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ABSTRACT

Microgrids (MGs) are essential for ensuring a reliable and efficient power supply, particularly in isolated or islanded 
regions. One of the significant challenges faced is maintaining voltage balance during peak load periods, which is 
complicated by uncertainties in renewable energy availability, demand response, and system constraints. This paper 
introduces an Adaptive Bayesian Sparse Polynomial Chaos Expansion (BSPCE) framework designed to tackle these 
challenges effectively. Unlike traditional BSPCE methods that utilize fixed sampling strategies, our adaptive approach 
dynamically modifies sampling locations in response to approximation errors or model sensitivities. This allows for a 
more efficient allocation of computational resources, enhancing approximation accuracy in areas of high uncertainty. 
The framework systematically quantifies uncertainties related to maximum loadability and operational constraints 
while also accounting for the impacts of battery energy storage systems, electric vehicles, and demand response 
mechanisms. By applying this methodology to the IEEE-15 bus system, we provide a comprehensive assessment of 
voltage balance in isolated microgrids during peak load conditions. The proposed method is capable of dealing with 
a large number of correlated inputs and following unrelated distributions. The simulation modeling is performed on 
the MATLAB platform. The numerical results from the IEEE 15 test feeders confirm that the approach is accurate and 
efficient at the same time.
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Nomenclature

    Active power of dispatchable sources

Reactive power of dispatchable sources

The upper bound of reactive power of dispatchable 
sources

    The upper bound of the real power of dispatchable 
sources

Droop gains of real power

Droop gains of reactive power

Nominal voltage

System voltage

Nominal frequency

System frequency

Discharging power in kW of MG

Status of charging

Status of discharging

Minimum SoC of MG

Maximum SoC of MG

Charging efficiency of BESS

Discharging efficiency of BESS

Discharging power in kW

Charging power in kW

Operational costs of the dispatchable generator 1

Shape parameter

Scale value

Random variable

Mean

Standard deviation

, Lower and upper bounds on voltage at ‘ith’ bus

Lower and upper bounds on active power 
generation at ‘ith’ bus

Lower and upper bounds on reactive power 
generation at ‘ith’ bus

Power generation by diesel generator at ‘ith’ bus

Power generation by RESs at ‘ith’ bus

, Lower and upper bounds on active power 
transmission between ‘ith’ bus and ‘jth’ bus

Power available at time ‘t’ across BESS

Copyright © 2025, authors

*Corresponding author

https://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br


http://dx.doi.org/10.21622/RESD.2025.11.1.1281

162

http://apc.aast.edu

Journal of Renewable Energy and Sustainable Development (RESD)                                      Volume 11, Issue 1, June 2025 - ISSN 2356-8569

I.	 INTRODUCTION

A.	 Motivation

Today,  the country  has  an  overdemand  for 
electricity due to its population. This over stressed 
existing power systems [1]. Such generators are 
dispatchable, but some of these drawbacks do not 
make these sources economical, environment 
unfriendly, and unsustainable in nature. As 
fundamental components of modern power 
systems, microgrids are regarded as an effective 
means to improve reliability, flexibility, and 
resilience in regions subject to disturbances of 
power. The operations can be in islanded or grid-
connected mode. The microgrid will be required to 
behave according to voltage and frequency rules 
prescribed by the utility grid when modeled as an 
infinite bus and connected to the grid [2]. In such 
a case, distribution generation units control the 
voltage and frequency in accordance with their 
droop characteristics [3]. The implementation of 
this system provides advantages in terms of grid 
resilience and the reliability of power systems 
during periods of disruption. 

