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ABSTRACT

In most  of  the world’s nations,  groundwater  management is  infrequent  despite  its  importance and  scarcity.  
Continuous monitoring and precise projections of spatiotemporal groundwater recharge change can aid in sustainable 
development and effective groundwater resource management. Open public remote sensing datasets were used to 
develop machine learning prediction models (RF, XGBoost, AdaBoost, CatBoost, DT, Keras models) and time series 
forecasting models (CNN, LSTM, and its variants) for predicting and forecasting groundwater sheet recharge, 
respectively. The publicly available datasets are merged, processed, and organized into three parts for training, testing, 
and validation: 2002–2009, 2010–2015, and 2015–2020. A comparison of spatiotemporal prediction models’ estimates 
of groundwater recharge in Morocco revealed that RF and XGBoost were the more accurate methods for temporal 
(spatial) recharging, with MAE values of 4.7795 mm/month (1.0227 mm/month) and 4.9936 mm/month (1.3031 mm/
month), respectively. Regarding time series forecasting, the LSTM model performed better, with an MAE of 20.05 
mm/month. The proposed models’ performances on validation datasets demonstrate the utility and scalability of the 
proposed combined remote sensing and artificial intelligence-based framework, opening up a new pathway for large-
scale groundwater management. The established workflow enables the study to be extended to any other site.

Index-words: Groundwater recharge, Artificial intelligence, Remote sensing, Prediction, 
Forecasting, Time series, Tree vitality, Soil moisture.

Received on, 20  July  2024                          Accepted on, 03  October  2024                        Published on, 03  November  2024

I.	 INTRODUCTION

GROUNDWATER is one of the most important 
sectoral exposures to climate change [1] and a vital 
component  of  maintaining the world’s food supply. 
It is regarded as the  primary source of fresh water 
and essential to preserving the planet ecological 
balance. Furthermore, it  is a necessary component 
of the earth  crust that prevents the earth from 
burning. Despite its significance and limited 
availability, it is hardly ever fully utilized and 
groundwater management is rarely done in most 
countries of the world [2].

The public release of official remote sensing data 
portals in recent years has broadened the range 
of applications for remote sensing analysis and 
boosted the size of the remote sensing community. 
Examples of these portals include those of the 
NASS [3], CHC-UCSB, OpenlandMap [4], and 
CSIRO. etc. With the increased availability of 
gridded hydrometeorological data and digitalized 
hydrography data with high spectral resolution for 
large scale, a variety of hydrologic applications may 

be precisely established for a country size.

Artificial intelligence (AI) has become more 
frequently incorporated into remote sensing-based 
groundwater management [5], offering innovative 
perspectives and new tools for predicting and 
forecasting groundwater behavior, including the 
status of groundwater supplies, groundwater levels 
and depth, recharge and withdrawal rates, and other 
hydrological variables [2], [6]–[10].

Data from remote sensing has been extensively 
analyzed using AI approaches for groundwater 
management. Machine learning (ML) including 
deep learning (DL) are algorithms that have the 
capacity to learn from vast amounts of data and 
produce predictions, forecasting, classifications, and 
so on. Support vector machines (SVM) [11], random 
forests (RF) [11], and artificial neural networks 
(ANN), among others, are examples of machine 
learning (ML) approaches that have been used to 
predict groundwater depth levels [12], [13], calculate 
recharge rates [14], and map groundwater potential 
zones [15]. 
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For  instance, the  machine learning  algorithm 
SVM is used to predict  groundwater levels in the 
northeast United States using GRACE (Gravity 
Recovery and Climate Experiment), MODIS 
(Moderate Resolution Imaging Spectroradiometer), 
and in-situ climate variables [16]. Random Forests 
(RF) was  used to forecast  groundwater  withdrawals 
in Arizona using publicly available datasets and in 
situ groundwater  withdrawal data [2]. Regarding DL 
methods, groundwater management applications 
have used  convolutional  neural  networks (CNN) 
and recurrent neural networks (RNN) to analyze 
remote sensing data to anticipate groundwater 
storage spatiotemporal change [17]. Convolutional 
neural network-LSTM (CNN-LSTM) and long 
short-term memory (LSTM) models were validated 
using on-site data from South Korea’s National 
Groundwater Monitoring Network (NGMN).

Even though AI techniques have demonstrated 
significant potential for groundwater management 
based on remote sensing datasets, these techniques 
have  only been  tested  in a  few  regions  and 
countries, and there are still several challenges 
to overcome, including AI model interpretability, 
data availability, and data quality. Furthermore, 
more study is required to cope with the problem 
of fusing diverse data sources and producing 
more trustworthy AI models. The objective of this 
study is to investigate the fusing of hyperspectral 
multisource dataset perspectives and long-term 
forecasting, as well as predicting groundwater 
recharge/withdrawal in the feature space.

Groundwater is heavily used in agriculture in 
numerous Moroccan locations to grow year-
round crops and trees such as watermelon, tomato, 
avocado, sours, oranges, and a variety of other 
specialty crops. Agriculture consumes 87% of water 
resources [18]. Morocco, like other parts of the 
world, has faced two major challenges over the last 
two decades: water- intensive agriculture and a dry 
climate with highly erratic precipitation. Reliable 
and accurate spatiotemporal groundwater recharge 
estimates are critical for determining the quantity 
of groundwater depleted and effectively managing 
groundwater resources. Groundwater fluctuations 
can be determined by hydrogeological features and 
boundary conditions of groundwater systems, as 
well as climatic, hydrological, and land cover change 
influences.

In this study, the authors establish a spatiotemporal 
groundwater recharge prediction and forecasting 

system (AI-GWR), which is, to their knowledge, 
a first of its kind. They estimate spatiotemporal 
changes in groundwater charges using remote 
sensing data and artificial intelligence. They develop 
an end-to-end workflow that starts with gathering 
datasets from multiple sources and moves on to 
preprocessing, fusing, scaling, normalizing, and 
other steps. The obtained dataset is based on several 
influencing factors, including meteorological, 
hydrological, soil moisture, and eva-transpiration 
data, as well as groundwater recharge information. 
In addition to using ensemble learning algorithms 
such as Random Forest (RF), AdaBoost, XGBoost, 
etc. To perform a prediction of GWR, investigate 
several CNN and RNN-based time series forecasting 
methodologies, such as LSTM, residual LSTM, and 
LSTM autoregressive. Before LSTM and CNN-driven 
windowing of datasets and the provision of a full 
deep analysis connected to target the groundwater 
recharge. Additionally, the authors carry out a more 
thorough investigation by formulating various data 
windowing strategies, such as temporal, spatial, 
and spatiotemporal. To validate the proposed 
approach, they conduct a novel case study of the 
Morocco region. They focus on how land use affects 
groundwater recharge in two areas in Morocco. For 
prediction and forecasting, they adapt cutting- edge 
algorithms.

The remaining portion of this work is structured 
as follows: the second section contains AI-based 
groundwater recharge estimations (AI-GWR). The 
study area and data processing are presented in 
Section III. Section VI provides an experimentation 
and discussion. The concluding section offers a 
perspective, a recommendation, and a conclusion.

II.	 AI-BASED-GROUNDWATER 
RECHARGE ESTIMATES (AI-GWR)

The AI-GWR’s workflow is divided into many 
stages. As depicted in Fig. 1, it is divided into three 
major sections: Remote sensing Data Preparation-
Thornthwaite-Mather (RSDP-TM) that consists of 
two parts (1) Data: Getting, preprocessing, and fusion 
(DGPF) and (2) TM procedure, and then (3) Artificial 
intelligence-based models (AIM).

