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ABSTRACT

Microgrids (MGs) are essential for ensuring a reliable and efficient power supply, particularly in isolated or islanded
regions. One of the significant challenges faced is maintaining voltage balance during peak load periods, which is
complicated by uncertainties in renewable energy availability, demand response, and system constraints. This paper
introduces an Adaptive Bayesian Sparse Polynomial Chaos Expansion (BSPCE) framework designed to tackle these
challenges effectively. Unlike traditional BSPCE methods that utilize fixed sampling strategies, our adaptive approach
dynamically modifies sampling locations in response to approximation errors or model sensitivities. This allows for a
more efficient allocation of computational resources, enhancing approximation accuracy in areas of high uncertainty.
The framework systematically quantifies uncertainties related to maximum loadability and operational constraints
while also accounting for the impacts of battery energy storage systems, electric vehicles, and demand response
mechanisms. By applying this methodology to the IEEE-15 bus system, we provide a comprehensive assessment of
voltage balance in isolated microgrids during peak load conditions. The proposed method is capable of dealing with
a large number of correlated inputs and following unrelated distributions. The simulation modeling is performed on
the MATLAB platform. The numerical results from the IEEE 15 test feeders confirm that the approach is accurate and
efficient at the same time.

Index-words: Microgrids, Peak load, Renewable energy source, Electric vehicle system, IEEE 15 bus.

Py Active power of dispatchable sources PEESS Discharging power in kW
Qai Reactive power of dispatchable sources passs Charging power in KW
Qaiwp | The upper bound of reactive power of dispatchable t - -
sources ock, Operational costs of the dispatchable generator 1
Pgiup | The upper bound of the real power of dispatchable q Shape parameter
sources c Scale value
Mp; Droop gains of real power ) Random variable
Mg Droop gains of reactive power u Mean
Yo Nominal voltage Y Standard deviation
4 System voltage vie vxr | Lower and upper bounds on voltage at ‘i bus
fo Nominal frequency P, pi | Lower and upper bounds on active power
f System frequency generation at i bus
MG | Discharging power in KW of MG Q2. Qi | Lower a_nd up'pgr bounds on reactive power
generation at ‘i bus
MG 3
Xe.cn Status of charging Pl Power generation by diesel generator at ‘i bus
XYn | Status of discharging Ples Power generation by RESs at ‘i bus
SoCyfy | Minimum SoC of MG P, P¥ | Lower and upper bounds on active power
ieqi th ¢ith?

s0c¥. | Maximum SoC of MG transmission between 1" bus and ‘j**’ bus

t - .
75555 | Charging efficiency of BESS Pirss; | Power available at time t’ across BESS

. http://apc.aast.edu @ @ @
*Corresponding author | =" BY NC |

18] Copyright © 2825, authors


https://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br

Journal of Renewable Energy and Sustainable Development (RESD)

I INTRODUCTION

A. Motivation

Today, the country has an overdemand for
electricity due to its population. This over stressed
existing power systems [1]. Such generators are
dispatchable, but some of these drawbacks do not
make these sources economical, environment
unfriendly, and wunsustainable in nature. As
fundamental components of modern power
systems, microgrids are regarded as an effective
means to improve reliability, flexibility, and
resilience in regions subject to disturbances of
power. The operations can be in islanded or grid-
connected mode. The microgrid will be required to
behave according to voltage and frequency rules
prescribed by the utility grid when modeled as an
infinite bus and connected to the grid [2]. In such
a case, distribution generation units control the
voltage and frequency in accordance with their
droop characteristics [3]. The implementation of
this system provides advantages in terms of grid
resilience and the reliability of power systems
during periods of disruption.

The operation of MG uses largely renewable energy
sources (RES) such as wind turbines (WT) and
photovoltaic (PV) systems that usually operate in
maximum power point tracking (MPPT) mode [4]
[5] constrained for grid connected cases to optimize
energy management. In the determined state of
charge (SoC) [6], surplus energy is supplied to the
main grid or stored in the battery energy storage
systems (BESS). The mode of operation for the RES
is influenced by the level of SoC in the system. Any
additional load is covered by power from the BESS.
Whereas the voltage controls PV output and wind
turbines base their output power on pitch control,
RES output is reduced in an off-MPPT system.
RESs rely on MPPT, but the BESS responds to the
energy gaps between what is being produced and
used [7]. The direction, turbulence, and variation
of wind speed play a role in deciding how wind
power is generated in microgrids. Additionally,
load demand fluctuates due to meteorological
conditions, economic activity, and consumer
behavior. However, these uncertainties can lead
to voltage balance disturbance and cause system
instability in the case of peak load, especially [8].
This paper presents a BSPCE framework to address
these challenges with the aim of improving isolated
microgrid voltage balance assessment at peak
load. By adopting a dynamic sampling strategy in
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modeling sensitivity and uncertainty, problems with
variation in model sensitivities are integrated into
the proposed approach, whereby both uncertainties
quantificationand computational resourceallocation
are quantified systemically. This adaptive method
provides us with a useful tool for analyzing and
reducing the uncertainties in microgrid operation
and improving microgrid’s resilience and reliability.