The operation of MG uses largely renewable energy 
sources (RES) such as wind turbines (WT) and 
photovoltaic (PV) systems that usually operate in 
maximum power point tracking (MPPT) mode [4] 
[5] constrained for grid connected cases to optimize 
energy management. In the determined state of 
charge (SoC) [6], surplus energy is supplied to the 
main grid or stored in the battery energy storage 
systems (BESS). The mode of operation for the RES 
is influenced by the level of SoC in the system. Any 
additional load is covered by power from the BESS. 
Whereas the voltage controls PV output and wind 
turbines base their output power on pitch control, 
RES output is reduced in an off-MPPT system. 
RESs rely on MPPT, but the BESS responds to the 
energy gaps between what is being produced and 
used [7]. The direction, turbulence, and variation 
of wind speed play a role in deciding how wind 
power is generated in microgrids. Additionally, 
load demand fluctuates due to meteorological 
conditions, economic activity, and consumer 
behavior. However, these uncertainties can lead 
to voltage balance disturbance and cause system 
instability in the case of peak load, especially [8]. 
This paper presents a BSPCE framework to address 
these challenges with the aim of improving isolated 
microgrid voltage balance assessment at peak 
load. By adopting a dynamic sampling strategy in 

modeling sensitivity and uncertainty, problems with 
variation in model sensitivities are integrated into 
the proposed approach, whereby both uncertainties 
quantification and computational resource allocation 
are quantified systemically. This adaptive method 
provides us with a useful tool for analyzing and 
reducing the uncertainties in microgrid operation 
and improving microgrid’s resilience and reliability.  

A variety of surrogate modeling and sensitivity 
analysis methods are used to manage uncertainty in 
power system analysis in this research. The Sparse 
Polynomial Chaos Explosion (SPCE) method [9] is 
used to create efficient surrogate models at a lower 
computational cost while maintaining accuracy. 
This paper introduces a BSPCE that builds upon 
SPCE by incorporating Bayesian model selection to 
select the most relevant polynomial basis functions. 
Global Sensitivity Analysis (GSA) [10] is a framework 
for identifying the input uncertainties that impact 
output variability. It is essential to note that GSA 
and BSPCE are distinct concepts, although they are 
closely related in the modeling process, with BSPCE 
being an extension of the former.

B.	 Research Gap

However, the operation of microgrids in islanded 
configuration requires advanced methodologies; 
here, uncertainty exists in renewable energy 
generation, load, and system constraints. There have 
been several studies in the domain of optimization 
and control strategies to enhance the stability, 
loadability, and resilience of islanded microgrids 
(IMGs) [11], [12]. The probabilistic approach [13] is used 
to optimize droop settings in diesel generator (DG)--
based distribution networks. This method improves 
IMG performance without a microgrid central 
controller (MGCC) by extending the loading margin 
and staying within system constraints. Later [14] was 
extended to use GSA for evaluating the loadability 
of the IMG under renewable energy variability 
using probabilistic nonlinear optimization, together 
with conditional probability and Copula functions. 
The insights from this approach were in terms of 
how the DG droop characteristics and network 
parameters influence IMG performance. The use 
of surrogate models for evaluating the load margin 
has also played a crucial role in its development. The 
concept of a reduced islanded microgrid network 
was introduced in [15], which encompassed power 
flow methods and a general distributed sensitivity 
index for multi-bus microgrids. A strategy for 
dividing active distribution networks into self-
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sustaining isolated areas was put forward in [16], 
which entailed creating new constraints for load 
capacities that preserved the radial structure of the 
generated isolated networks. Advanced sensitivity 
analysis techniques [17] have further contributed 
to understanding IMG loadability. The Borgonovo 
method, a density-based GSA approach [18], is 
used to quantify the influence of uncertainties 
on maximum IMG loadability. The computational 
efficiency was improved by combining Polynomial 
Chaos Expansion (PCE) with Kriging models, known 
as PCE-Kriging, to provide surrogate models for 
sensitivity analysis [19]. Monte Carlo Simulations 
(MCS) [20] are computationally expensive and 
possess high accuracy. Point estimation [21] and 
cumulant-based methods [22] are efficient, but they 
can be challenging to apply when the inputs are 
conditioned or non-Gaussian in nature. Developing 
advanced models such as kriging or neural networks 
requires a large database and a more extensive 
training process. 