The first step is to collect data from multiple sources, 
then prepare the dataset, and finally output and 
analyze. In the second block, in addition to several 
basic data processing operations, the authors fuse 
the prior block features files datasets. The datasets 
cover precipitation, evapotranspiration, hydraulic 
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characteristics, and groundwater recharge. The 
fusion operation entails combining all datasets 
into one and conducting any necessary operations 
to remedy issues such as interpolations, missing 
values, and so on. The obtained dataset includes 
all features for the specified date and location. 
The final block includes AI-based algorithmic 
operations like model fitting and evaluation. The 
entire pipeline is automated and relies on open-
source or freely available programming languages, 
tools, and libraries. Tensorflow [19] with Keras [20] 
is used in this study to provide an approachable, 
highly- productive interface for solving machine 
learning problems, Python 3 [21] is used as the main 
programming backend for data acquisition, pre-
processing, and implementing the machine learning 
model. The primary Python libraries used in the 
proposed workflow include NumPy [22], SciPy [23], 
scikit-learn [24], GeoPandas [25], Pandas [26], Folium 
[27], seaborn [28], matplotlib [29], xgboost [30]. QGIS 
[31] is used for statistical analysis and visualization.

A.	 Remote Sensing Data Preparation and 
Thornthwaite-Mather(TM) Procedure

1.	 Data: Getting, Preprocessing, and Fusion 

(DGPF)

The workflow is as follows: the authors use the 
Google Earth Engine platform to manage datasets 
from various sources [32], the TM method [33], [34] 
to provide spatiotemporal Groundwater recharge 
(GWR), and Tensorflow with Keras and Python 
3-based libraries to build AI-based models.

The data collecting and pre-processing workflows 
are comparable to cutting-edge works [5], [35], 
[36]. The authors obtain Data from 2002 to 2020 

using Google Earth Engine platform [32], [37] with 
the official data portals of NASA (MOD16A2.006: 
Terra Net Evapotranspiration(PET) 8-Day Global 
500m ), CHC-UCSB(The Climate Hazards Group 
Infrared Precipitation  with Stations (CHIRPS) for 
Precipitation (Pr)) [38], OpenLandMap Soil Texture 
Class (USDA System), CSIRO(global plant root depth) 
datasets. Algorithm 1 includes a full description of 
each step.

In the  case of  groundwater  recharge,  OpenLandMap 
records are utilized to define the clay, sand, and 
organic carbon content of the soil. Hengl et al. [39] 
make available a global dataset of soil water content 
at field capacity with a resolution of 250 m. Now that 
the soil parameters have been specified, the water 
content at the field capacity and the wilting point 
was determined using the TM method (Section II-
A2).

2.	 Thornthwaite-Mathe (TM) Algorithm 

[40]

Soil attributes datasets from OpenLandMap will be 
investigated. The wilting point and field capacity of 
the soil will be determined as hydraulic properties 
of soil by applying some mathematical formulas to a 
variety of image collections. After iterating through 
the meteorological image collection and hydraulic 
parameters of soil, the TM technique will be used 
to determine groundwater recharge in the area of 
interest.

•	 To relate water content at wilting point to 
the soiltexture, Saxton and Rawls’ equations [4] 
are utilized.

                (1)
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Fig. 1. Entire workflow, which includes downloading the input data and data preparation for generating predictor variables such 
as reprojection, resampling, statistical processes, and the Thornthwaite-Mather technique. The AI-based algorithmic stages are 

represented by the last block

with:

      (2)

where: : represents the sand content of the soil 
(mass percentage), : represents the clay content of 
the soil (mass percentage), and : represents the 
organic matter content of the soil (mass percentage).

	                                                       (3)

•	 Similarly, the following formula is used to 
calculate the amount of water at field capacity :

       (4)

with:

        (5)

For the TM process to be formalized, certain 
definitions are required. According to Allen [41], the 
following definitions are provided:

                                      (6)

where: : total soil water accessible in the 
rootzone, expressed in millimeters, : the 
amount of water in the field when it is filled to 
capacity (m3), and 

  
refers to the water content 

at the wilting point (mm)., : rooting depth (in 
millimeters),

In Table 19 of Allen et al. [41] ,typical values of 
and 

  
for various soil types are provided.

The equation readily available water ( ):

                                                                      (7)

where is 
  

total available water and p is the 
average percentage of total available water that can 
be exhausted from the root zone before moisture 
stress (between 0 and 1).

The preceding equations and steps are all combined 
in the TM algorithm 2.

Given the  various   AI algorithms  for output 
prediction or forecasting, machine learning or 
deep learning, and different dimensions (temporal, 
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spatial, or spatiotemporal), the authors test ensemble 
learning and Keras models for spatiotemporal 
prediction, and CNN and LSTM for time series 
forecasting.

3.	 Machine   Learning-based    
Spatiotemporal  Groundwater Recharge 
Prediction (ML-GWR-STP)
When building a regressor model on a standard-form 

dataset, the most basic strategy is to utilize machine 
learning algorithms such as ensemble learning or 
any deep learning model to predict the value of a 
target variable (such as GWR) based on the values of 
the current predictor variables. The objective here 
is to accurately predict spatiotemporal groundwater 
recharge (GWR) using a variety of features. Some 
of the recently developed algorithms used to 
tackle similar problems are XGBoost, [42]–[44], and

4

Algorithm 1 DGPF Algorithm

Input:
idate, fdate; //Initial and final dates of interest.
Poi(LPOI , lPOI); // Longitude and latitude that defines
the location of interest with a point.
FV B ; // Van Bemmelen factor.
Scale; //A nominal scale in meters of the projection to
work in [in meters].
Source; //Source of dataset.

Output:
DFPOI

m //meteorological dataset as a DataFrame at the
location of interest;

0: procedure DGPF
1: //Initialization
2: Compute the wilting point θWP ; //based on θ1500t using

Eq. (1)
3: Compute the field capacity θFC ; //based on θ33t using

Eq. (4)
4: S ← GSPF((OpenLandMap datasets, Scale, SP =

’Sand’))
5: C ← GSPF((OpenLandMap datasets, Scale, SP =

’Clay’))
6: OC ← GSPF((OpenLandMap datasets, Scale, SP =

’Orgc’))
7: Compute Organic Matter OM; //based on Organic Car-

bon content OC using Eq. (3)
8: Pr ← EE.IMAGECOLLECTION() (UCSB-

CHG/CHIRPS/DAILY, idate, fdate, Poi,
SP=’precipitation’)

9: Pet ← EE.IMAGECOLLECTION()
(UCSB-CHG/CHIRPS/DAILY, idate,
fdate,Poi,SP=’evapotranspiration’)

10: Pr(month) ← SUMRESAMPLER() (Pr,
freq=1,scale factor=’month’,band name=’Precipitation’)

11: Pet(month) ← SUMRESAMPLER((Pet, freq =
1, scale factor = ’month’, band name =
’evapotranspiration’))

12: DFwearher ← FUSION((Pr(month),Pet(month)))
12: end procedure=0

Random Forest (RF) [2], [9]. To the authors’ knowledge,
prediction for groundwater recharge, storage, or withdrawals
has only been done at this time using either current predictions
[2], temporal updates [8], or distinct spatial and temporal
updates. Hence, ensemble learning approaches like XGBoost,
random forest (RF), etc., and the Keras model are examples
that the authors use to address this issue.