A variety of surrogate modeling and sensitivity
analysis methods are used to manage uncertainty in
power system analysis in this research. The Sparse
Polynomial Chaos Explosion (SPCE) method [9] is
used to create efficient surrogate models at a lower
computational cost while maintaining accuracy.
This paper introduces a BSPCE that builds upon
SPCE by incorporating Bayesian model selection to
select the most relevant polynomial basis functions.
Global Sensitivity Analysis (GSA)[10] is a framework
for identifying the input uncertainties that impact
output variability. It is essential to note that GSA
and BSPCE are distinct concepts, although they are
closely related in the modeling process, with BSPCE
being an extension of the former.

B. Research Gap

However, the operation of microgrids in islanded
configuration requires advanced methodologies;
here, uncertainty exists in renewable energy
generation, load, and system constraints. There have
been several studies in the domain of optimization
and control strategies to enhance the stability,
loadability, and resilience of islanded microgrids
(IMGs)[11], [12]. The probabilistic approach [13] is used
to optimize droop settings in diesel generator (DG)--
based distribution networks. This method improves
IMG performance without a microgrid central
controller (MGCC) by extending the loading margin
and staying within system constraints. Later [14] was
extended to use GSA for evaluating the loadability
of the IMG under renewable energy variability
using probabilistic nonlinear optimization, together
with conditional probability and Copula functions.
The insights from this approach were in terms of
how the DG droop characteristics and network
parameters influence IMG performance. The use
of surrogate models for evaluating the load margin
has also played a crucial role in its development. The
concept of a reduced islanded microgrid network
was introduced in [15], which encompassed power
flow methods and a general distributed sensitivity
index for multi-bus microgrids. A strategy for
dividing active distribution networks into self-
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sustaining isolated areas was put forward in [16],
which entailed creating new constraints for load
capacities that preserved the radial structure of the
generated isolated networks. Advanced sensitivity
analysis techniques [17] have further contributed
to understanding IMG loadability. The Borgonovo
method, a density-based GSA approach [18], is
used to quantify the influence of uncertainties
on maximum IMG loadability. The computational
efficiency was improved by combining Polynomial
Chaos Expansion (PCE) with Kriging models, known
as PCE-Kriging, to provide surrogate models for
sensitivity analysis [19]. Monte Carlo Simulations
(MCS) [20] are computationally expensive and
possess high accuracy. Point estimation [21] and
cumulant-based methods [22] are efficient, but they
can be challenging to apply when the inputs are
conditioned or non-Gaussian in nature. Developing
advanced models such as kriging or neural networks
requires a large database and a more extensive
training process.

Much research has been conducted on how the
grid handles stable power loss and isolation. The
risks of voltage instability in different microgrid
configurations (dc-ac and ac-dc) were evaluated
in [23], emphasizing the significance of droop
parameters and DGs in preserving voltage stability.
The study also revealed that saddle-node bifurcation
(SNB) is a primary cause of voltage instability in DC
microgrids. A control method [24] has been proposed
to address the problems posed by imbalanced and
harmonically distorted loads on the stability of
microgrids. Microgrid research has extensively
focused on resolving complex Optimal Power Flow
(OPF) problems. A comprehensive study in [25] was
performed on droop-controlled IMGs, focusing on
three challenges: a bi-objective OPF for minimizing
cost and ensuring loadability, evaluating maximum
loadability, and optimizing system loadability. The
main concern with these strategies is ensuring
loadability, which serves as a leading performance
indicator in IMG planning.

