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ABSTRACT

This paper presents a short-term hybrid solar photovoltaic (PV) power forecasting model called empirical mode 
decomposition (EMD)-particle swarm optimization (PSO)-adaptive neuro-fuzzy inference system (ANFIS), i.e., refer to 
EPA. The model offers a solution to the challenge of accurately predicting generated solar PV power while considering 
the dynamic nature of environmental variables and solar radiation variability. In the first stage, EMD is applied to 
decompose the raw solar power series signal into a finite set of IMFs and a residue to enhance forecasting accuracy. The 
broken-input solar PV power data is fed into the ANFIS, along with meteorological variables. In the second stage, the 
characteristics of the individual component signals are modeled and forecasted separately using ANFIS with different 
membership functions. They are then compared to select the best input membership function, i.e., Gaussian. The swarm 
optimization is used to optimize the parameters of the EMD-ANFIS for enhanced accuracy. Utilizing empirical mode 
reconstruction of the optimized output, the predicted power of the solar PV system is computed. The suggested hybrid 
model's performance is evaluated and compared to alternative forecasting methods. It is discovered that the suggested 
model produces more accurate forecasts in terms of nMAE = 0.1870, nRMSE = 0.2723, and nMSE = 34.71. Additionally, 
the proposed model demonstrates robustness across various weather conditions, highlighting its applicability and 
effectiveness. Overall, this paper aims to explain the benefits of using a hybrid model instead of a standalone one, 
thereby enhancing the reliability and efficiency of solar PV power forecasting systems.
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I.	 INTRODUCTION

Today, electricity plays a crucial role in our daily 
lives, powering our homes, businesses, and 
industries. However, as the global population 
continues to increase, the demand for energy 
resources has surged, placing unprecedented 
pressure on our planet’s finite fossil fuel reserves. 
This escalating demand has led to a critical need 
for exploring alternative sources of energy that 
are both sustainable and environmentally friendly. 
Among these alternatives, solar photovoltaic (PV) 
power generation has emerged as a promising 
solution. Solar PV systems offer a renewable and 
clean electricity source by harnessing the abundant 
energy from the sun. Unlike fossil fuels, which emit 
harmful greenhouse gases when burnt for energy, 
solar power generation produces minimal emissions, 
mitigating the adverse effects of climate change 
[1], [2]. At the same time, the factors that influence 
energy consumption and power generation must 
also be considered. Electric load forecasting is vital in 

power system planning and electricity scheduling. 
Long-term forecasting (one month to one year), 
medium-term forecasting (one week to one month), 
and short-term forecasting (one hour to twenty-four 
hours) are all included [3], [4].

Artificial Neural Networks (ANN) have emerged 
as a significant departure from linear algorithms 
towards non-linear solutions. ANN modeling has 
outperformed conventional mathematical models in 
terms of accuracy and adaptability [5]. These models 
also show the problem of overlearning and their 
reliability in forecasting, which can be compromised 
by the randomness of initial datasets [6]. In response 
to these challenges, some authors have suggested 
adaptive neuro-fuzzy inference systems [7-9]. In [10], 
a prediction model for solar radiation was proposed, 
utilizing a predictive framework rooted in Recurrent 
Neural Networks (RNNs). This model combines 
Particle Swarm Optimization (PSO) and Evolutionary 
Algorithm (EA) techniques. Zhang et al. introduce 
a novel approach termed Genetic Algorithm-
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based Wavelet Neural Network (GA-WNN) for 
forecasting the power output of photovoltaic 
plants. This method enhances prediction accuracy 
by integrating conventional backpropagation 
and wavelet neural network techniques with 
genetic algorithms [11]. Cruz et al. introduce the 
application of regularisation techniques in a 
multiparametric linear regression model to predict 
the active power levels of a photovoltaic system. 
All prediction models had an accuracy greater than 
99.97% with reduced training time [12]. In [13], the 
empirical mode decomposition-attention-long 
short-term memory model represents a promising 
approach for forecasting in energy markets. Its 
innovative architecture, combining empirical mode 
decomposition, attention mechanisms, and long 
short-term memory networks, enables it to achieve 
superior empirical performance compared to other 
advanced forecasting models. Perveen et al. [14] 
designed an ANFIS-based model for short-term 
power forecasting in smart grid contexts using data 
from a composite climate zone. Comparative analysis 
showed that ANFIS outperformed other models, 
including ANN, support vector machines, and fuzzy 
logic systems. Patel et al. [15] analyzed various ANN 
models and hybrid approaches combining ANN 
with fuzzy logic for predicting solar irradiation 
and PV generation. Their findings concluded that 
hybrid ANN–fuzzy models offer better predictive 
performance across different inputs and network 
structures. Viswavandya et al. [16] developed fuzzy 
logic and ANFIS models using historical weather 
data to forecast short-term solar irradiation and 
validated their accuracy against on-site radiation 
measurements, yielding promising outcomes. 

Ndiaye [17] applied both a standard ANFIS model 
and an optimized ANFIS-GA variant to forecast PV 
power output for integration into Senegal’s national 
grid. The ANFIS-GA model proved more effective, 
achieving a lower mean square error of 2.027 versus 
4.142 from the basic ANFIS model. Khosravi et al. 
[18] developed ANFIS and ANN models optimized 
using both GA and PSO to simulate the thermal and 
energy performance of a Stirling solar collector, 
incorporating diverse meteorological inputs 
and design parameters. Among all models, PSO-
optimised ANFIS delivered the most accurate results. 
Didem [19] analyzed industrial energy demand in 
Turkey using multiple linear regression, ANFIS, 
and PSO-ANFIS models. The results showed that 
PSO-ANFIS outperformed the others, offering the 
highest prediction accuracy and minimal estimation 

error. In the realm of solar energy research, several 
knowledge-based engineering methodologies, 
including the Artificial Intelligence, Adaptive Neuro-
Fuzzy Inference System (ANFIS) [20], Artificial 
Neural Networks with the Fuzzy System (ANN-FS) 
[21], (PSO-NN) [22], Wavelet-ANFIS-PSO [23], EMD-
ANN [24], [25], PSO-ANN [26], and AI classification 
models [27], have been applied extensively in 
recent years to facilitate comprehensive real-time 
forecasting and approximation investigations, 
contributing valuable insights to the field.