Much research has been conducted on how the 
grid handles stable power loss and isolation. The 
risks of voltage instability in different microgrid 
configurations (dc-ac and ac-dc) were evaluated 
in [23], emphasizing the significance of droop 
parameters and DGs in preserving voltage stability. 
The study also revealed that saddle-node bifurcation 
(SNB) is a primary cause of voltage instability in DC 
microgrids. A control method [24] has been proposed 
to address the problems posed by imbalanced and 
harmonically distorted loads on the stability of 
microgrids. Microgrid research has extensively 
focused on resolving complex Optimal Power Flow 
(OPF) problems. A comprehensive study in [25] was 
performed on droop-controlled IMGs, focusing on 
three challenges: a bi-objective OPF for minimizing 
cost and ensuring loadability, evaluating maximum 
loadability, and optimizing system loadability. The 
main concern with these strategies is ensuring 
loadability, which serves as a leading performance 
indicator in IMG planning.

C.	 Contribution

Recent studies [26] have shown that adaptive 
sampling strategies for Bayesian Sparse Polynomial 
Chaos Expansion (BSPCE) enable dynamic 

adjustments to be made in sampling locations based 
on approximation errors or model sensitivity. This 
research presents a new Adaptive Bayesian Sparse 
Polynomial Chaos Expansion (BSPCE) method 
designed for handling voltage balancing issues 
in isolated microgrids when peak load occurs. A 
new Adaptive Bayesian Sparse Polynomial Chaos 
Expansion (BSPCE) framework was created to 
solve problems related to voltage imbalance in 
isolated microgrids during peak load periods. A new 
approach was developed that takes into account 
adaptive sampling methods for BSPCE, allowing for 
the dynamic adjustment of sampling points based 
on the current approximation error or the model’s 
sensitivity to input parameters. The study further 
investigates the effect of demand response on the 
voltage profile at bus 9, offering valuable insights into 
the localized effects of demand-side management 
strategies on distribution system stability and 
reliability. 

The paper provides a significant contribution to the 
understanding of electric vehicle integration by 
examining its impact on the voltage profile at bus 14. 
The study examines the influence of battery energy 
storage systems on the voltage profile at bus 8.

II.	 MODELING OF PROPOSED 
SYSTEM

This section outlines models for distributed 
generation units and loads and then proceeds with 
the development of probability models for input 
parameters. A stochastic optimization framework 
was subsequently developed to assess the maximum 
loadability of the isolated microgrid (IMG). Probability 
distribution selection depends on the way renewable 
energy behaves and on load patterns, and often, the 
Normal distribution is a suitable approximation, 
although there may be occasional inconsistencies. 
Since uncertainties in PV, wind, and load demand 
all have an impact on each other, they significantly 
affect the stability and performance of a microgrid. 
As power generation grows or drops, it can disturb 
the balancing act between supply and demand, 
so grid reliability depends on energy storage and 
generation being regulated. The layout of power 
and information flow within microgrid components 
is depicted in Fig. 1.
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Fig. 1. Grid interfaced MG for power flow and information

A.	 Load Forecasting Modeling

Load demand for the MG system fluctuates 
throughout the day due to factors such as weather, 
economic activity, and consumer behavior patterns. 
Load demand can vary stochastically or predictably 
due to numerous factors, including seasonal 
fluctuations, weekday patterns, and daily time slots. 
The probability distribution function (PDF) of load 
demand follows a normal distribution characterized 
by the following specifications [27]:

		                                               (1)

Where μ and σ represent the mean load and standard 
deviation value for electrical load, the electrical 
load is denoted by L. Normal distribution remains 
a practical approach for estimating data in bulk 
collections, even if some data may be heavy-tailed 
or irregularly skewed.

B.	 Wind Turbine Modeling

Wind turbines convert the kinetic energy of wind 
into electrical power, and their performance 
is modeled using the Weibull distribution, 
which effectively represents the variability and 
intermittency of wind resources. The PDF of wind 
speed is given as [28]:

                    	                    (2)

	                          						    
                                                                                 (3)

	                           			    			 
                                                                                              (4)

The parameter q signifies the shape, with c 
representing the scale value and v denoting the 
random variable. The Weibull distribution’s 
shape parameter affects its skewness and kurtosis, 
which in turn influence the distribution’s overall 
characteristics. This makes it well-suited to 
capturing the variability and intermittency of wind 
resources. When q>1, the distribution indicates 
an increasing frequency of higher wind speeds, 
making it ideal for regions with consistent high-
speed winds. Conversely, for 0<q<1, the distribution 
reflects a decrease in wind speed frequency as the 
speed increases.