4) Deep Learning-based Groundwater Recharge Time Se-
ries Forecasting (DL-GWR-F): The purpose of multivariate
or univariate groundwater recharge prediction is to anticipate
present values in light of current or historical real-world
conditions [2]. Groundwater recharge time series forecast-
ing, on the other hand, focuses on predicting future val-
ues based on historical data. Modern sequence-to-sequence
models use LSTM autoregressive across timesteps, which
encourages temporal learning while ignoring evident spatial

Algorithm 2 TM Algorithm

Input:
idate, fdate ; // Initial and final dates of interest.
Poi(LPOI , lPOI); // Longitude and latitude that defines
the location of interest with a point.
FV B : // Van Bemmelen factor.
Zr(Poi(LPOI , lPOI)); // rooting depth around our region
of interest.
√; //parameter constant according to Table 22 of Allen

et al. (1998).
Output:

Rm; //Monthly Recharge
ST m,APWLm; //Available/Amount of water stored in
the root zone for the month m

0: procedure TM
1: //Initialization
2: Compute averaged value between reference depths of the

water content at field capacity mean(θWP (bi)); //based
on θWP (bi)

3: Compute averaged value between reference depths of the
water content at wilting point (θFC(bi)); // based on
θFC

4: Campute the theoretically available water TAW ; // based
on (θFC) and (θWP ) using Eq. (6)

5: if Pet /∈ P∇ and APWLm = APWLm−1(PET −P∇)
then

6: ST m ← ST m−1+(Pm−PETm); //amount of water
stored in the root zone for the month m

7: else if ST m /∈ ST FC then
8: Rm ← ST m − STFC + Pm − PETm; // recharge
9: ST m = ST FC ; // the water stored at the end of the

month becomes equal to water stored at field capacity
10: else if ST m ∈ ST FC then
11: APWLm ← STFC × ln(STm/STFC); // the accu-

mulated potential water loss for the month m
12: ST m = ST FC ; // and no percolation occurs
13: end if
13: end procedure=0

connections between variables, whereas CNN models directly
reflect variable associations. However, these algorithms often
undertake independent spatial and temporal updates and rely
on established strategies that are immutable across time. In
this study, the authors experimented with various AI-based
time series forecasting algorithms such as LSTM, and CNN,
with different strategies, including :

• Univariate and Multivariate: using one dependent variable
which is recharge, or with other impacting factors such
as precipitation, evaporation, etc.

• Forecast for a single time step using a single feature, or
all features.

• Forecast multiple steps: Single-shot that consists of mak-
ing all predictions at once, or Autoregressive which
makes one prediction at a time and feeds the output back
to the model.

The main algorithm 3 summarizes the entire system and calls
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Random Forest (RF) [2], [9]. To the authors’ 
knowledge, prediction for groundwater recharge, 
storage, or withdrawals has only been done at this 
time using either current predictions [2], temporal 
updates [8], or distinct spatial and temporal updates. 
Hence, ensemble learning approaches like XGBoost, 
random forest (RF), etc., and the Keras model are 
examples that the authors use to address this issue.

4.	 Deep Learning-based Groundwater 
Recharge Time Series Forecasting (DL-GWR-F)

The purpose of multivariate or univariate 
groundwater recharge prediction is to anticipate 
present values in light of current or historical real-
world conditions [2]. Groundwater recharge time 
series forecasting, on the other hand, focuses on 
predicting future values based on historical data. 
Modern sequence-to-sequence models use LSTM 
autoregressive across timesteps, which encourages 
temporal learning while ignoring evident spatial 
connections between variables, whereas CNN 
models directly reflect variable associations. 
However, these algorithms often undertake 
independent spatial and temporal updates and rely 
on established strategies that are immutable across 
time. In this study, the authors experimented with 
various AI-based time series forecasting algorithms 
such as LSTM, and CNN, with different strategies, 
including :

•	 Univariate and Multivariate: using one 
dependent variable which is recharge, or with 
other impacting factors such as precipitation, 
evaporation, etc.

•	 Forecast for a single time step: using a single 
feature, or all features.

•	 Forecast multiple steps: Single-shot that 
consists of mak- ing all predictions at once, or 
Autoregressive which makes one prediction at 
a time and feeds the output back to the model.

The main algorithm 3 summarizes the entire 
system and calls all functions.

5

all functions.

Algorithm 3 Main Algorithm

Input:
DFPOI

m ; //meteorological dataset as a DataFrame at the
location of interest
Rm ; //Monthly Recharge
ST m,APWLm; // Available/Amount of water stored in
the root zone for the month m
idate, fdate; //Initial and final dates of interest.
Poi(LPOI , lPOI) ; // Longitude and latitude that defines
the location of interest with a point.
FV B ; // Van Bemmelen factor.
Scale; // A nominal scale in meters of the projection to
work in [in meters].

Output:
MSE,MAE,RMSE · · · ; // all performance metrics

0: procedure MAIN
1: //Initialization
2: DFPOI

m ← DGPF()(idate,fdate,Poi(LPOI , lPOI),FV B ,
Scale,Source)

3: Rm,ST m,APWLm ← TM()
(idate,fdate,Poi(LPOI ,lPOI), FV B , Scale,√,

Zr(Poi(LPOI , lPOI)) ,Source)
4: GDFPOI

m ← FUSION((DFPOI
m ,Rm,ST m,APWLm));

5: Reshape Cm; //based on Ti and Ci

6: MSE,MAE,RMSE ←
AIM(DFPOI

m ,Rm,ST m,APWLm)
6: end procedure=0

III. STUDY AREA AND DATA

A. Study Area

The study area covers Morocco (Fig. 2) which is a sizable
nation in northwest Africa, stretching from the northernmost
point of the continent to the Sahel countries in its center. Its
terrain and climate are diverse, with a total size of around
446, 300 km2. It lies bettween 20◦00, 36◦00N latitudes, and
−18◦00,−2◦00E as longitudes. The nation has a tropical
climate overall, with highs of up to 35◦C(95◦F ) and lows
of 5◦C(41◦F ). In the Sahara regions have a hotter, drier
continental climate, whereas the coast has a warm, moderate
Mediterranean climate located on the north-west coast, which
is influenced by south-easterly and north-westerly winds.

Several regions in Morocco heavily rely on groundwater
for the year-round cultivation of crops and trees, including
watermelon, tomato, avocado, sour cherries, oranges, and other
specialty crops. Agriculture consumes 87% of water resources
according to the High Commission for Planning (HCP) [18].
The authors use the whole Moroccan territory for a large-
scale spatial prediction study area. Regarding time series
data, the authors use monthly measurements from 2002 to
2020 from Taounate’s two locations (Sidi Yahia Bni Zeroual
and Ourtzagh) to forecast groundwater recharge (GWR) and
train the LSTM and CNN-LSTM models. They choose two
zones as test sites for evaluating their proposed strategy and

Fig. 2: Map of Morocco as the study area, as well as the
Earth’s largest hot desert, covering nearly all of northern

Africa

hypotheses due to considerable discrepancies in crop output
between the two zones, and reports of in situ groundwater
depletion. Another rationale for selecting these locations was
an understanding of the links between groundwater depletion
for cannabis irrigation and tree vitality.

B. Data
Remote sensing−based data of characteristics that directly

or indirectly affect groundwater recharge were used as input
for machine learning models. For this investigation, the authors
combine data such as meteorological, hydrological, etc, from
numerous sources. The meteorological datasets consist of the
following: MODIS Terra Net that provides evapotranspiration
on an 8-day basis, and Climate Hazards Group InfraRed
Precipitation with Station Data (CHIRPS) that provides pre-
cipitation daily, both of them with a resolution of 500 m2.

Datasets from OpenLandMap are used to describe the
amounts of clay, sand, and organic carbon in the soil. Hengl
et al. [39] have made a global dataset of soil water content
at the field capacity with a resolution of 250m2 available.
As a result, both parameters are determined in the following
utilizing the global datasets that show the soil sand, clay, and
organic matter contents together with the prior equations. As
stated in the summary, in the TM method, the soil wilting
point and field capacity are two hydraulic parameters that
are frequently utilized. The wilting point denotes the depth
beyond which plant roots cannot extract water, while the field
capacity denotes the depth at which soil can no longer store
water. Water seeps into the lower levels when gravitational pull
exceeds a certain threshold. Allen’s dataset [41] leads to the
reasonable assumption that the effective rooting depth in the
vicinity of the region of interest Taounate (Olive) is Zr = 1.45.
The parameter p is likewise assumed to be constant and equal
to p = 0.65, which is consistent with the typical values listed
in Table 22 in [41], [45].