This study presents a hybrid short-term forecasting 
model, EMD–PSO–ANFIS (EPA), which combines 
Empirical Mode Decomposition and Particle Swarm 
Optimization to accurately predict solar PV power 
using historical data and effectively handle its 
nonlinear and variable nature. In the first phase of the 
model, EMD is employed to decompose the raw solar 
PV    power    time    series    into   a set of   Intrinsic     Mode 
Functions (IMFs) and a residual component. This 
decomposition helps to split distinct signal patterns, 
making each component more stable and predictable 
and, thus, more suitable for accurate modeling. 
In the second phase, the decomposed IMFs and 
residuals are individually modeled and forecasted 
using Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS). ANFIS is a powerful modeling tool capable 
of capturing complex and nonlinear relationships 
between input and output variables with high 
precision. Previous research has demonstrated 
the superior performance of ANFIS compared to 
both conventional and other AI-based forecasting 
methods [28]. To further enhance performance, the 
structure of each ANFIS model is optimized using 
the PSO algorithm. PSO is particularly well-suited 
for this task due to its simplicity, computational 
efficiency, and effectiveness in parameter 
optimization. By optimizing each component model 
separately, the EPA approach ensures that each IMF 
and the residual are accurately modeled. The final 
forecast is obtained by aggregating the forecasts of 
all individual components, thereby reconstructing 
the original time series with improved precision. 
Because the original solar PV power signal is 
inherently the sum of its IMFs and residual, this 
decomposition-based modeling approach maintains 
completeness while offering improved forecasting 
accuracy. The effectiveness of the proposed EPA 
model has been validated through comparative 
analysis with other forecasting methods, including 
standalone ANN, standalone ANFIS, and EMD–
ANFIS without PSO optimization. Overall, the 
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proposed EPA method leverages the simplicity and 
efficiency of PSO to optimize the complex ANFIS 
models, leading to a more robust and accurate solar 
PV power forecasting solution. 

The main contributions of the work are as follows:

1.	 Development of a new hybrid forecasting 
model (EPA), which integrates signal 
decomposition, intelligent learning, and 
optimization techniques to accurately predict 
short-term solar PV power using historical 
generation data.

2.	 Application of Empirical Mode Decomposition 

(EMD) to isolate meaningful  signal components 
(IMFs and residue) from raw solar PV power 
data, improving the stability and predictability 
of input features for enhanced model training. 

3.	 Investigate the robustness of the optimal 
model by comparing overall prediction 
performances of standalone ANN, ANFIS and 
EMD–ANFIS, as well as examine the impact 
of the level of decomposition and types of 
input membership function under various 
performance evaluation metrics.  

4.	 Compare the proposed EPA model with other 
standalone and hybrid models.

Fig.1. Process flow of the proposed model

The  structure of this paper is as follows. The 
theoretical insights into the methodology of 
forecasting models and data pre-processing are 
explained in Section 2. The suggested hybrid 
forecasting models, including EPA model, are 
presented in Section 3. The results and conclusions 
are covered in Sections 4 and 5, respectively.

II.	 THEORETICAL BACKGROUND

This section has covered the theoretical  foundations 
of data preprocessing  and how to decompose solar 
PV data for forecasting models. The process flow 
of the EPA model is illustrated in Figure 1. Input 
variables include direct and diffuse radiation, 
temperature, and solar PV power. The process 
involves three key phases: data preprocessing, model 
development, and rule-base creation, followed by 
result analysis. A detailed explanation of the hybrid 
model construction is provided below and further 
elaborated in the next section:

A.	 Description of the Raw Dataset and 
Data Cleaning

The raw data used in this paper were sourced from 

the European Network of Transmission System 
Operators for Electricity, Greece (ENTSOE-G), 
Southeast Europe [29]. The dataset contains 24 
entries per day of hourly records from January 1st, 
2018, to December 31st, 2019. This dataset offers raw 
data for a total of 17,520 entries. The following table, 
i.e., Table I. gives the helpful data fields.

TABLE I. DETAILS OF DATASET

Feature Unit

Solar PV power MW

Temperature Degree Celsius

Direct radiation horizontal (Watt/m2)

Diffuse radiation horizontal (Watt/m2)

Date Duration (01/Jan/2018 – 31/Dec/2019)

Time Selected hours (04:00 a.m. – 05:00 p.m.)

Data cleaning includes eliminating nighttime 
records from the solar PV  data series. The data 
entries pertaining to the hours of 06:00 p.m. to   
03:00 a.m. have been eliminated. It resulted in 10,220 
entries from the original data being kept for further 
use. Preprocessed solar PV power data without 
normalization is depicted in Figure 2. 

https://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br


http://dx.doi.org/10.21622/RESD.2025.11.1.1264

144

http://apc.aast.edu

Journal of Renewable Energy and Sustainable Development (RESD)                                      Volume 11, Issue 1, June 2025 - ISSN 2356-8569

Fig. 2. Preprocessed solar PV power data (without night data points)

Fig. 3. Data split process

This data spans 10,220 samples, with a sample size 
of 40,880 data points (10,220 samples × 4 features). 
The data split process is demonstrated in Figure 3. 
The training set spans January 1st, 2018, to August 
8th, 2019; the validation set covers August 8th, 2019, 
to October 20th, 2019; and the testing set includes 
data from October 20th, 2019, to December 31st, 2019.