C. Contribution

Recent studies [26] have shown that adaptive
sampling strategies for Bayesian Sparse Polynomial
Chaos Expansion (BSPCE) enable dynamic
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adjustments to be made in sampling locations based
on approximation errors or model sensitivity. This
research presents a new Adaptive Bayesian Sparse
Polynomial Chaos Expansion (BSPCE) method
designed for handling voltage balancing issues
in isolated microgrids when peak load occurs. A
new Adaptive Bayesian Sparse Polynomial Chaos
Expansion (BSPCE) framework was created to
solve problems related to voltage imbalance in
isolated microgrids during peak load periods. A new
approach was developed that takes into account
adaptive sampling methods for BSPCE, allowing for
the dynamic adjustment of sampling points based
on the current approximation error or the model’s
sensitivity to input parameters. The study further
investigates the effect of demand response on the
voltage profile at bus 9, offering valuable insightsinto
the localized effects of demand-side management
strategies on distribution system stability and
reliability.

The paper provides a significant contribution to the
understanding of electric vehicle integration by
examining its impact on the voltage profile at bus 14.
The study examines the influence of battery energy
storage systems on the voltage profile at bus 8.

II. MODELING OF PROPOSED
SYSTEM

This section outlines models for distributed
generation units and loads and then proceeds with
the development of probability models for input
parameters. A stochastic optimization framework
was subsequently developed to assess the maximum
loadability of theisolated microgrid (IMG). Probability
distribution selection dependson the way renewable
energy behaves and on load patterns, and often, the
Normal distribution is a suitable approximation,
although there may be occasional inconsistencies.
Since uncertainties in PV, wind, and load demand
all have an impact on each other, they significantly
affect the stability and performance of a microgrid.
As power generation grows or drops, it can disturb
the balancing act between supply and demand,
so grid reliability depends on energy storage and
generation being regulated. The layout of power
and information flow within microgrid components
is depicted in Fig. 1.
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Fig. 1. Grid interfaced MG for power flow and information

A. Load Forecasting Modeling

Load demand for the MG system fluctuates
throughout the day due to factors such as weather,
economic activity, and consumer behavior patterns.
Load demand can vary stochastically or predictably
due to numerous factors, including seasonal
fluctuations, weekday patterns, and daily time slots.
The probability distribution function (PDF) of load
demand follows a normal distribution characterized
by the following specifications [27]:

F) =t e

e  zo°

(1)

agv2m

Where pand s represent the mean load and standard
deviation value for electrical load, the electrical
load is denoted by L. Normal distribution remains
a practical approach for estimating data in bulk
collections, even if some data may be heavy-tailed
or irregularly skewed.

B. Wind Turbine Modeling

Wind turbines convert the kinetic energy of wind
into electrical power, and their performance
is modeled wusing the Weibull distribution,
which effectively represents the variability and
intermittency of wind resources. The PDF of wind
speed is given as [28]:
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The parameter q signifies the shape, with c
representing the scale value and v denoting the
random variable. The Weibull distribution’s
shape parameter affects its skewness and kurtosis,
which in turn influence the distribution’s overall
characteristics. This makes it well-suited to
capturing the variability and intermittency of wind
resources. When g>1, the distribution indicates
an increasing frequency of higher wind speeds,
making it ideal for regions with consistent high-
speed winds. Conversely, for 0<g<1, the distribution
reflects a decrease in wind speed frequency as the
speed increases.

C. Solar Energy Generation Modeling

The implementation of PV energy production
depends on multiple influences that include
changing weather patterns as well as cloud patterns
and amount of solar irradiance along with daily time
periods. PV output random fluctuations undergo
modeling by means of Beta distribution because
this distribution works within the [0,1] range which
matches PV operational ranges [29].

xT~1(1—x)F-1
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D. Droop-Controlled Power Sources

A P-f/Q-V droop control strategy maintains system
stability for the dispatchable sources. This control
is characterized by linear relationships between

active/reactive power and frequency/voltage
deviations [30].

Pymy, = fo— f (7)
Qaingi= Vo=V 8)
Paiup — P =0 9)
Jo—f —Pamy,; =0 (10)
(Paiup — Pai)(fo — f — Pamp;) = 0 (11)
Qaiup —Qa: =0 (12)
Vo—V —0Qaing 20 (13)
(Qatup — Qa) Vo —V — Qaing) =0 (14)

The active and reactive powers of dispatchable
sources are described using Py and Qg4; , while
the system works with f; and V, as the nominal
frequency and voltage values. Real and reactive
power droop coefficients can be found in the
expressions through mp; and ng . The current
frequency and voltage levels of the system are
represented by f and V, respectively. Additionally,
Paiup » Qdiand up Signify the maximum values for
the active and reactive power output of dispatchable
sources.

