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ABSTRACT

In most of the world’s nations, groundwater management is infrequent despite its importance and scarcity.
Continuous monitoring and precise projections of spatiotemporal groundwater recharge change can aid in sustainable
development and effective groundwater resource management. Open public remote sensing datasets were used to
develop machine learning prediction models (RF, XGBoost, AdaBoost, CatBoost, DT, Keras models) and time series
forecasting models (CNN, LSTM, and its variants) for predicting and forecasting groundwater sheet recharge,
respectively. The publicly available datasets are merged, processed, and organized into three parts for training, testing,
and validation: 2002-2009, 2010-2015, and 2015-2020. A comparison of spatiotemporal prediction models’ estimates
of groundwater recharge in Morocco revealed that RF and XGBoost were the more accurate methods for temporal
(spatial) recharging, with MAE values of 4.7795 mm/month (1.0227 mm/month) and 4.9936 mm/month (1.3031 mm/
month), respectively. Regarding time series forecasting, the LSTM model performed better, with an MAE of 20.05
mm/month. The proposed models’ performances on validation datasets demonstrate the utility and scalability of the
proposed combined remote sensing and artificial intelligence-based framework, opening up a new pathway for large-

scale groundwater management. The established workflow enables the study to be extended to any other site.

Index-words: Groundwater recharge, Artificial

intelligence, Remote sensing, Prediction,

Forecasting, Time series, Tree vitality, Soil moisture.

I INTRODUCTION

GROUNDWATER is one of the most important
sectoral exposures to climate change [1] and a vital
component of maintaining the world’s food supply.
It is regarded as the primary source of fresh water
and essential to preserving the planet ecological
balance. Furthermore, it is a necessary component
of the earth crust that prevents the earth from
burning. Despite its significance and limited
availability, it is hardly ever fully utilized and
groundwater management is rarely done in most
countries of the world [2].

The public release of official remote sensing data
portals in recent years has broadened the range
of applications for remote sensing analysis and
boosted the size of the remote sensing community.
Examples of these portals include those of the
NASS [3], CHC-UCSB, OpenlandMap [4], and
CSIRO. etc. With the increased availability of
gridded hydrometeorological data and digitalized
hydrography data with high spectral resolution for
large scale, a variety of hydrologic applications may

be precisely established for a country size.

Artificial intelligence (AI) has become more
frequently incorporated into remote sensing-based
groundwater management [5], offering innovative
perspectives and new tools for predicting and
forecasting groundwater behavior, including the
status of groundwater supplies, groundwater levels
and depth, recharge and withdrawal rates, and other
hydrological variables [2], [6]-[10].

Data from remote sensing has been extensively
analyzed using Al approaches for groundwater
management. Machine learning (ML) including
deep learning (DL) are algorithms that have the
capacity to learn from vast amounts of data and
produce predictions, forecasting, classifications, and
so on. Support vector machines (SVM) [11], random
forests (RF) [11], and artificial neural networks
(ANN), among others, are examples of machine
learning (ML) approaches that have been used to
predict groundwater depth levels [12], [13], calculate
recharge rates [14], and map groundwater potential
zones [15].
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For instance, the machine learning algorithm
SVM is used to predict groundwater levels in the
northeast United States using GRACE (Gravity
Recovery and Climate Experiment) MODIS
(Moderate Resolution Imaging Spectroradiometer),
and in-situ climate variables [16]. Random Forests
(RF)was used to forecast groundwater withdrawals
in Arizona using publicly available datasets and in
situ groundwater withdrawal data [2]. Regarding DL
methods, groundwater management applications
have used convolutional neural networks (CNN)
and recurrent neural networks (RNN) to analyze
remote sensing data to anticipate groundwater
storage spatiotemporal change [17]. Convolutional
neural network-LSTM (CNN-LSTM) and long
short-term memory (LSTM) models were validated
using on-site data from South Korea’s National
Groundwater Monitoring Network (NGMN).

Even though AI techniques have demonstrated
significant potential for groundwater management
based on remote sensing datasets, these techniques
have only been tested in a few regions and
countries, and there are still several challenges
to overcome, including Al model interpretability,
data availability, and data quality. Furthermore,
more study is required to cope with the problem
of fusing diverse data sources and producing
more trustworthy Al models. The objective of this
study is to investigate the fusing of hyperspectral
multisource dataset perspectives and long-term
forecasting, as well as predicting groundwater
recharge/withdrawal in the feature space.