B.	 Process of Data Normalization Feature 
Selection

Data normalization assigns the same weight to every 
input value, regardless of size. The values become 
uniform and dimensionless as a result. High-value 
variables may impact distance measurements more 
than other values, mainly when an algorithm 
employs Euclidean distance. This method reduces 
all values to a range of 0 to 1. These updated values 
originate [30-32] with:

min

max min

k kK
k k

−
=

−
 	                         (1)

Where k  is the value being entered. The terms  mink
ük  denote the minimum and maximum values of 

the entered value, respectively. Once the data is 
normalized, relevant model-building and prediction 
features can be selected. This process involves 
identifying important input variables that will be 
factored into training the model and removing 
features that lack relevance or won’t improve the 
model’s accuracy. Doing so reduces the number 
of input variables, which reduces the time and 
complexity required to train the model. To enhance 
model performance, input variables with the most 
significant influence on the output are identified 
and retained. Historical values of meteorological 
inputs—ambient temperature, diffuse horizontal 
radiation, and direct horizontal radiation—are shifted 
backward by 1, 24, and 48 hours to construct a set 
of time-lagged predictor variables. The prediction 
model targets historical solar PV power output as the 
dependent variable. Based on correlation analysis, 
the most relevant input features selected are:
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•	 Solar PV power: P
s
(t–24) = 0.92

•	 Temperature: T(t–24) = 0.59

•	 Direct radiation: D
r
(t–1) = 0.83

•	 Diffuse radiation: D
f
(t–48) = 0.82

Ultimately, the variables with the best correlations 
are then taken from each input. The variables                 
T(t-24), D

f
(t-48), D

r
(t-1), and P

s
(t-24) are selected as the 

preceding values for temperature, diffuse radiation, 
direct radiation, and solar PV power, respectively, 
based on the correlation analysis.

III.	 PROPOSED MODEL

A.	 Empirical Mode Decomposition 

Huang et al. [33] introduced the Empirical Mode 
Decomposition (EMD) concept. It is widely utilized 
in signal processing applications for its ability to 
decompose complex signals into Intrinsic Mode 
Functions (IMFs), aiding in extracting meaningful 
oscillatory components. EMD uses a sifting process 
within each IMF iteratively, making EMD a data-
driven technique that automatically extracts 
frequency components from a time series of data 
[34], [35]. The initial signal is split into several IMFs 
and a residue using the EMD. The underlying data 
can then be examined in greater detail by looking at 
each IMF component separately. EMD can be used 
to identify trends, frequencies, and periodicity to 
provide a better understanding of complex signals 
[36]. 

Fig. 4. EMD algorithm

Two  essential  features  of  the  intrinsic  mode 
function (IMF) are as follows: 

1.	 An IMF’s local maxima and minima counts do 
not deviate by more than 1.

2.	 The IMF waveform has an average value of 
zero.

As depicted in Figure 4., the EMD algorithm is 
implemented from start to end steps and step-by-
step IMF extraction for EMD.
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Using the described approach to decompose the 
initial time series ( )x t into a set of IMFs signals ( )jd t  
along with the residual component ( )r t , written as 
follows:

1
( ) ( ) ( )

ü

j
j

x t d t r t
=

= +∑                                                                       (2)

1 ≤ j ≤ number of IMF 

Huang’s formulation applied to generated solar PV 
power P

s
(t-24): 

1
( 24) ( 24) ( 24)j e

e
ü r

ü
j

P t P t P t
=

− = − + −∑ 	                         (3)

Where e is the total number of IMFs extracted and 
P

s
(t-24) is the solar PV power at time instance (t-24). 

For the first IMF extraction, the decomposed power 
component:

1 1( 24) ( 24) ( 24)IMF r
s s sP t P t P t− = − − − 	                                     (4)

Second IMF extraction:

ü ( 24) ( 24) ( 24)IMF r r
s s sP t P t P t− = − − − 	                        (5)

Third IMF extraction:

3 32( 24) ( 24) ( 24)IMF rr
s s sP t P t P t− = − − − 	                          (6)

Fourth IMF extraction:

34 4( 24) ( 24) ( 24)rIMF r
s s sP t P t P t− = − − − 	                          (7)

Final residual component after extracting 4th 
level of decomposition: 4 ( 24)r

sP t − PSO-FIS predicts 
these decomposed components, which are then 
reconstructed using EMD to predict PV power.

B.	 Adaptive Neuro-Fuzzy Inference 
System 

 Fig. 5. Functional architecture of ANFIS network

Jang [37] introduced ANFIS in 1993 to address the 
challenges of non-linear systems. ANFIS utilizes 
fuzzy logic principles within an ANN framework 
to improve its cognitive capabilities. It combines 
fuzzy logic and neural networks based on the 
Takagi-Sugeno fuzzy inference system [38]. It uses 
fuzzy logic to structure a network of basic neurons, 
providing a more cognitively powerful combination. 
ANFIS eliminates the need for human experience 
and knowledge for parameter tuning [39], [40]. 
It integrates network learning and fuzzy logic 
processes [41]. In the network learning process, the 
inference parameters of a fuzzy system are tuned 
until they fit the training data. On the other hand, 
in the fuzzy logic process, the numerical inference 
mechanism is focused on the fuzzy knowledge base, 
the crisp if-then rules, and the output of the fuzzy 
set calculations.