E. Energy Storage System (ESS)

Renewable energy generation variability is largely
dependent on the functionality of BESS. The
operational strategy of the EVS is defined based on
its charging and discharging states [31], [32]:

BESS
Picht

SoCHS = SoC¥® + T (ngFp3Ess — S

SoCMS < SoCMC < SoCME, (16)
0 < RS < x}¢ PYC (17)
0 < PYS, < XM, PMS (18)
Xt + X =1 (19)
xMe . xMG  represents the charging and

discharging status, respectively. The symbols Socrﬁfn

and SoCMS  represent the lowest and highest state
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of charge (SoC) levels of the IMG. The notations
nEYS and niY denote the efficiency of BESS when
charging and discharging. Furthermore, P5"?, BELS,
and signify the capacity of the BESS to charge and

discharge power.
F. Loadability Assessment Modelling

The microgrid load ability analysis takes place
through a stochastic optimization process with
numerous constraints [33]:

A A A (20)
Py} < Py = PP (21)
Qgt = Qq = Qgf (22)
Pl <P; <P} (23)
Egil Z?jlpdtlg,i _Pfi + P}%Es,i + PEtSS,I' =0 (24)

The voltage values at bus station i must exist
between V/? and V** to satisfy the established
voltage restriction levels. The power generation
limits at the i™ bus can be found through
P, and P,” . Reactive power generation at ith bus
comes with constraints defined by @ gf and Q g{b At
any given time t, the power output level of the diesel

generator at the i" bus is designated as P} g.d -

The complete modeling system represents all
elements within renewable power generation as
well as load patterns and storage devices in an
isolated microgrid to assess voltage stability and
peak performance capabilities.

III.

PROPOSED TECHNIQUE

The  proposed  technique, illustrated in
Fig. 2, improves the accuracy and computational
efficiency of modeling isolated microgrid peak
load voltage regulation with a Sparse Polynomial
Chaos Expansion method. SPCE alleviates the PCE
computational load by choosing only a subset of
the expansion terms. During the selection process,
the size of the coefficients, their role in the problem,
and their statistical significance were all considered.
A few common techniques - least-angle regression,
the least absolute shrinkage and selection operator
(LASSO) method, and sequential thresholding are
applied to find the PC coefficient. Typically, this
method involves addressing a linear regression
problem, where the model’'s output serves as the
response variable, and the chosen polynomial terms
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are the input parameters. To take advantage of
Bayesian methodology and prior experience, BSPCE
is used. A Sobol decomposition method was used
to find out which factors from the microgrid inputs
had the greatest impact on its loadability.

A. SPCE Method

Let A be a finite subset of W™ , with constrained
Polynomial Chaos Expansion (PCE):
MX[“FZaEXda#a[ﬂ] (25)
The common truncation scheme is denoted
X = XP" which means it represents the full PCE.
However, because the cardinality of this set can be
very high, which can cause tough computations, it
matters to discover truncation sets X that consist of
less data. If the following criterion is met, the PCE
can be called a sparse truncated PCE:

_ card(X)

" card (xP1my (26)

< 1,p = max(|a|)
aeX

For this study, a new algorithm relying on Bayesian

model selection is suggested to construct sparse

PCEs.

B. PCE-based Global Sensitivity Analysis

Implementation of the PCE model enables the rapid
assessment of global sensitivity using Sobol indices.
Let us study the PCE in Equation (25). The definition
of a subset of multi-dimensional indices {;,
X is defined as:

: o o0 RE(lg . is)
q‘l -------- ls {C!EX. =0 KE(i1.mi is)

for vk =1, n} (27)

With this notation, the sparse PCE becomes written
as a Sobol’s decomposition:

My = dg +Z?:1 ZasC,I Ao e (Qil) + Z?zmlzasi,l!z‘ia He (a‘lllalz)

+
E;‘:}"}HZ“EQPW!; defia (QII S als) Tt ngﬁwn daply ) (28)

Eachterm M; ; (a;,. . a;) canbeidentified as:
M;, ...is(ail,..., ais) = Dae {iyis dg e (ail Ry ais) (29)

Total and partial variances:

Dy = Yaex\(o}d& DX:'L__!-S = Eaeg'!-l“_"!-s dg (30)
Partial sensitivity indices:
DX
L T
Gty = % 31
Total sensitivity index:
SITJX = Ea:a;b{l Sf‘;: (32)
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C. Bayesian Ensemble Modeling

Framework

Consider a set of N, plausible sparse PCE models
My being available.
Myy = Xaexxda oy kK =1,...,Np (33)
The vector form of the above equation is written
as My, = d, i . This research aims to choose the
best sparse PCE, given input-output data A and B,
using Bayesian Model Averaging. The posterior

probabilities function through Bayes ‘theorem:

P (MXE:) _ ?(ijxk}?[Mxk] (34)
y S P(y/ Mg, )P(M )

The model evidence is estimated via:

. Y \_ (o Y o %

P (M—m) =[P ( T ,dk) P ( Mm) dd, (35)

Laplace approximation gives:
Y Nl Y T\ 9k 210172
P (i) =P (s @) ? (5) @215 a8

Kashyap information criterion (KIC) is obtained by
considering that the posterior distribution is very
similar to a Gaussian distribution and is close to its
Maximum A Posteriori (MAP) value.

KIC, = —2InP (MLM,'&;) —2mP (M“—;) — P In(2m) —n|Cg4l (37)

D. Adaptive BSPCE Algorithm

Assume that we have A = {A (1), ..., A™ with N
apprehensions, based on Monte Carlo Simulations
(MCS). The responses from the model are gathered
and organized into the vector B = {BY, . . ., BNJT
after running the model at different time intervals.
During the initialization stage, the data (A, B) are
transformed into homogeneous vectors (a, b) as
part of employing the Bayesian model averaging
(BMA) framework, making it feasible to devise an
algorithm for selecting the most suitable sparse PCE
model from the dataset. Next, the principal degree
and interaction order of the PCE are determined
based on the characteristics of the model’s response
of interest. Following this, a subsequent subset is
generated:

Step-1Initialization data: Standardized vectors (x, y)
are made from the original data (X, Y). After that, the
distinguishing characteristics of the PCE are chosen
by defining both p and q; you should wuse
(p=2,q=1)or (p =4, q=2)depending on the features
of the response from your model. After that, a special
subset like this is chosen:
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XP49 = {ae N":p, < p; . = q}/{0}

Step-2 Correlation-based ranking: Ranking by
correlation coefficient involves defining P as the
cardinality of XP9 and elucidating the polynomial
basis p = (4, M., W) associated with X pa
Subsequently, calculate the Pearson correlation
coefficient ‘s’ between each polynomial term u].(a) v
j=1,..., Pand the model response vector ‘b’ in the
following manner:

Cov [b.uj(a)]
;=

STV in;(a))

(38)

(39)

The array (s{,SZ,....,Sf) is sorted in descending
order, and the corresponding polynomial basis
functions are rearranged into a new vector
H = [y, {3, -, Hp ensuring that Sj-z = .S'J,-2+1 .

Step-3 Partial correlation-driven prioritization:
Ranking through the partial correlation coefficient
involves calculating the partial correlation
coefficient §jj1...j-1 or each basis function f;(a)
andbforj=1,..., P using the following equation:
cov[b.jij(a)lfiy(a)..... ;s (a)]

V2181 (@i (@)] VIR (@) (@) js (@)]

(40)

The conditional covariance operator is represented
by COV [|], and the conditional variance operator
by V []. The array ( §12-§§|1-§§|1,2- ""'§§|1..P—1 )
is then sorted in descending order, similar to Step
2. This sorting facilitates the update of the vector

A = (fiy, A5, ....., ip) of Polynomial Chaos (PC) basis
elements such that §j2|1,...j—1 = §1'2+1|1,...j .

Step-4 Formulation of the selected sparse PCE: The
identification of the current sparse PCE is carried
out by describing a sparse PCE model My, using
the polynomial Hx = ( MUx,Hg ). Utilizing the BMA
method, we assess the current sparse PCE model,
My, . This involves evaluating the MAP estimates d,,
and Cj; , alongside determining the KIC,, assigned
to the current moglel. My, If KIC, = KICy—y , set
ly= Hg and dy = d,, otherwise set KIC;,, = KIC;_; .
Next, increment k by one and iterate through this
process until k equals P.