C.	 Solar Energy Generation Modeling

The implementation of PV energy production 
depends on multiple influences that include 
changing weather patterns as well as cloud patterns 
and amount of solar irradiance along with daily time 
periods. PV output random fluctuations undergo 
modeling by means of Beta distribution because 
this distribution works within the [0,1] range which 
matches PV operational ranges [29]. 

	                                                               (5)

	                                                              (6)

https://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br


http://dx.doi.org/10.21622/RESD.2025.11.1.1281

165

http://apc.aast.edu

Journal of Renewable Energy and Sustainable Development (RESD)                                      Volume 11, Issue 1, June 2025 - ISSN 2356-8569

D.	 Droop-Controlled Power Sources

A P-f/Q-V droop control strategy maintains system 
stability for the dispatchable sources. This control 
is characterized by linear relationships between 
active/reactive power and frequency/voltage 
deviations [30].

		                                                    (7)

                                                                          (8)

                                                                              (9)

                                                                           (10)

                               (11)

                                                                        (12)

                                                              (13)

 	                (14)

The active and reactive powers of dispatchable 
sources are described using     and    , while 
the system works  with     and     as  the  nominal 
frequency and voltage values. Real and reactive 
power droop coefficients can be found in the 
expressions through   and  . The current 
frequency and voltage levels of the system are 
represented by f and V, respectively. Additionally, 

 ,   signify the maximum values for 
the active and reactive power output of dispatchable 
sources.

E.	 Energy Storage System (ESS)

Renewable energy generation variability is largely 
dependent on the functionality of BESS. The 
operational strategy of the EVS is defined based on 
its charging and discharging states [31], [32]:

       (15)

	                                             (16)

                                                                (17)

                                                             (18)

                                                                          (19)

 ,     represents the charging  and  
discharging status, respectively. The symbols   
and   represent the lowest and highest state 

of charge (SoC) levels of the IMG. The notations  
  and    denote the efficiency of BESS when 

charging and discharging. Furthermore, ,  
and  signify the capacity of the BESS to charge and 
discharge power.

F.	 Loadability Assessment Modelling

The microgrid load ability analysis takes place 
through a stochastic optimization process with 
numerous constraints [33]:

                                                                         (20)

                                                                       (21)

                                                                      (22)

                                                                          (23)

	               (24)

The voltage values at bus station ith must exist 
between    and     to   satisfy  the  established 
voltage restriction levels. The power generation 
limits at the ith bus can be found through                                  

 . Reactive power generation at ith bus 
comes with constraints defined by  . At 
any given time t, the power output level of the diesel 
generator at the ith bus is designated as  .

The complete modeling system represents all 
elements within renewable power generation as 
well as load patterns and storage devices in an 
isolated microgrid to assess voltage stability and 
peak performance capabilities.

III.	 PROPOSED TECHNIQUE

The proposed technique, illustrated in                                                   
Fig. 2, improves the accuracy and computational 
efficiency of modeling isolated microgrid peak 
load voltage regulation with a Sparse Polynomial 
Chaos Expansion method. SPCE alleviates the PCE 
computational load by choosing only a subset of 
the expansion terms. During the selection process, 
the size of the coefficients, their role in the problem, 
and their statistical significance were all considered. 
A few common techniques - least-angle regression, 
the least absolute shrinkage and selection operator 
(LASSO) method, and sequential thresholding are 
applied to find the PC coefficient. Typically, this 
method involves addressing a linear regression 
problem, where the model’s output serves as the 
response variable, and the chosen polynomial terms 
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are the input parameters. To take advantage of 
Bayesian methodology and prior experience, BSPCE 
is used. A Sobol decomposition method was used 
to find out which factors from the microgrid inputs 
had the greatest impact on its loadability.

A.	 SPCE Method

Let A be a finite subset of  , with constrained 
Polynomial Chaos Expansion (PCE):

                                                                      (25)

The common truncation scheme is denoted          
, which means it represents the full PCE. 

However, because the cardinality of this set can be 
very high, which can cause tough computations, it 
matters to discover truncation sets X that consist of 
less data. If the following criterion is met, the PCE 
can be called a sparse truncated PCE:

	              	          (26)

For this study, a new algorithm relying on Bayesian 
model selection is suggested to construct sparse 
PCEs.