The  schematic  representation  of  the  ANFIS  network 

is depicted in Figure 5. The  adaptive  network    
consists  of five layers  of nodes:  the fuzzification layer, 
rule layer, normalization layer, defuzzification layer, 
and summation layer. Within the ANFIS system, 
premise and consequent parameters play a crucial 
role [42]. The fuzzification layer plays a significant 
role in allowing the system to identify patterns 
within the input data, which is made possible by 
the premise parameters. Conversely, consequent 
parameters {p, q, r} are linked with the membership 
functions of the defuzzification layer. The parameter 
was optimized using a training algorithm. In the 
proposed methodology, ANFIS system parameters 
are optimized using an EPA hybrid algorithm, which 
will be detailed further in subsequent sections.

L-1 (Fuzzification layer): The initial layer is depicted 
by squares, indicating its adjustable parameters. 
This layer receives and processes input to generate 
membership values ranging from 0 to 1. It calculates 
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the membership values for each linguistic variable 
associated with a specified fuzzy variable. The 
resulting output is illustrated in (8) & (9).

1 ( )üO xµ=                                                                                    (8)

1 ( )üO yµ=                                                                                   (9)

for i = 1, 2

L-2 (Rule layer): Each node in this layer, represented 
by pie symbols, evaluates the firing strength of each 
rule by taking the product of the membership grade 
from L-1, as indicated by (10).

2 ( )* ( )i Ai BiO x yµ µ=                                                                      (10)

for i = 1, 2

L-3 (Normalisation layer): The third layer normalizes 
the firing strengths computed in L-2 to obtain the 
normalized firing strengths. Mathematically, the 
normalized output of each node in L-3, as calculated 
by (11):

3 '

1 2( )
i i

i i
i

w w
O w

ü
ℵ

+ ∑                                                             (11)

for i = 1, 2

L-4 (Defuzzification layer): This layer computes 
the consequent parameters {p, q, r} based on the 
normalized firing strengths from L-3, as specified in 
(12).

ü ( )i i i i i i iO w f w p x q y r= × = × + +                                                  (12)

for i = 1, 2

L-5 (Summation layer): Ultimately, the fifth layer 
combines the consequent parameters obtained from 
L-4 to generate the final output of the ANFIS system, 
as described in (13).

5 '
i out i i

i
O f w f= = ∑                                                                        (13)

The parametric details of various ANFIS models: 

AGa (Gaussian MFs), AGb (G-bell MFs), and ATr 
(Trapezoidal MFs) are presented in Table II. This table 
shows that Gaussian, G-bell, and trapezoidal MFs 
are investigated using different antecedents and 
consequent parameters.

C.	 The Proposed EPA Hybrid Method

Hybridization of the PSO-tuned ANFIS model 
integrated with EMD-based data decomposition 
for precise PV power forecasting. EMD decomposes 
the generated solar PV power series into an 
intrinsic mode function (IMFs) with distinct 
frequency components, while a PSO-tuned ANFIS 
model with Gaussian input MFs predicts the 
future values of these IMFs. The forecasted solar 
PV power is obtained by applying the empirical 
mode reconstruction process to the predicted IMF 
components. This decomposition is particularly 
valuable given the complex frequency variations 
present in the generated solar PV power data, as 
described in the subsequent discussion.

Meteorological inputs, which vary significantly, 
impact solar photovoltaic power, introducing both 
high-frequency fluctuations and low-frequency 
patterns linked to Earth’s rotation around the Sun. 
These combined components can degrade the 
forecasting accuracy. EMD efficiently separates 
these components into distinct time series, and 
the model reduces forecast error. EMD effectively 
identifies trends, frequencies, and periodicity to 
provide a better understanding of complex signals 
and improve overall forecasting performance. 

In  this  work,  solar power  data  is   initially 
decomposed into intrinsic mode functions (IMFs) and 
a residual component (r) using EMD. A preliminary 
analysis, based on performance metrics, determines 
level 2 as the optimal decomposition level before 
conducting model-based comparisons. Level-2 EMD 
combined with a gaussian type input MF for ANFIS 
model performs well, leading to its selection for 
further model development.

TABLE II. PARAMETERS IN THE ANFIS MODEL WITH DIFFERENT INPUTS MFs

ANFIS 
Model

Inputs MF Type 
(params)

Number of 
inputs MFs

Number 
of MFs

Number of 
Antecedent 
parameters

Total 
rules

Consequent 
parameters

Total 
parameters

AGa 4 Gaussian  2 8 16 16 80 96

AGb 4 Generalized bell 2 8 24 16 80 104

ATr 4 Trapezoidal  2 8 32 16 80 112
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Instead of employing the conventional hybrid 
ANFIS training algorithm, which integrates 
backpropagation and the least squares error method, 
the proposed hybrid EPA model utilizes PSO to 
optimize the fuzzy inference system (FIS). The EPA 
model is trained to forecast these IMF components. 
During PSO optimization, after defining the training 
dataset, the FIS is generated using fuzzy c-means 
(FCM) clustering [43] to reduce the number of 
decision variables. During the training phase of 
the proposed model, the solar PV power generated 
twenty-four hours prior was decomposed using the 
EMD technique. Each FIS receives one component 
of the decomposed data along with additional 
meteorological inputs such as ambient temperature, 
diffuse radiation, and direct radiation. The solar PV 
power data at time instant t is used as the target 
output for training to evaluate the FIS performance. 
Subsequently, each FIS is fine-tuned using PSO 
to minimize a fitness function defined by error 
measures relative to the training output. 