Input variables (Table I, Fig. 11) are adjusted using the z-
score scaling method. This approach is defined by Eq. 8, which
can be altered to limit the data range to a small range.

z =
x− µ

σ
(8)

Fig. 2. Map of Morocco as the study area, as well as the Earth’s 
largest hot desert, covering nearly all of northern Africa
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III.	 STUDY AREA AND DATA

A.	 StudyArea

The study area covers Morocco (Fig. 2) which is a 
sizable nation in north west Africa, stretching from 
the northern most point of the continent to the 
Sahel countries in its center. Its terrain and climate 
are diverse, with a total size of around 446,300 km2. 
It lies between 20◦00, 36◦00N latitudes, and −18◦00, 
−2◦00E as longitudes. The nation has a tropical 
climate overall, with highs of up to 35◦C (95◦F)
and lows of 5◦C (41◦F). In the Sahara regions have 
a hotter, drier continental climate, whereas the 
coast has a warm, moderate Mediterranean climate 
located on the north-west coast, which is influenced 
by south-easterly and north-westerly winds.

Several regions in Morocco heavily rely on 
groundwater for the year-round cultivation of crops 
and trees, including watermelon, tomato, avocado, 
sour cherries, oranges, and other specialty crops. 
Agriculture consumes 87% of water resources 
according to the High Commission for Planning 
(HCP) [18]. The authors use the whole Moroccan 
territory for a large-scale spatial prediction study 
area. Regarding time series data, the authors use 
monthly measurements from 2002 to 2020 from 
Taounate’s two locations (Sidi Yahia Bni Zeroual 
and Ourtzagh) to forecast groundwater recharge 
(GWR) and train the LSTM and CNN-LSTM models. 
They choose two zones as test sites for evaluating 
their proposed strategy and hypotheses due to 
considerable discrepancies in crop output between 
the two zones, and reports of in situ groundwater 
depletion. Another rationale for selecting these 
locations  was  an understanding  of the links 
between groundwater depletion for cannabis 
irrigation and tree vitality.

B.	 Data

Remote sensing−based data of characteristics that 
directly or indirectly affect groundwater recharge 

were used as input for machine learning models. For 
this investigation, the authors combine data such as 
meteorological, hydrological, etc, from numerous 
sources. The meteorological datasets consist of 
the following: MODIS Terra Net that provides 
evapotranspiration on an 8-day basis, and Climate 
Hazards Group InfraRed Precipitation with Station 
Data (CHIRPS) that provides precipitation daily, both 
of them with a resolution of 500 m2.

Datasets from OpenLandMap are used to describe 
the amounts of clay, sand, and organic carbon in the 
soil. Hengl et al. [39] have made a global dataset of soil 
water content at the field capacity with a resolution 
of 250 m2  available.

As a result, both parameters are determined in the 
following utilizing the global datasets that show 
the soil sand, clay, and organic matter contents 
together with the prior equations. As stated in the 
summary, in the TM method, the soil wilting point 
and field capacity are two hydraulic parameters that 
are frequently utilized. The wilting point denotes 
the depth beyond which plant roots cannot extract 
water, while the field capacity denotes the depth 
at which soil can no longer store water. Water 
seeps into the lower levels when gravitational pull 
exceeds a certain threshold. Allen’s dataset [41] leads 
to the reasonable assumption that the effective 
rooting depth in the vicinity of the region of interest 
Taounate (Olive) is  = 1.45.

The parameter p is likewise assumed to be constant 
and equal to  = 0.65, which is consistent with the 
typical values listed in Table 22 in [41], [45].

Input variables (Table I, Fig. 11) are adjusted using the 
z-score scaling method. This approach is defined by 
Eq. 8, which can be altered to limit the data range to 
a small range.

                                                                                (8)
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TABLE I
 DETAILS OF REMOTE SENSING DATASETS USED IN THIS STUDY.

Feature Product Dataset provider Resolution period Description

Precipitation CHIRPS UCSB/CHG 0.05○, 1981-2023 Climate Hazards Group InfraRed Precipitation

Temperature GLDAS-2.1 NASA GES DISC 0.25○ × 0.25○ 2000-2024 Global Land Data As similation System

Evaporization GLDAS-2.1 NASA GES DISC 0.25○ × 0.25○ 2000-2024 Global Land Data As similation System

SM GLDAS-2.1 NASA GES DISC 0.25○ × 0.25○ 2000-2024 Global Land Data As similation System

GWR GWR TM procedure of SM 2000-2024 Mean groundwater recharge

SM : Soil Moisture, TM: Thornthwaite-Mather

Fig. 3. Features maps: SM, precipitation, temperature, and GWR

IV.	 EXPERIMENTATION 
AND DISCUSSION

In this study, the authors successfully advance 
recent state- of-the-art works such as [2], [9], and 
extend the prediction of current groundwater 
recharge to forecast the future recharge of a new 
region by offering new insights and new methods, 
especially on using univariate and multivariate, 
forecasting future based on the past with different 
windowing, they also establish a pipeline to expand 
the application of their approach to any new region 
and relate the groundwater flow from mountains, 
trees vitality, and groundwater availability to the 
anticipated groundwater recharge and withdrawals. 
Finally, they suitably illustrate the extensibility of 
their approach to a framework, taking into account 
the fact that the used data are available for any 
region in the world.

a.	 Machine  Characteristics: The  experiment  
was conducted on a machine with the 
following specifications: 11th Gen Intel(R) 
Core(TM) i5-1135G7 processor with 2.40GHz x 
2.42GHz and 8.00GB of RAM.

b.	 Training Paradigm: The authors employe two 
ways for data splitting. First, they divide the 

dataset into three sections: training, testing, 
and validation, with percentages of 50%, 25%, 
and 25%, respectively. They set up and loop the 
pipeline for numerous iterations to conduct 
all necessary tasks such as data preparation, 
feature engineering, model building, 
optimization, hyperparameter tuning, and 
validation. Second, they replicate the data 
for the second time, dividing it into two 
parts training and testing, with 50% and 50% 
respectively. They train the obtained models 
using ideal parameters obtained the first time, 
and then they test them on the testing part as 
depicted in Fig. 4.

c.	 Performance Metrics: For spatiotemporal 
prediction, the   authors  use a range  of  
metrics  [46], such as  root mean  square   error 
(RMSE),  mean   square error (MSE),  and 
mean absolute error (MAE). Apart from the 
previously mentioned metrics, time series 
forecasting employs additional metrics such 
as the persistency index (PI), squared Pearson’s 
correlation coefficient (R2), relative root mean 
squared errors (rRMSE), absolute and relative 
biases (Bias and rBias), and the Nash-Sutcliffe 
efficiency (NSE) to evaluate forecast accuracy.
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Fig. 4. Dataset is divided into three sections for training, 
validation, and testing

A.	 Machine Learning-based Spatiotemporal 
Groundwater Recharge Prediction (ML-GWR-
STP)

The most straightforward model one can build on 
a dataset with a standard shape using XGBoost, 
Random Forest, or any other machine learning 
algorithms, predicts the value of a target variable, 
like GWD, based only on the values of the current 
predictor variables.