Step-5 Enhancing the approximation space X¥-% :To
enrich XP9, express My = dyxpy for the identified
SPCE, where the elements correspond to the subset
X. If the subset X contains (i) elements of degree
p-1or p,then p=p+ 2 or (ii) elements with
interaction level q, then increment in g =g+ 1
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and restart the second step by setting X727 =X, and
enrich the subset by adding elements of degree p-1
and p, as well as elements with interaction level
g. If neither condition is satisfied, terminate the
computation. The algorithm starts by considering all
the PC basis elements of low degree (typically p = 2)
and low level of interactions (q = 1). This ensures that
the initial number of elements to be analyzed with
the KIC is small. For issues with high dimensions
(n>10), considering all possible interaction levels
(g+1) in Step 5 can result in a large array of terms
in XP4, Therefore, only the changes related to
the relevant inputs of the current iteration are
considered during this phase. While this proposed
enhancement strategy helps reduce computational
costs, it frequently results in identifying a sparse
PCE that performs sub-optimally.

Start

-

Load data including generation, demand, generation limits, and
line parameters.

'

Determine the maximum load the isolated microgrid can handle while maintaining
reliability and stability.

L Determine volatile parameters, encompassing PV, WT generation, BESS, and
1 load requirements.

5 }

Use probabilistic distributions for uncertainty based on available data

L |

Start sampling design with Monte Carlo simulation. Calculate the BSPCE
| approximation, and evaluate model response at initial sampling points.

}

Validate the BSPCE estimation results by cross-checking them with empirical data
or a highly realistic fidelity simulation.

Fig. 2. Proposed methodology

This study found that setting 07 < 0.05 in an SPCE
is beneficial. If this happens, it is better to identify
PCE again by increasing the initial values of p and
g. If the results above are not satisfactory, then the
model response vector B can be updated and the
experimental design A fixed before retrying the
optimal SPCE identification.
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IV. RESULTS AND DISCUSSIONS

A modified IEEE-15 bus test system was considered
for an isolated microgrid operating at maximum
demand and was simulated on MATLAB, as depicted
in Fig. 3. Three distributed generators were installed
at buses 4, 8,and 12. The first DG has an active power
capacity of 3 MVA and a reactive power capacity
of 1.5 MVA, while the second has an active power
capacity of 0.5 MVA and a reactive power capacity
of 1 MVA. The third DG has an active power capacity
of 1.5 MVA and a reactive power capacity of 1 MVA.
The nominal voltages are 1.0009, 1.0008, and 1.0009,
while the nominal frequencies are 1016, 1.016,
and 1.040. Stochastic photovoltaic generation was
initially implemented at buses 8 and 10, featuring a
0.75 MVA capacity and a 0.9 lagging power factor.
Additionally, wind turbines (WT) were installed on
buses 13 and 15, both having the same specifications
and operating power factor.

PV Generation

Wind Generation
Fig. 3. Modifies IEEE-15 bus test system under consideration

The coefficients for significant terms werecalculated
by applying regression techniques after their
identification. So, in SPCE, the solution is often found
with linear regression, where the model outputs the
response and takes input from chosen polynomial
terms. It is built on the foundation of SPCE while
using Bayesian inference. The coefficients’ posterior
distribution was approximated in this work using
Bayesian regression on the data. In this part, we
explain how different random variables can affect
the IMG load margin according to the proposed
method. Each model’s results are compared with
those of GSA-PCE, GSA-SPCE and GSABSPCE. All
methods gave similar GSs when the sample was
large. Fig. 4 shows the index number for input
variables assuming deterministic renewable energy
sources, while Fig. 5 illustrates the index of input
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variables under conditions of volatile or stochastic
RESs.

Index of input vaniable when renewable energy sources are deterministic

| (ERGsABSECE
[ GSA-SPCE

Il GS A-PCE

[
o

[
w
1

-
(=]
1

Global sensitivity (GS)

10 11 27 28 32 33 34 35 36
Index of input variable

Fig. 4. Deterministic RESs typically rely on a fixed index of
input variables

The bus with RESs in it, as illustrated in Fig. 5,
exhibits heightened sensitivity, primarily due to the
volatile characteristics of RESs. The GS values of the
WT output power for buses 13 and 15 are shown in
Fig. 6. GSA-PCE is less precise than GSA-SPCE, as it
requires several samples to establish the surrogate
model coefficient. The cumulative probability
density functions (CDF) graph depicted in Fig.7
displays the distribution of the load margin under
different operating conditions, acting as a primary
result of the BSPCE model for assessing voltage
stability in isolated microgrids during peak loads.