B.	 PCE-based Global Sensitivity Analysis

Implementation of the PCE model enables the rapid 
assessment of global sensitivity using Sobol indices. 
Let us study the PCE in Equation (25). The definition 
of a subset of multi-dimensional indices    for 
X is defined as:

   (27)

With this notation, the sparse PCE becomes written 
as a Sobol’s decomposition:

(28)

Each term    can be identified as:

  (29)

Total and partial variances:

	           (30)

Partial sensitivity indices:

                                                                                (31)

Total sensitivity index: 

                                                                         (32)

C.	 Bayesian Ensemble Modeling 
Framework

Consider a  set   of     plausible  sparse  PCE  models   
 being available.

	          (33)

The vector form of the above equation is written 
as  . This research aims to choose the 
best sparse PCE, given input-output data A and B, 
using Bayesian Model Averaging. The posterior 
probabilities function through Bayes ‘theorem:

                                          (34)

The model evidence is estimated via:

	             (35)

Laplace approximation gives:

     (36)

Kashyap information criterion (KIC) is obtained by 
considering that the posterior distribution is very 
similar to a Gaussian distribution and is close to its 
Maximum A Posteriori (MAP) value.

  (37)

D.	 Adaptive BSPCE Algorithm

Assume that we have A = {A (1), . . ., A(N)} with N 
apprehensions, based on Monte Carlo Simulations 
(MCS). The responses from the model are gathered 
and organized into the vector B = {B(1), . . . , B(N)}T 
after running the model at different time intervals. 
During the initialization stage, the data (A, B) are 
transformed into homogeneous vectors (a, b) as 
part of employing the Bayesian model averaging 
(BMA) framework, making it feasible to devise an 
algorithm for selecting the most suitable sparse PCE 
model from the dataset. Next, the principal degree 
and interaction order of the PCE are determined 
based on the characteristics of the model’s response 
of interest. Following this, a subsequent subset is 
generated:

Step-1 Initialization data: Standardized vectors (x, y) 
are made from the original data (X, Y). After that, the 
distinguishing characteristics of the PCE are chosen 
by   defining    both   p   and     q;    you     should     use     
(p = 2, q = 1) or (p = 4, q = 2) depending on the features 
of the response from your model. After that, a special 
subset like this is chosen:
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                                 (38)

Step-2 Correlation-based ranking: Ranking by 
correlation coefficient involves defining P as the 
cardinality of    and  elucidating  the polynomial 
basis µ = (µ

1
, µ

2
,…, µ

p
) associated with   . 

Subsequently, calculate the Pearson correlation 
coefficient ‘s

j
’ between each polynomial term µ

j
(a) ∀ 

j = 1, . . ., P and the model response vector ‘b’ in the 
following manner:

                                                                         (39)

The array ( ) is sorted in descending 
order, and the corresponding polynomial basis 
functions are rearranged into a new vector 

 ensuring that  . 

Step-3 Partial correlation-driven prioritization: 
Ranking through the partial correlation coefficient 
involves calculating the partial correlation 
coefficient    or each basis function    
and b for j = 1, . . . , P using the following equation:

     (40)

The conditional covariance operator is represented 
by COV [·|·], and the conditional variance operator 
by V [·|·]. The array (  ) 
is then sorted in descending order, similar to Step 
2. This sorting facilitates the update of the vector 

 ​ of Polynomial Chaos (PC) basis 
elements such that  . 

Step-4 Formulation of the selected sparse PCE: The 
identification of the current sparse PCE is carried 
out by describing a sparse PCE model   using 
the polynomial  = (  ). Utilizing the BMA 
method, we assess the current sparse PCE model, 

 . This involves evaluating the MAP estimates   
and  , alongside determining the   assigned 
to the current model.   If     , set  

=  and  = , otherwise set  =  . 
Next, increment k by one and iterate through this 
process until k equals P.