Fig. 6. EPA algorithm

As depicted in Figure 6., the EPA algorithm is 
implemented from start to end steps, and a detailed 
description of the hybrid EPA model for forecasting 
is provided below:

Step 1: Prepare training dataset (form matrix 
columns with a set of Prepossessed Solar PV power 
along with metrological parameters.)

Step 2: Decomposition of input 

•	 Decompose P
s
(t-24) using the EMD technique 

into IMFs and residuals.

•	 Define the quantity/level of IMFs.

Step3:  Initialize FIS structure [44-46]

•	 Generate an initial fuzzy inference system for 
all respective intrinsic mode functions and 
residuals through an FCM clustering. 

•	 Set input MF – Gaussian & output MF– linear.

Step 4: Generating the initial swarm 

•	 Initial swarm $, consisting of randomly 
generated P (population size of the PSO) 
particles, length of each particle’s position 
vector L (total number of parameters within the 
ANFIS), position of each particle p

i
 (i=1,2…, P) 

along parameter l (l=1,2…., L) is $
p,l

 = [$
min

, $
max

].

•	 Initialise 0( ) | 0p
i tv t = =   represents  the  initial 

velocity of every particle, while setting 
_ _ cosglobal best t = ∞  denotes establishing the 

best global cost.

Step 5: Creating a new generation of particles

•	 The new generation of particles is formed 
by updating the velocity and position of the 
particle: 

1 1

2 2

( ) ( 1) ( ( ))

( ( ))

ü
i i best i

p
best i

v t v t c rand P x t

c rand G x t

ω= − + ∗ − +

∗ −

( ) ( 1) ( )ü
üx t x t v t=                                                                                                              

where pv  & px  represent the velocity and 
position of the particle, respectively. The 
cognitive & social components are defined by 
the second and last terms, respectively., where 
c1 and c2 are positive acceleration constants, 
and rand generates a random number between 
0 and 1. 
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•	 The inertia weight is adjusted using the 
formula below:

max min
max max t

t

I
I

ω ω
ω ω

−
= −

where üω & üω denote the upper and lower 
limits of the inertia weight, respectively.              
It represent the current iteration, while ü

tI
signifies the maximum number of iterations.

Step 6: Transferring particle parameters to ANFIS 

•	 Determine the dimensions of the input feature 
set, the count of input and output linguistic 
variables, and the count of elements within 
each linguistic variable.

•	 With the dimensions & count defined, the 
parameters of the particles are sequentially 
transferred to the input & output linguistic 
variables of the ANFIS.

Step 7: Evaluate the cost function for all particles.

•	 For Personal best (P
best

) update: if the fitness 
value of the current position ( )p

if x of particle 
‘i’ is better than its personal best ( )if p , update 
the personal best position to the current 
position.

If ( ) ( )p
i if x f p<  then

p
i ip x= , 

where p
ix

 
is the current position of particle’ i’.

•	 For Global best (G
best

) update: update the global 
position ‘g’ as the position that minimises 
the fitness function among all the particle’s 
personal best positions.

g= argmin{f(p1), f(p2),……….. ,f(pN)}, 
where N is the total number of particles in the 
swarm.

Step 8: Convergence criteria

•	 After evaluating the cost function, check that 
the termination criteria (max set value of 
iterations) are met.

•	 If the algorithm completes the max value of 
iterations, it proceeds to Step 9; otherwise, it 
loops back to Step 5.

Step 9: Extraction of the training process  

•	 Extract the ANFIS output using the optimized 
parameters obtained through PSO.

•	 Finally, the training process concludes with 
extracting the final optimized model.

Steps 3 to 9 are repeated for each intrinsic mode 
function (IMF) and the residual. ANFIS models are 
individually trained and extracted for each IMF in a 
similar manner. Collective predictions are generated 
by combining the forecasts derived from individual 
models through summation. To ensure the stability 
of the PSO algorithm, it is recommended that (C

1
+C

2
) 

be within a specific range [47]. The parameters of the 
PSO algorithm used to train the ANFIS structure are 
presented in Table III.

TABLE III. PSO PARAMETERS USED DURING FIS 
OPTIMIZATION IN THE EPA HYBRID METHOD 

Parameter Value

MFs Gaussian 

Swarm size 25

Maximum number of iterations 1000

Personal learning coefficient (C
1
) 1

Global learning coefficient (C
2
) 2

Inertia weight 1.0

Inertia weight damping ratio 0.99

In the evaluation stage, as depicted in Figure 7, 
generated solar PV power P

s
(t) is forecasted using 

three PSO-FIS, i.e., PSO-FIS-1, PSO-FIS-2, and PSO-
FIS-3. Each PSO-FIS receives its corresponding EMD 
components (IMF-1, IMF-2, and r) along with three 
meteorological variables: T(t-24), D

f
(t-48), and D

r
(t-

1), as discussed in Sub-section 4.1. Level-2 IMFs are 
used in the empirical mode decomposition process. 
Instantaneous values of decomposed components 

1 ( 24)ü
sP t − , 2 ( 24)ü

sP t − , ( 24)r
sP t − , and their respective 

time instants are fed into the corresponding PSO-
FIS models, along with the stated meteorological 
variables. The three meteorological inputs remain 
the same for all PSO-FISs, while the decomposed 
PV power data vary for each. Thus, the PSO-FIS 
takes the instantaneous values of the decomposed 
solar PV power and three meteorological features 
as inputs. By fine-tuning PSO parameters, the 
proposed hybrid model is able to generate the most 
favorable forecasting performance after the training 
phase. The PSO-FIS generates the predicted EMD-
decomposed values: 1 ( )ü

sP t , 2 ( )ü
sP t , & ( )r

sP t . Here, 
the role of the ANFIS model is to learn the nonlinear 
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relationships between input features and the target 
output without requiring an explicit mathematical 
formulation, enabling accurate mapping of 

complex data patterns. Afterward, empirical mode 
reconstruction yields P

s
(t), the estimated solar PV 

power at the given time.