Groundwater is heavily used in agriculture in
numerous Moroccan locations to grow year-
round crops and trees such as watermelon, tomato,
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system (AI-GWR), which is, to their knowledge,
a first of its kind. They estimate spatiotemporal
changes in groundwater charges using remote
sensing data and artificial intelligence. They develop
an end-to-end workflow that starts with gathering
datasets from multiple sources and moves on to
preprocessing, fusing, scaling, normalizing, and
other steps. The obtained dataset is based on several
influencing factors, including meteorological,
hydrological, soil moisture, and eva-transpiration
data, as well as groundwater recharge information.
In addition to using ensemble learning algorithms
such as Random Forest (RF), AdaBoost, XGBoost,
etc. To perform a prediction of GWR, investigate
several CNN and RNN-based time series forecasting
methodologies, such as LSTM, residual LSTM, and
LSTM autoregressive. Before LSTM and CNN-driven
windowing of datasets and the provision of a full
deep analysis connected to target the groundwater
recharge. Additionally, the authors carry out a more
thorough investigation by formulating various data
windowing strategies, such as temporal, spatial,
and spatiotemporal. To validate the proposed
approach, they conduct a novel case study of the
Morocco region. They focus on how land use affects
groundwater recharge in two areas in Morocco. For
prediction and forecasting, they adapt cutting- edge
algorithms.

The remaining portion of this work is structured
as follows: the second section contains Al-based
groundwater recharge estimations (AI-GWR). The
study area and data processing are presented in
Section III. Section VI provides an experimentation
and discussion. The concluding section offers a
perspective, a recommendation, and a conclusion.

avocado, sours, oranges, and a variety of other
specialty crops. Agriculture consumes 87% of water

II. AI-BASED-GROUNDWATER
RECHARGE ESTIMATES (AI-GWR)

resources [18]. Morocco, like other parts of the
world, has faced two major challenges over the last
two decades: water- intensive agriculture and a dry
climate with highly erratic precipitation. Reliable
and accurate spatiotemporal groundwater recharge
estimates are critical for determining the quantity
of groundwater depleted and effectively managing
groundwater resources. Groundwater fluctuations
can be determined by hydrogeological features and
boundary conditions of groundwater systems, as
well as climatic, hydrological, and land cover change
influences.

In this study, the authors establish a spatiotemporal
groundwater recharge prediction and forecasting

The AI-GWR’s workflow is divided into many
stages. As depicted in Fig. 1, it is divided into three
major sections: Remote sensing Data Preparation-
Thornthwaite-Mather (RSDP-TM) that consists of
two parts (1) Data: Getting, preprocessing, and fusion
(DGPF) and (2) TM procedure, and then (3) Artificial
intelligence-based models (AIM).

The first step is to collect data from multiple sources,
then prepare the dataset, and finally output and
analyze. In the second block, in addition to several
basic data processing operations, the authors fuse
the prior block features files datasets. The datasets
cover precipitation, evapotranspiration, hydraulic
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characteristics, and groundwater recharge. The
fusion operation entails combining all datasets
into one and conducting any necessary operations
to remedy issues such as interpolations, missing
values, and so on. The obtained dataset includes
all features for the specified date and location.
The final block includes Al-based algorithmic
operations like model fitting and evaluation. The
entire pipeline is automated and relies on open-
source or freely available programming languages,
tools, and libraries. Tensorflow [19] with Keras [20]
is used in this study to provide an approachable,
highly- productive interface for solving machine
learning problems, Python 3 [21] is used as the main
programming backend for data acquisition, pre-
processing, and implementing the machine learning
model. The primary Python libraries used in the
proposed workflow include NumPy [22], SciPy [23],
scikit-learn [24], GeoPandas [25], Pandas [26], Folium
[27], seaborn [28], matplotlib [29], xgboost [30]. QGIS
[31] is used for statistical analysis and visualization.

A. Remote Sensing Data Preparation and
Thornthwaite-Mather(TM) Procedure

1. Data: Getting, Preprocessing, and Fusion
(DGPF)

The workflow is as follows: the authors use the
Google Earth Engine platform to manage datasets
from various sources [32], the TM method [33], [34]
to provide spatiotemporal Groundwater recharge
(GWR), and Tensorflow with Keras and Python
3-based libraries to build Al-based models.