Step-5 Enhancing the approximation space   :To 
enrich , express  for the identified 
SPCE, where the elements correspond to the subset 
X. If the subset X contains (i) elements of degree 
p−1 or p, then   or (ii) elements  with 
interaction level q,  then  increment   in    

and restart the second step by setting    = X, and 
enrich the subset by adding elements of degree p−1 
and p, as well as elements with interaction level 
q. If neither condition is satisfied, terminate the 
computation. The algorithm starts by considering all 
the PC basis elements of low degree (typically p = 2) 
and low level of interactions (q = 1). This ensures that 
the initial number of elements to be analyzed with 
the KIC is small. For issues with high dimensions 
(n>10), considering all possible interaction levels 
(q+1) in Step 5 can result in a large array of terms 
in ​ . Therefore, only the changes related to 
the relevant inputs of the current iteration are 
considered during this phase. While this proposed 
enhancement strategy helps reduce computational 
costs, it frequently results in identifying a sparse 
PCE that performs sub-optimally.

Fig. 2. Proposed methodology

This study found that setting   in an SPCE 
is beneficial. If this happens, it is better to identify 
PCE again by increasing the initial values of p and 
q. If the results above are not satisfactory, then the 
model response vector B can be updated and the 
experimental design A fixed before retrying the 
optimal SPCE identification.

https://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br


http://dx.doi.org/10.21622/RESD.2025.11.1.1281

168

http://apc.aast.edu

Journal of Renewable Energy and Sustainable Development (RESD)                                      Volume 11, Issue 1, June 2025 - ISSN 2356-8569

IV.	 RESULTS AND DISCUSSIONS

A modified IEEE-15 bus test system was considered 
for an isolated microgrid operating at maximum 
demand and was simulated on MATLAB, as depicted 
in Fig. 3. Three distributed generators were installed 
at buses 4, 8, and 12. The first DG has an active power 
capacity of 3 MVA and a reactive power capacity 
of 1.5 MVA, while the second has an active power 
capacity of 0.5 MVA and a reactive power capacity 
of 1 MVA. The third DG has an active power capacity 
of 1.5 MVA and a reactive power capacity of 1 MVA. 
The nominal voltages are 1.0009, 1.0008, and 1.0009, 
while the nominal frequencies are 1016, 1.016, 
and 1.040. Stochastic photovoltaic generation was 
initially implemented at buses 8 and 10, featuring a 
0.75 MVA capacity and a 0.9 lagging power factor. 
Additionally, wind turbines (WT) were installed on 
buses 13 and 15, both having the same specifications 
and operating power factor.

Fig. 3. Modifies IEEE-15 bus test system under consideration

The  coefficients  for  significant terms   were calculated 
by applying regression techniques after their 
identification. So, in SPCE, the solution is often found 
with linear regression, where the model outputs the 
response and takes input from chosen polynomial 
terms. It is built on the foundation of SPCE while 
using Bayesian inference. The coefficients’ posterior 
distribution was approximated in this work using 
Bayesian regression on the data. In this part, we 
explain how different random variables can affect 
the IMG load margin according to the proposed 
method. Each model’s results are compared with 
those of GSA-PCE, GSA-SPCE and GSABSPCE. All 
methods gave similar GSs when the sample was 
large. Fig. 4 shows the index number for input 
variables assuming deterministic renewable energy 
sources, while Fig. 5 illustrates the index of input 

variables under conditions of volatile or stochastic 
RESs. 

Fig. 4. Deterministic RESs typically rely on a fixed index of 
input variables

The bus with RESs in it, as illustrated in Fig. 5, 
exhibits heightened sensitivity, primarily due to the 
volatile characteristics of RESs. The GS values of the 
WT output power for buses 13 and 15 are shown in 
Fig. 6. GSA-PCE is less precise than GSA-SPCE, as it 
requires several samples to establish the surrogate 
model coefficient. The cumulative probability 
density functions (CDF) graph depicted in Fig.7 
displays the distribution of the load margin under 
different operating conditions, acting as a primary 
result of the BSPCE model for assessing voltage 
stability in isolated microgrids during peak loads.