Solar PV 
power 

Predicted Solar 
PV power

 

Empirical Mode 
Reconstruction 

processMeteorological variables 

Data pre-
processing & 
Normalization

Performance 
measures

Comparison

Final result

Forecasting 
models

Predicted values

Data pre-
processing & 
Normalization

Predicted IMFs & 
residual value 

PSO-FIS model
Empirical Mode 
Decomposition

PSO-FIS-
IMF-1

Residual (r)

Intrinsic Mode 
Function (IMF-1, 

IMF-2) PSO-FIS-
IMF-2

PSO-FIS-
r

( 24)T t −

1 ( 24)IMF
sP t −

2 ( 24)IMF
sP t −

( 24)r
sP t −( 48)fD t −

( 1)rD t −

( 24)sP t −

1

2

( )

( )

( )

IMF
s
IMF

s
r

s

P t

P t

P t
( )sP t

I/P ∑ Y/N O/P 

PSO

Fig. 7. Evaluation stage of the proposed hybrid EMD-PSO-ANFIS model

IV.	 NUMERICAL RESULT                   
AND DISCUSSION

In this research work, the effectiveness of the 
hybrid EPA model is comprehensively evaluated by 
comparison to other forecasting models, i.e., ANN, 
EAGa, EAGb, and EATr-based models. A four-input 
hybrid EMD-ANFIS is employed with different MFs 
and the optimal level of IMFs and optimized using 
the integration of  backpropagation and  least squares 
error. In time series forecasting, it is essential to select 
the appropriate performance measure that will 
accurately assess the effectiveness of the forecasting 
model. Commonly used performance measures 
include Mean Absolute Error (MAE), Mean Square 
Error (MSE), and Root Mean Square Error (RMSE). 
These measures are often normalized to quantify 
the error better, as they vary linearly with the 
magnitude of the output parameter. Lower values of 
these measures indicate higher forecasting accuracy. 
The mathematical expressions for the MAE, MSE, 
RMSE, and normalized forecasting performance 
measures are given in (14) to (20), respectively.  

1

1 | |
n

v v
v

MAE P A
n =

= −∑                                                                    (14)

ünMAE
sd

=                                                                             (15)

( )
n

v v
v

MSE P A
n =

= −∑                                                                    (16)

MSEnMSE
sd

=                                                                                   (17)

2

1

1 ( )
n

v v
v

RMSE P A
n =

= −∑                                                              (18)

RMSEnRMSE
sd

=                                                                             (19)

2

2

( )
2 1

( )
v v

v v

A P
R

A A
−

= −
−

∑
∑                                                                     (20)

Where vA vA , and vP , are actual power, mean of 
actual power, and forecasted value of thv time step 
of any hour of the day in the dataset, respectively, 
sd  is the standard deviation and n  is the number 
of time stamps. All the above measures are used in 
this research work to evaluate the performance of 
various models.
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A.	 Training and Validation Set

A preliminary setup was assessed to determine a 
baseline error rate for comparison before applying 
optimization. Training and validation splits were used 
to ensure that all models were trained and evaluated 
on designated data partitions. Performance metrics 
were calculated. Table IV. shows the data sample 
allocation for the training, validation, and testing 
phases.

TABLE IV. DATA SAMPLE SPLITS FOR MODEL TRAINING 
AND EVALUATION

Splits Train set 
(samples)

Validation set
(samples)

Final test
(samples)

1st Split 1 to 8181
(80%)

8182 to 9202
(10%)

-

2nd Split - - 9203 to 10220
(10%)

The forecasting models were validated three 
days ahead in two sets, for the duration of 29th-
31st August and 28th-30th September. This study 
uses ANN and ANFIS models as benchmarks to 
evaluate the performance of the proposed model 
for solar PV power forecasting. The ANN model 
was developed with varying numbers of neurons in 
the hidden layer and trained using the Levenberg–
Marquardt algorithm. RMSE and MAE were used to 
monitor training performance. While increasing the 
number of neurons led to longer training times, the 
improvement in forecasting accuracy was marginal. 
Additionally, the ANN’s output varied across 
training runs, even with unchanged parameters. 
Among the tested configurations (25, 50, 80, 100, 110, 
and 120 neurons), the model with 80 neurons in the 
hidden layer provided the best balance between 
training time and predictive accuracy.

The ANFIS models forecast solar PV power by 
exploring various configurations of membership 
functions (MFs), including Gaussian (AGa), 
generalized bell (AGb), and trapezoidal (ATr), using 
different antecedent and consequent parameters. 
The performance results for these input MFs are 

presented in Table V.