Fig. 5 illustrates the fact that the expected 
Groundwater recharge (GWR) for both the training 
period (2002–2013) and the validation period 
(2013–2020) is rather accurate. The authors built 
models such as RF (red line) and XGBoost (yellow 
line) can capture the temporal variations precisely. 
Here, the authors present just two models to avoid 
curve balding. However, one can notice that the RF 
model does not adequately capture the temporal 
patterns for the peak values low or high. This may 
be due to the hyperparameters max depth and min 
samples leaf, which control model overfitting. That 
conclusion is supported by the performance metrics 
mean absolute error (MAE) values of both models 
RF and XGBoost, which are 4.7795 mm/month and 
4.9936 mm/month, respectively. As a result, the RF 
model outperforms all other models as depicted in 
table II. The MAE for deep learning-based models 
(Keras model) is approximately 7.2255 mm/month, 
which is still far from the precision obtained by 
ensemble learning techniques as indicated in the 
table II. Fig. 6 confirms the outcome. The precise 
groundwater recharge estimations for the test or 
validation data continue to demonstrate the model 
significant generalizability. The Random forest 
feature importance for Pr, pet, apwl, and st is 0.60, 

0.063, 0.15, and 0.18, respectively, whereas for 
XGBoost it is 0.62, 0.047, 0.34, and 6.98e−08, in that 
order. The features importance demonstrates that 
recharge is primarily dependent on the amount 
of precipitation; the more precipitation, the more 
recharge. This is logical because, in the absence of 
precipitation, there is no water available for recharge 
or plant consumption, regardless of whether 
evapotranspiration occurs or not.

The normalized residual histograms in Fig. 7 a) show 
that the residuals are slightly left-skewed but closely 
reflect a normal distribution. In the same spirit, 
residual scatter plots with no discernible trend and 
residuals that are concentrated around 0 are shown 
in Fig. 7 c) and d) for both the RF and XGBoost models. 
As Fig. 7 b) further demonstrates, this implies that 
the residuals are independent and nearly normally 
distributed. Despite the slight bias, 98.48% of the 
standardized residuals of the XGBoost model reside 
in the [−2, 2] interval, indicating that its predictions 
are extremely robust. On the other hand, although 
RF achieves better MAE error performance than 
XGBoost, its standardized residuals fall within the 
[−25, 25] range. That conclusion is supported by Fig. 
7 e) and f ), which show that the regression scatters 
between the actual and predicted GWR by XGBoost 
follows a 1 : 1 relationship (Fig. 7 e)) but is very large 
for RF (Fig. 7 f)).

Compared to temporal predictions, the spatial 
predictions obtained by machine learning models 
are much more accurate as depicted in Fig. 8 and 
9. Table III shows that the MAE metric is between 
1.3031 mm/month by XGBoost and 0.7330 mm/
month using the Keras model. This result makes 
sense considering that there are only minor 
variations in the roughly same features and output 
in a given location over a month. The large value 
of MAE gotten by the AdaBoost model (7.7255 mm/
month) may be due to the hyperparameters tuning 
which leads to overfitting. The low values of all 
performance measures are caused by the fact that 
both the actual and predicted GWR values have 
many null values(zeros), which increases the divisor 
and lowers the mean value.

Fig. 10 depicts the residual analysis of the model 
estimates.
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Time step [month]

Fig. 5. Mean actual, XGBoost, and RF-based predicted groundwater recharge (GWR) over the region for each month, 
with 2010–2020 being the validation years

Time step [month]

Fig. 6. Mean actual and Keras model predicted groundwater recharge (GWR) over the region for each month, 
with 2010–2020 being the validation years

TABLE II
TEST ERROR METRICS OBTAINED USING DIFFERENT MACHINE LEARNING MODELS-BASED TEMPORAL PREDICTION.

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Random Forest Regressor(RF) 4.7795 190.6882 11.1021 0.4412 0.5401 nan 0.0500

AdaBoost Regressor(ADA) 4.5949 203.1542 10.9712 0.7540 0.4014 nan 0.8030

CatBoost Regressor(CATBOOST) 4.8592 162.9859 10.7098 0.4595 0.6233 nan 0.4840

Extreme Gradient Boosting(XGBOOST) 4.9936 212.4883 11.7745 0.3886 0.5507 nan 0.0160

Decision Tree Regressor(DT) 5.6609 299.4790 13.9545 0.5924 0.3698 nan 0.0080

Keras Model 7.2255 274.8504 16.5786 0.4685 Nan 1.8265 1.00
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Fig. 7: Standardized residuals are restricted within the [−2, 2] interval and Q−Q plots. Residual diagnostics
(actual-predicted) for the groundwater recharge (GWR) model RF and Keras model, respectively, representing the best and

worst predictions for the test data (2013–2020). Scatter plot of the actual and predicted values For the best prediction model
XGBoost and worst prediction RF of groundwater recharge (GWR)

 Fig. 7. Standardized residuals are restricted within the [−2,2] interval and Q−Q plots. Residual diagnostics (actual-predicted) for 
thegroundwater recharge (GWR) model RF and Keras model, respectively, representing the best and worst predictions for the test 
data (2013–2020). Scatter plot of the actual and predicted values For the best prediction model XGBoost and worst prediction RF of 

groundwater recharge (GWR)
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Fig. 8. Mean actual, machine learning models (XGBoost, RF, CatBoost)-based spatial predicted groundwater recharge (GWR) over 
the whole of Morocco

TABLE III
TEST ERROR METRICS OBTAINED USING DIFFERENT MACHINE LEARNING MODELS-BASED SPATIAL PREDICTION.

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Random Forest Regressor(RF) 1.0227 26.5472 5.0089 0.9828 0.2274 0.7767 0.2060

CatBoost Regressor(catboost) 1.2154 31.0845 5.4822 0.9798 0.2779 0.8594 0.9720

Extreme Gradient Boosting(xgboost) 1.3031 42.2660 6.3056 0.9725 0.2703 0.7446 0.0420

Decision Tree Regressor(DT) 1.2542 46.7057 6.6822 0.9696 0.2269 0.7885 0.0130

AdaBoost Regressor(ADA) 7.7255 103.9699 10.0736 0.9316 1.8740 2.6578 0.9720

KerasModel 0.7330 9.0798 3.0132 0.8288 Nan 10.3525 0.986

Fig. 9. Mean actual, Keras model-based spatial predicted 
groundwater recharge (GWR) over the whole of Morocco

Fig. 10. a) and b) demonstrate that in relevant 
recharge areas, models underpredict (negative mean 
error) more than they overpredict, and the majority 

of these huge errors occur in the extreme west-
north and the chain of mountains of Atlas areas. In 
contrast, in the middle and south of Morocco, where 
the climate is extremely arid, with annual average 
precipitation rates nearing 0 mm/year in most places 
where no recharge occurs, the model predictions 
are close to the ground truth. Fig. 10. c) and d) depict 
residual scatter plots for both models, revealing no 
discernable features and residuals concentrated 
near 0. This indicates that the residuals are nearly 
normally distributed and independent. The 
standardized residuals for both models are in the 
large interval, which leads to worse forecasts. This 
is because of the issue with the picks predictions, as 
Fig. 10. e) and f ) illustrate.
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Fig. 10: The spatial distribution of the MSE between machine learning model-predicted GWR and interpolated in situ data
throughout the testing period (January 2016). Residual diagnostics (actual-predicted) for the groundwater recharge (GWR)

models RF and XGBoost, which indicate the best and worst predictions based on test data. A scatter plot comparing actual
and expected values

Fig. 10. The spatial distribution of the MSE between machine learning model-predicted GWR and interpolated in situ data 
throughout the testing period (January 2016). Residual diagnostics (actual-predicted) for the groundwater recharge (GWR) models 
RF and XGBoost, which indicate the best and worst predictions based on test data. A scatter plot comparing actual and expected 

values

B.	 Deep Learning-based Groundwater 
Recharge Time Series Forecasting (DL-GWR-F)

In this study, the authors extend machine learning-
based models to deep learning-based models for time 
series   forecasting. They  investigate  two  advanced  
deep learning algorithms: Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks 
(RNN)-based architecture, Long short-term memory 
(LSTM) in residual and autoregressive forms, with 
varied dataset windowing shapes, one last step to 
forecast one future step, many past steps to forecast 
one future step, many past steps to forecast many 
future steps. The main goal of this work is to forecast 
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GWR in a given location. In this section’s exploration 
part, the authors investigate the GWR variable and 
other features of the dataset to state hypotheses.