Fig. 5. Stochastic RES input variable index

Fig. 6. Global sensitivity of wind power
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Fig. 7. Cumulative probability density function for 3 cases

This emphasizes the effects of renewable energy 
variability and uncertainty in demand, with Case 
3 showcasing enhanced resilience in voltage. This 
shows the accuracy of the model and gives useful 
information when planning for a microgrid by 
estimating the risk of voltage collapse. Fig. 8 illustrates 
the load demand for a 24-hour scheduling interval, 
accompanied by the available generation and the 
energy exchange with the BESS. In the context of 
voltage balance within an IMG system utilizing 
uncertain renewable energy sources, stochastic 
optimization surpasses robust optimization in terms 
of precision. 

Fig. 8. Load profile, generation, and battery exchange

The research considered stochastic optimization 
for managing voltage and energy in a microgrid, 
encompassing solar, wind, diesel generators, 
batteries, and load demand. The test system being 
examined was an IEEE-15 bus system, in which the 
beta and Weibull distributions were employed to 
model the uncertain behavior of RES.

A.	 Base Case

The voltage fluctuations observed across multiple 
buses offer valuable insights into the system’s 
stability and operational robustness. Minor 

discrepancies in standard voltage levels can trigger 
equipment with low tolerance to fail or activate its 
inbuilt safety mechanisms, which in turn may lead 
to a series of system failures. The voltage profile for 
the base case is shown in Fig. 9. The data suggests 
that buses 13 and 15 exhibit the greatest voltage 
fluctuations in high-stress situations. These buses 
require regular monitoring and potential upgrades, 
which may involve installing voltage stabilizers or 
altering the local power grid’s schedules.

Fig. 9. Voltage profile for base case

B.	 Effect of ESS on Voltage Profile

Being a part of isolated microgrids, BESS helps keep 
energy balance and stable voltage. How much 
charge each battery has plays a role in governing 
the operation of PV arrays and wind turbines. 
When there is a high SoC, MPPT technology lets 
renewables produce maximal energy and then 
stores any extra energy. If the SoC is too low, they 
rearrange operations so the device uses less energy 
and functions smoothly. The impact of BESS on the 
voltage profile is depicted in Fig. 10.

Fig. 10. Impact of BESS on voltage profile

The system’s voltage and its general accuracy are 
best maintained when the amount of energy made 
by renewable sources is cut down by additional 
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restrictions. This is possible as they manage their 
generation according to clear criteria, which allows 
them to stop sudden swings in voltage and support 
grid stability. By following this method, the BESS 
can be recharged precisely, prevent over- or under-
charging, and ready more energy for urgent uses 
and power-off emergencies.

C.	 Effect of Load Variation on Voltage 
Profile

Ensuring that voltage is balanced in isolated 
microgrids is the main aim of BSPCE which it 
achieves by placing the right limits on distributed 
generation and adjusting output to fit demand 
overall. Without a major grid, it is important to use 
demand response because it controls how loads 
work based on prices and preserves steady voltage 
in the system. The impact of demand response on 
voltage profile is depicted in Fig. 11.

Fig. 11. Impact of load variation on voltage profile

Loads are divided into three groups: those that can 
be temporarily changed or paused, such as hybrid 
electric vehicles; those that can be changed but 
not paused; and those that must always operate, 
facilitating flexible voltage control and improved 
system reliability. In Fig. 11, the various strategies 
are shown affecting voltage profiles throughout 
the network. Voltage stability is improved by both 
BESS and demand response, and demand response 
is highest when looking at bus 11. A small drop 
in voltage happens when plug-in hybrid electric 
vehicles (PHEVs) are alternating with other vehicles.

D.	 Impact of EV on Voltage Distribution

The increase in electric vehicles is causing new 

problems with voltage levels in distribution systems. 
The high power used in peak-time charging can 
sometimes cause brief drops in voltage, adding 
stress to the infrastructure and raising the chance 
of disturbances. Voltage stability needs to be 
preserved, the grid must be resilient, and electric 
vehicle charging needs to be smoothly integrated, 
so it is important to take these impacts into account. 
Comparative analyses of distributed locational 
marginal price (DLMP) profiles for multiple bus 
numbers are illustrated in Fig. 12, demonstrating the 
effects of various energy management strategies on 
voltage accuracy. The incorporation of BESS leads to 
reduced and slightly lower DLMP values, specifically 
between buses 8 and 10, signifying improved voltage 
regulation and more balanced power flow. Unlike 
PHEVs, which generate moderate DLMP increases 
beyond bus 12 due to increased charging demand, 
this can also result in localized voltage fluctuations.