TABLE V. PERFORMANCE OF VARIOUS ANFIS MODELS 
BASED ON MAE, MSE, RMSE

Date Model MAE MSE RMSE

29-31
Aug

AGa
AGb
ATr

49.52
50.23
53.33

4528
4989
4542

67.29
70.64
67.40

28-30
Sep

AGa
AGb
ATr

79.66
78.78
81.37

12101
12894
12409

110.01
113.55
111.40

From MAE, MSE, and RMSE,  forecasting  
performance is visible in absolute format; these 
absolute values have their meaning when compared 
with models other than ANFIS. On the other hand, 
the forecasting performance improved when pre-
processed data of ENTSOE using EMD to develop 
hybrid models, i.e., EAGa, EAGb, and EATr based on 
IMF level and MFs type. These findings are detailed 
in Tables VI-VIII, respectively. These results show 
that hybrid EAGa, EAGb, and EATr models with 
IMFs extracted at levels 2, 2, and 3, respectively, 
provide the best results. These extracted levels 
provided better performance than all experimented 
levels, i.e., level-1 to level-4. Each hybrid model 
is individually and rigorously investigated for its 
forecasting performance.

TABLE VI. PERFORMANCE MEASURES OF THE EAGa 
MODEL

Date Level MAE RMSE nMAE nRMSE

29-31
Aug

1
2
3
4

64.55
38.57
44.79
49.34

76.55
52.42
52.74
57.45

0.0984
0.0588
0.0683
0.0752

0.1167
0.0799
0.0804
0.0876

28-30
Sep

1
2
3
4

87.26
57.26
57.86
59.20

104.37
67.77
70.79
71.17

0.1291
0.0847
0.0856
0.0876

0.1545
0.1003
0.1048
0.1053

Mean 1
2
3
4

75.90
47.91
51.32
54.27

90.46
60.09
61.76
64.31

0.1137
0.0715
0.0769
0.0814

0.1356
0.0901
0.0926
0.0964
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TABLE VII. PERFORMANCE MEASURES OF EAGb MODEL

Date Level MAE RMSE nMAE nRMSE

29-31
Aug

1
2
3
4

67.81
47.04
48.78
47.46

80.96
55.93
59.22
57.54

0.1034
0.0717
0.0744
0.0723

0.1234
0.0852
0.0903
0.0877

28-30
Sep

1
2
3
4

86.85
58.05
60.92
61.95

108.27
71.58
75.66
77.29

0.1285
0.0859
0.0902
0.0917

0.1602
0.1059
0.1120
0.1144

Mean 1
2
3
4

77.33
52.55
54.86
54.71

94.61
63.75
67.44
67.42

0.1159
0.0788
0.0823
0.0820

0.1418
0.0956
0.1012
0.1011

TABLE VIII. PERFORMANCE MEASURES OF THE EATr 
MODEL

Date Level MAE RMSE nMAE nRMSE

29-31
Aug

1
2
3
4

76.84
47.02
45.46
45.79

90.70
58.75
55.48
57.11

0.1171
0.0717
0.0693
0.0698

0.1382
0.0895
0.0846
0.0870

28-30
Sep

1
2
3
4

73.60
55.37
52.38
56.11

96.75
64.04
61.41
65.06

0.1089
0.0819
0.0775
0.0830

0.1432
0.0948
0.0909
0.0963

Mean 1
2
3
4

75.22
51.19
48.92
50.95

93.73
61.40
58.45
61.09

0.1130
0.0768
0.0734
0.0764

0.1407
0.0921
0.0877
0.0916

From the above discussion, it is clear that hybrid 
EAGa, at IMF level 2, provides the best forecasting 
performance compared to EAGb and EATr models; 
therefore, for further improvement, the EAGa model 

is optimized using the empirical mode decomposition 
technique at the IMF level 2, followed by PSO with a 
swarm size of 25 and 1000 iterations, 

TABLE IX. PERFORMANCE MEASURES OF THE EPA MODEL

Date EMD
Level

Model: EPA
Forecasting Performance Measures

MAE MSE RMSE nMAE nMSE nRMSE

29-31
Aug

2 32.81 1897.03 43.55 0.0500 2.89 0.0664

28-30
Sep

2 39.10 2027.33 45.03 0.0579 3.00 0.0666

Mean 2 35.96 1962.18 44.29 0.0540 2.95 0.0665

i.e., the EPA model. Among these models, EPA 
performs better, exhibiting mean MAE and RMSE 
values of 35.96 and 44.29, respectively, as depicted in 
Table IX. For better realization and understanding, 
normalized values are also tabulated in the last three 
columns. With this configuration, the proposed 
approach has superior predictive accuracy and 
computational efficiency compared to other models, 
proving its effectiveness for the given dataset and 
prediction framework. This analysis underscores 
the EPA’s adaptability and reliability when properly 
tuned, delivering enhanced forecasting performance 
compared to alternative models in solar PV power 
estimation.

B.	 Final Test Set Results

The EPA hybrid model is tested with a dataset taken 
from a location in Greece, which includes generated 
solar PV power and three hourly input metrics, as 

earlier stated. The model demonstrates consistent 
hourly solar PV power forecasts over three periods: 
29th-31st October, 28th-30th November, and 29th-31st 
December 2019. For a performance assessment, 
three advanced models, i.e., ANN, EAGa, EAGb, and 
EATr, are also trained and tested. 