Index of input variable when renewable energy sources are stochastic
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Fig. 5. Stochastic RES input variable index
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Fig. 6. Global sensitivity of wind power
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Fig. 7. Cumulative probability density function for 3 cases

This emphasizes the effects of renewable energy
variability and uncertainty in demand, with Case
3 showcasing enhanced resilience in voltage. This
shows the accuracy of the model and gives useful
information when planning for a microgrid by
estimatingtherisk of voltagecollapse.Fig.8illustrates
the load demand for a 24-hour scheduling interval,
accompanied by the available generation and the
energy exchange with the BESS. In the context of
voltage balance within an IMG system utilizing
uncertain renewable energy sources, stochastic
optimization surpasses robust optimization in terms
of precision.

Load demand, generation and BESS power in kW
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Total load demand in kW
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Fig. 8. Load profile, generation, and battery exchange

The research considered stochastic optimization
for managing voltage and energy in a microgrid,
encompassing solar, wind, diesel generators,
batteries, and load demand. The test system being
examined was an IEEE-15 bus system, in which the
beta and Weibull distributions were employed to
model the uncertain behavior of RES.

A. Base Case

The voltage fluctuations observed across multiple
buses offer valuable insights into the system’s
stability and operational robustness. Minor
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discrepancies in standard voltage levels can trigger
equipment with low tolerance to fail or activate its
inbuilt safety mechanisms, which in turn may lead
to a series of system failures. The voltage profile for
the base case is shown in Fig. 9. The data suggests
that buses 13 and 15 exhibit the greatest voltage
fluctuations in high-stress situations. These buses
require regular monitoring and potential upgrades,
which may involve installing voltage stabilizers or
altering the local power grid’s schedules.

T T T r
1041 [—'— Voltage in 15 bus systeml ]
2 1.02 J
g /
] i 4
é 1.00 /
& aw. d
2098 x\f\ »
S T ‘“' \
0.96 *nan \‘\ .
0.94 T T T T . . s :
$ 2 4 6 8 10 12 14 16
Bus number

Fig. 9. Voltage profile for base case
B. Effect of ESS on Voltage Profile

Being a part of isolated microgrids, BESS helps keep
energy balance and stable voltage. How much
charge each battery has plays a role in governing
the operation of PV arrays and wind turbines.
When there is a high SoC, MPPT technology lets
renewables produce maximal energy and then
stores any extra energy. If the SoC is too low, they
rearrange operations so the device uses less energy
and functions smoothly. The impact of BESS on the
voltage profile is depicted in Fig. 10.
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1.02

._.
o
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o
©
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Fig. 10. Impact of BESS on voltage profile
The system’s voltage and its general accuracy are

best maintained when the amount of energy made
by renewable sources is cut down by additional
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restrictions. This is possible as they manage their
generation according to clear criteria, which allows
them to stop sudden swings in voltage and support
grid stability. By following this method, the BESS
can be recharged precisely, prevent over- or under-
charging, and ready more energy for urgent uses
and power-off emergencies.

C. Effect of Load Variation on Voltage
Profile

Ensuring that voltage is balanced in isolated
microgrids is the main aim of BSPCE which it
achieves by placing the right limits on distributed
generation and adjusting output to fit demand
overall. Without a major grid, it is important to use
demand response because it controls how loads
work based on prices and preserves steady voltage
in the system. The impact of demand response on
voltage profile is depicted in Fig. 11.
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Fig. 11. Impact of load variation on voltage profile

Loads are divided into three groups: those that can
be temporarily changed or paused, such as hybrid
electric vehicles; those that can be changed but
not paused; and those that must always operate,
facilitating flexible voltage control and improved
system reliability. In Fig. 11, the various strategies
are shown affecting voltage profiles throughout
the network. Voltage stability is improved by both
BESS and demand response, and demand response
is highest when looking at bus 11. A small drop
in voltage happens when plug-in hybrid electric
vehicles (PHEVSs) are alternating with other vehicles.