The data collecting and pre-processing workflows
are comparable to cutting-edge works [5], [35],
[36]. The authors obtain Data from 2002 to 2020
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using Google Earth Engine platform [32], [37] with
the official data portals of NASA (MOD16A2.006:
Terra Net Evapotranspiration(PET) 8-Day Global
500m ), CHC-UCSB(The Climate Hazards Group
Infrared Precipitation with Stations (CHIRPS) for
Precipitation (Pr)) [38], OpenLandMap Soil Texture
Class (USDA System), CSIRO(global plant root depth)
datasets. Algorithm 1 includes a full description of
each step.

Inthe caseof groundwater recharge, OpenLandMap
records are utilized to define the clay, sand, and
organic carbon content of the soil. Hengl et al. [39]
make available a global dataset of soil water content
at field capacity with a resolution of 250 m. Now that
the soil parameters have been specified, the water
content at the field capacity and the wilting point
was determined using the TM method (Section II-
A2).

2. Thornthwaite-Mathe (TM) Algorithm
[40]

Soil attributes datasets from OpenLandMap will be
investigated. The wilting point and field capacity of
the soil will be determined as hydraulic properties
of soil by applying some mathematical formulas to a
variety of image collections. After iterating through
the meteorological image collection and hydraulic
parameters of soil, the TM technique will be used
to determine groundwater recharge in the area of
interest.

- To relate water content at wilting point #w r to

the soiltexture, Saxton and Rawls’ equations [4]
are utilized.

Owp = B1500¢ + (0.14601 500, — 0.002) (1)
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Fig. 1. Entire workflow, which includes downloading the input data and data preparation for generating predictor variables such
as reprojection, resampling, statistical processes, and the Thornthwaite-Mather technique. The Al-based algorithmic stages are
represented by the last block

with:
H1500: = —0.02485 + 0.487C + 0.0060M + 0.005(5‘

2
x OM) —0.013(C x OM) 4+ 0.068(S x C) +0.031 @)

where: S: represents the sand content of the soil
(mass percentage), C: represents the clay content of
the soil (mass percentage), and @.M: represents the
organic matter content of the soil (mass percentage).
OM =1.724 x OC 3)

. Similarly, the following formula is used to
calculate the amount of water at field capacity :

Orc = O33; + (1.28303,, — 0.374033, — 0.15)w  (4)
with:
f33: = —0.2515 + 0.195C' + 0.0110M + 0.006(S 5)

x OM) — 0.027(C' x OM) + 0.452(S x C) + 0.299

For the TM process to be formalized, certain
definitions are required. According to Allen [41], the
following definitions are provided:

Taw = 1000 x (Opc x Owp) x 2, (6)

where: Taw: total soil water accessible in the
rootzone, expressed in millimeters, frc: the
amount of water in the field when it is filled to
capacity (m®), and fwpr refers to the water content
at the wilting point (m™)., Z.: rooting depth (in
millimeters),

In Table 19 of Allen et al. [41] ,typical values of fr¢
and @ 4w for various soil types are provided.

The equation readily available water (R aw):

Raw =p x Taw (7)
where is Taw total available water and p is the
average percentage of total available water that can
be exhausted from the root zone before moisture
stress (between 0 and 1).

The preceding equations and steps are all combined
in the TM algorithm 2.

Given the wvarious Al algorithms for output
prediction or forecasting, machine learning or
deep learning, and different dimensions (temporal,
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spatial, or spatiotemporal), the authors test ensemble
learning and Keras models for spatiotemporal
prediction, and CNN and LSTM for time series
forecasting.

3. Machine Learning-based
Spatiotemporal Groundwater Recharge
Prediction (ML-GWR-STP)

When building aregressor model on a standard-form

Volume 10, Issue 2, December 2024 - ISSN 2356-8569
http://dx.doi.org/18.21622/RESD.2624.18.2.933

dataset, the most basic strategy is to utilize machine
learning algorithms such as ensemble learning or
any deep learning model to predict the value of a
target variable (such as GWR) based on the values of
the current predictor variables. The objective here
is to accurately predict spatiotemporal groundwater
recharge (GWR) using a variety of features. Some
of the recently developed algorithms used to
tackle similar problems are XGBoost, [42]-[44], and

Algorithm 1 DGPF Algorithm

Algorithm 2 TM Algorithm

Input:
idate> fdate; //Initial and final dates of interest.
Poi(Lpor, Lpor); // Longitude and latitude that defines
the location of interest with a point.
Fvp; I/ Van Bemmelen factor.
Scale; //A nominal scale in meters of the projection to
work in [in meters].
Source; //Source of dataset.