Fig. 11 depicts the evolution of all features such as 
precipitation (pr), evapotranspiration (pet), water 
lost in the field (apwl), water storage (st), and GWR 
(rech) over time from 2002 to 2020. They illustrate 
the evolution of characteristics over time to create 
periodicity hypotheses for time series- based 
algorithms. Also, Fig. 11 shows that there are not 
many disruptions, which is normal for natural 
occurrences. Fig. 12 illustrates the average GWR 
resampled over Month, Quarter, and Year for 
exploration purposes in order to identify the time 
unit of periodicity.

Fig. 11. Features maps: SM, precipitation, temperature, 
and GWR

Fig. 12. Average GWR resampled over Month, Quarter, 
and Year

Fig. 13. Sine and cosine transform of GWR yearly signal A
i
(c)

Fig. 14. Sine and cosine transform of GWR monthly signal A
i
(c)

There are numerous techniques to deal with 
periodicity. For example, sine and cosine transform 
can be used to figure out the time of season and 
year signals, making it possible to obtain acceptable 
signals. However, the time of day is not a suitable 
model input. Having data on groundwater recharge, 
it has a distinct quarterly and annual cycle, as shown 
in Fig. 13, 14.

The most crucial frequency features are accessible 
to the model through Fig. 13 and 14. In this instance, 
it is possible to understand the importance of time 
frequencies like year and season. For instance, by 
extracting features from the Fast Fourier Transform, 
one can figure out which frequencies are crucial. 
Fig. 15 shows that the noticeable peaks occur at a 
frequency close to  1

Year
.
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a.	 Data Windowing: There are four data 
windowing paradigms in the literature, 
One2One, One2Seq, Seq2One, and Seq2Seq 
[47], [48], and the choice of one of them is based 
on a hypothesis made upon many factors such 
as problem formulation, dataset shape, etc. 
However, a model that solely relies on the 
present circumstances to forecast the value of 
a single feature one-time step into the future. 
The current input values of a single-time-step 
model are unrelated to any previous values. 
It is unable to observe how the input features 
evolve over time. In order to handle the 
problem of forecasting Groundwater Recharge 
(GWR) based on predictors, the model requires 
access to numerous time steps for that reason 
the authors use Seq2One and Seq2Seq.

Fig. 15. Evolution of features overtime

Fig. 16. Two examples of data windows of GWR variable with 
Window(input = 12, labels = 1, shift = 1), GWR as feature and 

target variable in GWR univariate forecasting

To develop a model that can forecast future 

outputs based on the previous inputs, 
one needs to take a time series dataset 
which is a list of consecutive entries, and 
convert it into a window-shaped dataset of 
entries and label pairs (inputs, labels). Data 
windowing is a crucial stage in time series-
based algorithms. One needs to specify the 
window(s) that determine the time step(s) 
in the past, time step(s) in the future, and 
offset time. Forecast one step at a time using 
all features or just one. To predict numerous 
phases at once, use single-shot forecasting. 
Make one prediction at a time with 
autoregressive, then feed the results back 
into the model. Data windowing is one of 
the primary pretreatments used to reshape 
data suitably for time series-based models. 
One may want to construct a variety of data 
windows depending on the task and type of 
model. To make a prediction one month into 
the future based on 12 months of history, 
for instance, one might define a window 
with (input = 12, labels = 1, and offset = 1), 
alternatively, one could base a prediction 
12 months into the future on one or several 
years of history, as indicated in the Figures 
16, and 17).

Fig. 17. Tow examples of data windows of GWR variable with 
Window(input = 12, labels = 12, shift = 12), GWR as feature and 

target variable in GWR univariate forecasting

b.	 Univariate vs. Multivariate Forecasting: In 
terms  of  the features  involved, there  are  two  
types: Univariate and multivariate forecasting. 
Univariate forecasting uses only one feature, 
in this case, the groundwater recharge (GWR) 
variable, whereas multivariate forecasting 
includes many features (more than two 
variables), including precipitation (pr), 
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evapotranspiration (pet), water lost in the 
field (apwl), and water storage (st) features in 
addition to the GWR.

In a window with 12 timesteps of input and 
12 timesteps of output, for the precipitation 
variable as well as other variables, one may 
only provide a series of timesteps of past 
values, for instance, 12 timesteps as shown in 
Fig. 18, but for the GWR variable, the authors 
provide 12 timesteps of past values and 12 
timesteps as labels, resulting in 24 timesteps, 
as shown in Fig. 19. The 12 timesteps as labels 
are used to validate model predictions and 
calculate performance indicators.

1.	 CNN and LSTM-based Univariate GWR 
Forecasting

In this study, LSTM and CNN models powered by 
remote sensing data are built and evaluated. The 
models are built using TensorFlow, Keras, and 
Python 3. The LSTM model had an input layer, an 
output layer, a dense layer completely connected to 
hidden nodes, and an LSTM layer composed of each 
cell memory. Data are communicated through the 
max-pooling layer and flattened layer in the CNN 
model before being delivered from the input layer to 
the 2D convolution layer.

The authors build an LSTM model with 100 neurons 
in the first hidden layer and 1 neurons in the output 
layer to forecast groundwater recharge (GWR). The 
suggested model is assessed using the MSE loss 
function (Fig. 20), and the model is fitted with a 
batch size of 36 instances using the effective Adam 
version of stochastic gradient descent. The authors 
adjust several hyperparameters, including the 
number of training epochs, the dropout rate (20%), 
and the input shape, which will be many timesteps 
in the past to forecast one in the feature, depending 
on the forecasting window shape. Due to its ability 
to converge more quickly than the sigmoid or 
tangent hyperbolic functions, the  ReLU  function 
was chosen for use as an activation function.

Fig. 18. Three examples of windows of precipitation feature 
with Window(input = 12, labels = None, shift = None), as features 

in GWR multivariate forecasting

Fig. 19. Three examples of Data windows of GWR as feature 
and target variable with Window(input = 12, labels = 12, shift = 

12), in GWR multivariate forecasting

Fig. 20. LSTM Loss function changes according to the number 
of epochs for training and testing

https://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br


http://dx.doi.org/10.21622/RESD.2024.10.2.933

335

http://apc.aast.edu

Journal of Renewable Energy and Sustainable Development (RESD)                                   Volume 10, Issue 2, December 2024 - ISSN 2356-8569

Deep learning models performance over Region of 
interest (ROI) is shown by the time series in Fig. 21. 
The magnitude and variability of GWRs obtained 
from the  LSTM  (red  dotted  line in Fig. 21)  model  
were consistent with those of in situ measurements 
(blue line). The  LSTM  univariate model captured 
both the monthly and seasonal dynamics of in 

situ GWR, apart from showing stable performance 
for the test period (March 2013 to December 
2019). However, a comparison of the LSTM model 
predictions with in situ measurements indicate that 
the model tends to underestimate large values while 
overestimating small or zero values of GWRs.