Fig. 12. DLMP profile comparison for all the 4 cases

The demand Response scenario exhibits the most 
significant DLMP fluctuations, particularly around 
bus 11, illustrating the dynamic load shifts and their 
impact on voltage accuracy.

In order to evaluate the accuracy of the surrogate 
model, we conducted a series of comparative tests, 
using the surrogate model in comparison to full-
scale power system simulations for a set of diverse 
contingency scenarios. The proposed method, 
BSPCE, has high accuracy at low cost with a proper 
account of the complex input distributions and, 
therefore, is quite appropriate for the practical 
power system with uncertain renewable sources. 
The methods of surrogate modeling and uncertainty 
quantification in power systems are compared in 
Table I.
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TABLE I. COMPARATIVE STUDY OF SURROGATE MODELING AND UNCERTAINTY QUANTIFICATION METHODS                           
IN POWER SYSTEMS

Method Accuracy Computational Cost Complexity Advantages Limitations Suitability 
for IMG

MCS High Very High Low Conceptually Simple,
Distribution-Free

Poor performance 
under large workloads

Low

PE Moderate Low Moderate Rapid Execution,
Resource-Efficient

Poor scalability Moderate

Kriging High Moderate-High High Accurate Modeling,
Interval Estimation

Complex to implement Moderate

Neural 
Networks

Variable High High Input Flexibility,
Nonlinear Mapping

Lacks transparency Moderate 
to low

BSPCE 
(Proposed)

High Low Moderate Adaptive Accuracy,
Sparse Efficiency

Struggle with high-
dimensional problems

High

Comparisons  of  voltage  magnitudes  and  line 
loadings between the two models are shown in Table 
II. The mean absolute error (MAE) by the surrogate 
model was found to be 0.007 p.u. and the mean 
relative error (MRE) was 0.69%, which is a strong 
agreement with the detailed simulation results.

TABLE II. VALIDATION OF SURROGATE MODEL RESULTS 
AGAINST FULL SIMULATIONS

Metric Full 
Simulation

Surrogate 
Output

Rel. 
Error 
(%)

Voltage at Bus 13 (p.u.)  0.984 0.977 0.71

Voltage at Bus 15 (p.u.) 0.963 0.956 0.73

Frequency Deviation (Hz) 0.021 0.022 4.76

Line Loading (%) 73.1 71.8 1.78

Further, the surrogate model proved successful for 
real time power system analysis for screening and 
decision making in the sense that, on average the 
computation time has been reduced by about 92%.

V.	 CONCLUSION

This study introduces an Adaptive Bayesian 
Sparse Polynomial Chaos Expansion framework to 
tackle the difficulties of voltage control in isolated 
microgrids under conditions of uncertainty. The 
proposed adaptive method adjusts sampling 
dynamically according to a model’s sensitivity 
and approximation error, leading to enhanced 
computational efficiency and greater accuracy, 
particularly in areas of heightened uncertainty. 
When applied to the modified IEEE-15 bus test 
system, the proposed method successfully measures 

the uncertainties related to maximum load capacity, 
the variability of renewable energy, and operational 
restrictions, simultaneously incorporating the 
functions of battery energy storage systems, electric 
vehicles, and demand response systems. The results 
show that the proposed framework effectively 
captures intricate input relationships and patterns 
and accurately represents voltage behavior during 
high-demand situations. Buses 13 and 15 showed 
the most significant voltage instability, highlighting 
the necessity for concentrated improvements. 
The strategic operation of battery energy storage 
systems and load shifting through demand response 
have a substantial positive impact on voltage profiles 
and DLMP stability. The validation of the surrogate 
model against full-scale simulations revealed a high 
degree of accuracy, with an MAE of 0.007 p.u. and an 
MRE of 0.69%. This adaptive BSPCE-based approach 
offers a reliable tool for boosting voltage stability, 
streamlining energy management, and increasing 
the operational resilience of isolated microgrids 
under conditions of high uncertainty.
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