The pictorial representations of 29th-31st October 
and 29th-31st December 2019 are illustrated in Figs. 
8 & 9., depicting the actual and forecasted solar PV 
power profiles obtained for ENTSOE-G. The five 
subplots (a)-(e) represent forecasted power trends 
for indicated periods. The EPA hybrid model 
demonstrates superior accuracy, with predicted 
profiles closely matching actual values, effectively 
capturing sudden peaks and fluctuations with 
minimal deviation. By considering both the external 
input features and historical data, EPA outperforms 
other approaches. As the profiles are very close to 
each other, a tabulation comparison is required. 
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Table X. presents a comprehensive tabulation of 
the performance of various forecasting models. 
The model consistently delivers reliable hourly 
PV power forecasts across three periods: 29th-31st 
October, 28th-30th November, and 29th-31st December 
2019. The proposed approach yields MAE values for 
these periods of 85.23, 89.86, and 84.53, respectively, 
and RMSE values of 105.83, 137.59, and 130.83, 
respectively. During the forecasted period, the EPA 
model exhibits exceptional performance across all 
mentioned periods. The EAGa model closely follows 
the EPA in terms of all performance measures, while 
the EAGb model performs notably well in December, 
particularly in terms of nRMSE. After observing 
the performance of the PSO-tuned (EPA) model, 
it is clear that the forecasting error obtained is the 
lowest among tested models. The proposed approach 
achieves mean nMAE, nMSE, and nRMSE values of 

0.1870, 34.71, and 0.2723, respectively, over the three 
test periods. The proposed model shows percentage 
enhancements in nMAE over ANN, EAGa, EAGb, 
and EATr models of 24.8%, 7.97%, 13.27%, and 11.67%, 
respectively. Regarding nRMSE, improvements over 
these models are 25.6%, 6.59%, 7.66%, and 10.25%, 
respectively. The R-squared values for the different 
forecasting approaches—ANN, EAGa, EAGb, EATr, 
and EPA—are 0.858, 0.909, 0.908, 0.902, and 0.921, 
respectively. The recent analysis reveals that the 
EPA model achieves superior performance over a 
short three-day period with a one-hour lead time. 
Performance ranking of hybrid forecasting models 
in terms of nRMSE and nMAE can be seen in Figure 
10 (a) and (b), respectively. Observationally, the 
forecasting approaches exhibit similar predicted 
capabilities, with their forecasted generated solar 
PV power profiles matching the actual data.

(a)

(b)
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(c)

(d)

(e)

Fig. 8. Actual and forecasted solar PV power for the last three days of an October month for 42 consecutive hours 
(a) ANN, (b) EAGa, (c) EAGb, (d) EATr, and (e) EPA
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(a)

(b)

(c)

(d)
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(e)

Fig. 9. Actual & forecasted solar PV power for the last three days of a December month for 42 consecutive hours
 (a) ANN, (b) EAGa, (c) EAGb, (d) EATr, and (e) EPA

TABLE X. EVALUATION OF DIFFERENT FORECASTING APPROACHES

Date Performance 
measures

Models

ANN EAGa EAGb EATr EPA

29-31
Oct

MAE
MSE
RMSE
nMAE
nMSE
nRMSE
R2

120.16
26222
161.93
0.2217
48.38
0.2988
0.908

87.84
12505
111.83
0.1621
23.07
0.2063
0.956

98.04
15715
125.36
0.1825
28.99
0.2313
0.945

96.67
15485
124.44
0.1783
28.57
0.2296
0.946

85.23
11198
105.83
0.1572
20.66
0.1952
0.961

28-30
Nov

MAE
MSE
RMSE
nMAE
nMSE
nRMSE
R2

127.83
39075
197.68
0.2905
88.80
0.4492
0.793

92.22
20189
142.09
0.2096
45.88
0.3229
0.893

94.04
21815
147.70
0.2137
49.58
0.3357
0.884

95.08
20885
144.52
0.2177
47.46
0.3284
0.889

89.86
18931
137.59
0.2042
43.02
0.3127
0.899

29-31
Dec

MAE
MSE
RMSE
nMAE
nMSE
nRMSE
R2

99.01
21952
148.16
0.2339
51.87
0.3501
0.874

100.66
21368
146.18
0.2378
50.49
0.3454
0.877

106.09
18062
134.39
0.2507
42.68
0.3176
0.896

101.21
22216
149.05
0.2391
52.49
0.3522
0.872

84.53
17117
130.83
0.1997
40.45
0.3091
0.902

Mean MAE
MSE
RMSE
nMAE
nMSE
nRMSE
R2

115.67
29083
169.26
0.2487
63.02
0.3660
0.858

93.57
18021
133.37
0.2032
39.81
0.2915
0.909

99.39
18531
135.82
0.2156
40.42
0.2949
0.908

97.89
19529
139.34
0.2117
42.84
0.3034
0.902

86.54
15749
124.75
0.1870
34.71
0.2723
0.921
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(a)

(b)

Fig. 10. Performance ranking of hybrid forecasting models in terms of (a) nRMSE and (b) nMAE

V.	 CONCLUSIONS

In this study, various time series forecasting models’ 
forecast performance was analyzed, and a hybrid 
model— combining Empirical Mode Decomposition 
(EMD) with an Adaptive Neuro-Fuzzy Inference 
System (ANFIS) fine-tuned using PSO, referred to as 
EPA—was developed to forecast solar PV power in 
ENTSOE, Greece. Traditional forecasting approaches 
lack the ability to capture time-frequency signals. 
To address this, the proposed model decomposes 
the generated solar PV power into the number 
of Intrinsic Mode Functions (IMFs) using EMD 
and selects the optimal level of extracted IMFs. 
Various input MFs  are  also  evaluated during FIS 
optimization to enhance predicting accuracy. 

Comparative analyses demonstrate that the 
proposed hybrid EPA model outperforms other 
forecasting methods, achieving lower error values 
with an nMAE of 0.1870, nRMSE of 0.2723, and 
nMSE of 34.71. These results highlight the model’s 
superior accuracy and robustness across varying 
meteorological conditions. Improved forecasting 
enables the pre-planning of operating schedules for 

non-renewable sources, such as thermal and nuclear 
plants, which require significant time to shut down 
and restart. Consequently, accurate forecasting 
and pre-planning can enhance the efficiency and 
reliability of overall power generation systems. 
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