Time step [month]

Fig. 21. GWR time-series comparisons predicted by the LSTM (red dotted line) Univariate model with in situ measurements 
(blue line)

2.	 LSTM and CNN-based Multivariate 
Forecasting

In the previous section, the authors attempt to 
forecast GWR based just on fluctuations in GWR, 
however, in this section, LSTM, and CNN models 
are utilized to accurately predict GWR over 
Morocco utilizing various feature combinations 
from multi-satellite data. The deep learning models 
include a variety of input variables (precipitation, 
evapotranspiration,  changes  in  soil  moisture 
storage, and so on). It is critical to understand the 
sensitivity of their predictive performance to avoid 
overfitting issues. The forecast accuracies of several 
parameter combinations are compared during 
hyperparameter optimization based on Bayesian 
optimization.

a.	 Seq2One Multivariate LSTM, and CNN 
Forecasting: A comparison of the two deep 
learning models’ predictions of groundwater 
storage change with in situ measurements of 
the GWR in Morocco revealed that the LSTM  
model is more accurate with Normalize RMSE 
(is determined using the normalized values 
of the true values and the anticipated values) 
RMSE = 0.2952 mm/month, than the CNN 
model with RMSE = 0.3501 mm/month. The 
outcomes are depicted in Fig. 22.

Fig. 22. Normalize RMSE error values for LSTM and CNN 
models for Test and Validation

The deep learning models performance over 
ROI is shown by the time series in Fig. 23. The 
magnitude and variability of GWRs obtained 
from the LSTM (red dotted line in Fig. 23) 
and CNN (green line in Fig. 23) models are 
consistent with those of in situ measurements 
(blue line). The LSTM and CNN Multivariate 
models capture both the monthly and 
seasonal dynamics of in situ GWR associated 
with all features such as precipitation, 
evapotranspiration, APWL, ST, and recharge 
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itself, apart from showing stable performance 
for the test period (March 2013 to December 
2019). However, a comparison of the LSTM 

model predictions with in situ measurements 
indicates that the model tends to overestimate 
GWRs.

Time step [month]

Fig. 23. GWR time-series comparisons Seq2One Multivariate forecasting by the LSTM, CNN Multivariate model 
with in situ measurements

b.	 LSTM Residual Model: Building models that 
forecast  how the  value  changes  in  the  
following time step rather than the upcoming 
value is a typical practice in time series analysis. 
Similar to this, in deep learning, residual 
networks, or ResNets, refer to topologies 
where each layer increases the model 
cumulative output. That is how one benefits 
from the understanding that the change 
should be minimal. In essence, a model with 
a residual link facilitates faster convergence 
and somewhat improves performance. Any 
model can be utilized in conjunction with this 
strategy. The LSTM model, to which it is being 
applied in this instance, has been parametrized 
to make sure that the initially anticipated 
changes are modest  and do not overwhelm 
the residual connection.

Fig. 24 illustrates how the residual technique 
outperformed LSTM in terms of forecasting, 
with RMSE falling from 0.4539 for the LSTM 
model to 0.4094 for Residual LSTM. With an 
RMSE of 0.3501, CNN remains the best model 
out of all those with and without residuals.

c.	 Seq2Seq Multivariate LSTM, CNN, and 
LSTM Autoregressive Forecasting: Both the 
single-output and multiple-output models in 
the previous sections made single-time step 
predictions, one month into the future. This 
section looks at how to expand these models 
to make multiple time-step predictions. In a  
multi-step prediction, the model needs to learn 

to  predict a range  of  future  values. Thus, unlike 
a single-step model, where only a single future 
point is predicted, a multi-step model predicts a 
sequence of future values. There are two rough 
approaches to this: (i) Single shot predictions 
where the entire time series is predicted at 
once. (ii) Autoregressive predictions  where 
the model only makes single-step predictions 
and its output is fed back as its input. In this 
section, all the models predict all the features 
across all output time steps. For the multi-
step model, the training data again consist of 
monthly samples. However, here, first, the 
models learn to predict 12 months (one year) 
into the future, given 12 months of the past 
(Fig. 25), and then to predict one year into the 
future, given 3 years of the past.

Autoregressive refers to that the output of 
each model can be fed back into itself at each 
stage, and predictions can be made based on 
the preceding one. The authors used both 
of the above models (CNN and LSTM) in an 
autoregressive feedback loop, but they build 
an LSTM-Autoregressive (LSTM-AR) model 
that is specifically designed for autoregressive 
feedback. Fig. 27 depicts the obtained result, 
which shows that LSTM-AR (sky blue line) 
captures well the change of GWR, after which 
CNN and LSTM executed an autoregressive 
feedback loop. The obtained RMSE for the 
three approaches are 0.4185, 0.4419, and 
0.4590, in that order: LSTM-AR, CNN, and 
LSTM as shown in Fig. 26.
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Fig. 24. Normalized RMSE error values for Residual LSTM, 
LSTM, and CNN models for test and validation

Fig. 25. Example of data windows of GWR variable with the 
blue dotted line as inputs, black dots as actual labels, and 

orange dots as forecasted values: 
Window(input = 12, labels = 12, shift = 1)

Fig. 26. Normalize RMSE error values for LSTM-Autoregressive 
(LSTM-AR), LSTM, and CNN models for Test and Validation

d.	 Long-term Autoregressive LSTM Forecast: 
Given the importance of long-term forecasting 
systems in general, and groundwater in 
particular, the authors anticipate a lengthy 
duration of investigation to pave the way 
for building lengthy-term memory by 
investigating autoregressive principles. For 
predicting the future value of GWR, the RMSE 
function is used following the number of time 
steps to be taken into account. One can learn 
about the best window shape for accurate 
prediction. Fig. 28 shows the plot showing 
the correlation between the RMSE and the 
number of history timesteps used to forecast 
the GWR value during the whole period. As 
seen in Fig. 28, the value of a window from 
which one obtains the minimum MSE is the 
three timesteps in a month. When they try to 
anticipate the far future, the MSE value rises; 
the further they go into the future, the more 
imprecision they receive.

The authors discovere that a good period in 
the past to predict one year in the features is 
three years after hyper-parameters tweaking 
with regard to the past period and future 
period. Figure 29 displays the predictions made 
using the LSTM autoregressive model and the 
ground truth of the GWR. More than any 
other model before it, the model accurately 
represents the high and low values in GWR. 
This conclusion is supported by Normalized 
MAE  RM AE = 0.4815 as depicted in Fig. 28. 
As shown in Fig. 29, they investigate 3 years in 
the past to predict 1 year in the future.

It  is well understood  that   groundwater    
recharge cannot be readily monitored and 
is influenced by spatially and temporally 
complicated processes. In addition, 
Groundwater is critical to the preservation of 
ecosystems and the adaptation of humanity 
to climate change which is with long-term 
impacts. However, given the importance of 
long-term forecasting systems in general, 
groundwater recharge, storage, and 
withdrawal in particular, and as shown in 
Fig. 30, the authors investigate the prospect 
of long-term future forecasting, which, while 
not precise, is a significant tool for capturing 
groundwater dynamics and providing 
scientific guidance for decision-makers.
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Time step [month]

Fig. 27. GWR time-series comparisons Seq2One Multivariate forecasting by LSTM, LSTM AutoRegressive, CNN Multivariate 
models with in situ measurements

Time steps [month]

Fig. 28. RMSE according to the number of timesteps of the past 
to take into consideration to predict the future value of GWR

Fig. 29. Example of data windows of GWR variable, blue dotted 
line as inputs, black dots as actual labels, and orange dots as 

forecasted values:
Window(input = 36, labels = 12, shift = 1)

Time step [month]

Fig. 30. Multivariate forecasting of one year (12 months) in the future based on 3 years in the past
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e.	 Hyperparameters Tuning: In this study, the 
hyperparameters tuning for the deep learning 
algorithms such as CNN, and LSTM are 
found using cross-validation using Bayesian 
optimization techniques based on Python’s 
Keras tuning library. The optimization range 
of values and hyperparameter sets are set up 
as depicted in Table IV.