D. Impact of EV on Voltage Distribution

The increase in electric vehicles is causing new
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problems with voltage levels in distribution systems.
The high power used in peak-time charging can
sometimes cause brief drops in voltage, adding
stress to the infrastructure and raising the chance
of disturbances. Voltage stability needs to be
preserved, the grid must be resilient, and electric
vehicle charging needs to be smoothly integrated,
so it is important to take these impacts into account.
Comparative analyses of distributed locational
marginal price (DLMP) profiles for multiple bus
numbers are illustrated in Fig. 12, demonstrating the
effects of various energy management strategies on
voltage accuracy. The incorporation of BESS leads to
reduced and slightly lower DLMP values, specifically
between buses 8 and 10, signifying improved voltage
regulation and more balanced power flow. Unlike
PHEVs, which generate moderate DLMP increases
beyond bus 12 due to increased charging demand,
this can also result in localized voltage fluctuations.

|=——B ase case
=@ Impact of BESS on DLMP
b Imp act of PHEV on DLMP
205 “}==Impact of demand response on DLMP

b T T T T
0 2 4 6 8 10 12 14 16

Distributed locational marginal prices in Rupees

Bus number

Fig. 12. DLMP profile comparison for all the 4 cases

The demand Response scenario exhibits the most
significant DLMP fluctuations, particularly around
bus 11, illustrating the dynamic load shifts and their
impact on voltage accuracy.

In order to evaluate the accuracy of the surrogate
model, we conducted a series of comparative tests,
using the surrogate model in comparison to full-
scale power system simulations for a set of diverse
contingency scenarios. The proposed method,
BSPCE, has high accuracy at low cost with a proper
account of the complex input distributions and,
therefore, is quite appropriate for the practical
power system with uncertain renewable sources.
The methods of surrogate modeling and uncertainty
quantification in power systems are compared in
Table 1.
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TABLE 1. COMPARATIVE STUDY OF SURROGATE MODELING AND UNCERTAINTY QUANTIFICATION METHODS

IN POWER SYSTEMS
Method Accuracy | Computational Cost Complexity | Advantages Limitations Suitability
for IMG
MCS High Very High Low Conceptually Simple, | Poor performance Low
Distribution-Free under large workloads
PE Moderate | Low Moderate Rapid Execution, Poor scalability Moderate
Resource-Efficient
Kriging High Moderate-High High Accurate Modeling, Complex to implement | Moderate
Interval Estimation
Neural Variable | High High Input Flexibility, Lacks transparency Moderate
Networks Nonlinear Mapping to low
BSPCE High Low Moderate Adaptive Accuracy, Struggle with high- High
(Proposed) Sparse Efficiency dimensional problems

Comparisons of voltage magnitudes and line
loadings between the two models are shown in Table
II. The mean absolute error (MAE) by the surrogate
model was found to be 0.007 p.u. and the mean
relative error (MRE) was 0.69%, which is a strong
agreement with the detailed simulation results.

TABLE II. VALIDATION OF SURROGATE MODEL RESULTS
AGAINST FULL SIMULATIONS

Metric Surrogate | Rel.

Simulation | Output

Voltage at Bus 13 (p.u.) 0.984 0.977 0.71
Voltage at Bus 15 (p.u.) 0.963 0.956 0.73
Frequency Deviation (Hz) | 0.021 0.022 476
Line Loading (%) 731 718 1.78

Further, the surrogate model proved successful for
real time power system analysis for screening and
decision making in the sense that, on average the
computation time has been reduced by about 92%.

V. CONCLUSION

This study introduces an Adaptive Bayesian
Sparse Polynomial Chaos Expansion framework to
tackle the difficulties of voltage control in isolated
microgrids under conditions of uncertainty. The
proposed adaptive method adjusts sampling
dynamically according to a model's sensitivity
and approximation error, leading to enhanced
computational efficiency and greater accuracy,
particularly in areas of heightened uncertainty.
When applied to the modified IEEE-15 bus test
system, the proposed method successfully measures

the uncertainties related to maximum load capacity,
the variability of renewable energy, and operational
restrictions, simultaneously incorporating the
functions of battery energy storage systems, electric
vehicles, and demand response systems. The results
show that the proposed framework effectively
captures intricate input relationships and patterns
and accurately represents voltage behavior during
high-demand situations. Buses 13 and 15 showed
the most significant voltage instability, highlighting
the necessity for concentrated improvements.
The strategic operation of battery energy storage
systems and load shifting through demand response
have a substantial positive impact on voltage profiles
and DLMP stability. The validation of the surrogate
model against full-scale simulations revealed a high
degree of accuracy, with an MAE of 0.007 p.u.and an
MRE of 0.69%. This adaptive BSPCE-based approach
offers a reliable tool for boosting voltage stability,
streamlining energy management, and increasing
the operational resilience of isolated microgrids
under conditions of high uncertainty.
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