%). The lowest estimation 
errors were observed when using the hybrid 
approach, confirming its effectiveness in improving 
DSSE accuracy. The convergence analysis of the 
proposed hybrid model revealed faster and more 
stable convergence behavior than the individual 
algorithms. The PSO-GA-ESDO approach achieved 
optimal solutions within fewer iterations, avoiding 

premature convergence and local minima, which 
are common challenges in conventional heuristic 
optimization methods. The hybridization process 
allowed for a better balance between exploration 
and exploitation, ensuring that the Algorithm 
efficiently navigates complex solution spaces while 
maintaining high precision in state estimation. The 
findings of this research confirm that PSO-GA-ESDO 
is a scalable and practical DSSE solution for modern 
distribution networks, particularly those with high 
penetration of renewable energy sources. The hybrid 
Algorithm ensures better grid reliability, stability, 
and enhanced real-time monitoring capabilities, 
making it well-suited for smart grid applications. 

Although the suggested PSO-GA-ESDO algorithm 
was evaluated against powerful standalone 
optimization methods (PSO, GA, and ESDO), 
we recognize that a more thorough assessment 
requires benchmarking against additional hybrid 
optimization frameworks. There aren’t any directly 
comparable hybrid models that address the same 
problem configuration at the moment, though, 
because of the novelty of our approach—specifically, 
the first-time integration of ESDO in a hybrid context 
tailored to DSSE. Furthermore, hybrid algorithms 
have a higher design complexity by nature, and 
their proven superiority over reliable individual 
techniques is a noteworthy accomplishment. 
To further confirm the generalizability and 
competitiveness of the suggested framework, future 
research will build on this study by comparing it to 
well-known hybrid techniques like PSO-GA, PSO-
DE, or GA-ACO within the DSSE domain. Moreover, 
future research can extend this work by applying 
the hybrid optimization framework to larger-scale 
distribution networks, incorporating adaptive 
control mechanisms for real-time implementation, 
and exploring further enhancements using deep 
learning-based predictive models for DSSE in 
dynamic renewable-rich environments. 

In conclusion, the proposed hybrid PSO-GA-ESDO 
algorithm offers a robust, efficient, and accurate 
approach to DSSE, addressing the limitations of 
traditional methods and ensuring optimal state 
estimation performance in the evolving landscape 
of renewable-powered smart distribution systems.
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