TABLE IV
HYPERPARAMETERS OF THE DEEP LEARNING MODELS 

AND THE OPTIMIZATION RANGE OF VALUES.

Model Hyperparameter Range of values

LSTM

Number of hidden layers {1, 2, · · · , 10}

Number of nodes per layer {5, 10, · · · , 150}

Time lag (month) {1, 2, · · · , 12}

Dropout rate {0.1, 0.2, · · · , 0.5}

Batch size {16, 32, · · · , 128}

Epoches {1, 2, · · · , 100}

Seq lenth {1, 2, · · · , 52}

CNN

Number of filters {16, 32 · · · , 128}

Number of hidden layers {1, 2, · · · , 10}

Number of nodes per layer {1, 10, · · · , 100}

Time lag (month) {1, 6, · · · , 12}

Dropout rate {0.1, 0.2, · · · , 0.5}

Batch size {5, 10, · · · , 128}

Epoches {1, 10, · · · , 100}

Dense Size {1, 2, · · · , 256}

Seq length {1, 2, · · · , 52}

Number of filters {1, 2, · · · , 256}

Table V shows the most performance 
measures for both techniques with tuned 
hyperparameters, which favor the LSTM 
technique over CNN.

TABLE V
TEST ERROR METRICS OBTAINED USING DIFFERENT 

AI-BASED ALGORITHMS WITH TUNED 
HYPERPARAMETERS.

Model Error metric Range of values

LSTM

NSE −0.87

R2 0.10

RMSE 20.05

rRMSE 12.19

Bias 15.13

rBias 9.19

PI −0.43

CNN

NSE 0.05

R2 0.09

RMSE 22.31

rRMSE 13.56

Bias 2.80

rBias 1.70

PI −0.07

C.	 Hypothesis Validation with the in Situ 
Information

Fig. 31 displays the annual precipitation average in 
millimeters per year (mm/year), while Fig. 32 displays 
the annual recharge average in millimeters per year 
(mm/year). While recharge varies between 0 mm/y 
and 500 mm/y, precipitation rates range from 500 
mm/y to 1500 mm/y. The blue dots in Fig. 31 indicate 
a rate of precipitation of about 900 mm/year; the 
authors observe consistency in Fig. 32, and the green 
points indicate a rate of recharge of about 300 mm/
year, and so on for all points pairwise comparisons 
between Figures 31 and 32. One can observe that 
the rates of recharge (Fig. 32) and precipitation (Fig. 
31) are completely correlated. Recharge increases in 
direct proportion to precipitation, and vice versa. 
This conclusion backs up the previous one that is 
reached using temporal data. One can infer from 
this that precipitation and recharge are spatially 
correlated. Consequently, there is a spatiotemporal 
regression between precipitation and recharging.

According to Fig. 33, Sidi Yahia Bni Zeroual’s (place 
1) annual recharge is approximately twice as high as 
Ourtzagh’s (place 2). The outcome also demonstrates 
a high degree of yearly recharge variability, with 
values in places 1 and 2 ranging from 0 mm/year 
to 430 mm/year and 0 mm/year to 220 mm/year, 
respectively. The result also demonstrates that 
there has been no recharging in the two locations 
over the last three years. The authors observe 
during their visit to both locations that, despite 
the first location receiving more recharge due to 
its higher precipitation, the vitality of the trees has 
decreased and the habitats are suffering from thirst 
and well depletion, whereas the second location, 
despite receiving less recharge and precipitation, 
has healthy trees and wells that are still filled with 
water. Because of the changing climate, Morocco 
and the rest of the world are experiencing lower 
precipitation. Given the established spatiotemporal 
relationship between groundwater recharge and 
precipitation, one can conclude that groundwater 
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is a limited resource, and uncontrolled depletion of 
this priceless substance poses a serious risk to the 
sustainability of life.

Fig. 31. Average annual of precipitation rates (mm/year), 
including two areas of study, in the north of Morocco

Fig. 32. Average annual of recharge rates (mm/year), including 
two areas of study, in the north of Morocco

Fig. 33. Groundwater recharge comparison between 
the two places

Fig. 34. Water equivalent thickness of place 1 (ROI1)

For areas dominated by Groundwater irrigation, as 
shown in Place 1, groundwater withdrawal causes 
a negative water equivalent thickness and drop in 
total water storage as shown in Fig. 34. It is evident 
that starting in 2019, the overall water storage has 
decreased below zero and has continued to decline 
significantly, even dropping.

The scenario is as follows, according to the data the 
authors have gathered from the locals of the area: 
Around 20 years ago, people used surface water for 
agriculture and the water came from mountains. 
Agriculture consisted of subsistence crops such 
as wheat, vegetables, and melons. Since the year 
2000, residents of place 1 have switched from 
subsistence farming to cannabis farming, which is 
a spring-summer culture with little precipitation. 
Farmers began digging wells illegally and without 
authorization, and as people realized that each 
well meant a loss of a source of water flow from 
mountains, more wells were drilled until there was 
no longer a source of water flow from mountains. 
The locals began drinking water from wells. When 
the water in the wells first started to run out, they 
were around 60 meters deep. Farmers then dug 
new, deeper wells, and so on. More than 50 wells of 
various depths are now counted in the area of 6 km2 

in place 1. People in that area suffer from thirst, so 
the local authority brings drinking water pipes from 
another location because there are only two wells 
with a high deep depth and little water available 
in Place 1. Locals have informed the authors during 
their tour that many families had left the region and 
moved to large cities like Tanger, Fes, and Casablanca.
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V.	 CONCLUSION, PERSPECTIVE, 
AND RECOMMENDATION

Physical modeling of the GWSC requires extensive 
data for numerous variables, and highly skilled 
researchers, and is a nonlinear and demanding 
undertaking. A viable alternative to traditional 
models for capturing complicated interactions 
between  GWR-related  factors is artificial 
intelligence (AI). Additionally, it is simple to 
include satellite data for multiple factors to forecast 
spatiotemporal GWR with AI models. In this study, 
several feature combinations from multi-satellite 
data are used to forecast GWR across Morocco 
accurately using CNN and LSTM models, including 
different variations of residual and autoregressive 
models. Different input variables (precipitation, 
average  evapotranspiration, changes in soil moisture 
storage, AWPL, and ST) are used in the deep learning 
models. To prevent overfitting issues, it is important 
to comprehend the sensitivity of their predictive 
performance. Different parameter combinations 
are used for hyperparameter optimization based 
on Bayesian optimization, and the combinations 
prediction accuracies are compared. Overall, the 
findings demonstrate that, in terms of the RMSE, 
the LSTM autoregressive model predict GWR maps 
somewhat better than the  other models described 
in this study.

As was previously noted, managing groundwater 
involves keeping track of various processes, 
including recharge, storage, withdrawal, depth 
level, etc. The first natural process is a recharge, in 
which freshwater seeps into the earth to restock 
subsurface aquifers. The other processes mentioned 
above follow and are the focus of the authors’ 
following studies.

Active monitoring  of  groundwater  recharge,  
storage, and withdrawals is  still restricted to 
just a few places worldwide, despite the growing 
global drive toward   sustainable  groundwater  

management techniques and water security in 
general. In this work, the authors effectively 
illustrate the applicability and adaptability of their 
AI and remote sensing methods- based approach, 
which might help water managers achieve their 
goals for water management. In Morocco, agriculture 
is becoming increasingly reliant on irrigation, and 
while the authors recognize the importance of 
agriculture to the national economy and its value 
in providing food for ecosystems, rising withdrawal 
rates in unmanaged basins are dangerous and pose a 
threat to the national reserve.
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during the current study are available online as 
described in the Data subsection, and in Fig. 1.
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