Output:
DF Z‘”Z /Imeteorological dataset as a DataFrame at the
location of interest;

0: procedure DGPF

//nitialization

2: Compute the wilting point 6y p; //based on #1500; using
Eq. (1)

3: Compute the field capacity 0pc; //based on 033; using
Eq. (4)

4§ <« GSPF((OpenLandMap datasets, Scale, SP =
’Sand’))

5: C <+ GSPF((OpenLandMap datasets, Scale, SP =
“Clay’))

6: OC < GSPF((OpenLandMap datasets, Scale, SP =
"Orgce’))

7. Compute Organic Matter OM; //based on Organic Car-
bon content OC using Eq. (3)

8: Pr — EE.IMAGECOLLECTION() (UCSB-
CHG/CHIRPS/DAILY, idate, Faates Pois
SP="precipitation’)

9: Pet — EE.IMAGECOLLECTION()

(UCSB-CHG/CHIRPS/DAILY, ldates
fdatesPoi,SP="evapotranspiration”)
10: Pr(month) — SUMRESAMPLER()  (Pr,

freq=1,scale_factor="month’ ,band_name="Precipitation’)
: Pet(month) <  SUMRESAMPLER((Pet, freq
1, scale_factor = ’month’, band_name
’evapotranspiration’))
DF wearher < FUSION((Pr(month), Pet(month)))
end procedure=0

Input:

idate> fdate 5 // Initial and final dates of interest.
Poi(Lpor, lpor); // Longitude and latitude that defines
the location of interest with a point.
Fvp: [/ Van Bemmelen factor.
Z,.(Poi(Lpor,lpor)); // rooting depth around our region
of interest.

; //parameter constant according to Table 22 of Allen

et al. (1998).
Output:
R.; //Monthly Recharge
ST s APWL,,,; [lAvailable/Amount of water stored in
the root zone for the month m
0: procedure TM
: //nitialization

2: Compute averaged value between reference depths of the
water content at field capacity mean (0w p(b;)); //based
on 9W p(bi )

3: Compute averaged value between reference depths of the
water content at wilting point (0pc(b;));  // based on
Orc

4: Campute the theoretically available water Tayw;
on (Arc) and (Ay p) using Eq. (6)

5. if Pey ¢ PV and APWL,,, = APWL,,,_1(PET —PV)
then

6: ST+ STm_1+(Py—PET,,); /lamount of water

stored in the root zone for the month m
7. else if ST, ¢ ST pc then
8: R < STm — STpc + Py, — PET,,; I/ recharge
. S8T.,. =S8Trc; [l the water stored at the end of the
month becomes equal to water stored at field capacity
else if ST, € ST pc then
APWL,, + STrc x In(ST,,/STrc); /I the accu-
mulated potential water loss for the month m
STm =S8STre; /! and no percolation occurs
end if
end procedure=0

// based
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Random Forest (RF) [2], [9]. To the authors
knowledge, prediction for groundwater recharge,
storage, or withdrawals has only been done at this
time using either current predictions [2], temporal
updates [8], or distinct spatial and temporal updates.
Hence, ensemble learning approaches like XGBoost,
random forest (RF), etc., and the Keras model are
examples that the authors use to address this issue.

4. Deep Learning-based Groundwater
Recharge Time Series Forecasting (DL-GWR-F)

The purpose of multivariate or univariate
groundwater recharge prediction is to anticipate
present values in light of current or historical real-
world conditions [2]. Groundwater recharge time
series forecasting, on the other hand, focuses on
predicting future values based on historical data.
Modern sequence-to-sequence models use LSTM
autoregressive across timesteps, which encourages
temporal learning while ignoring evident spatial
connections between variables, whereas CNN
models directly reflect variable associations.
However, these algorithms often undertake
independent spatial and temporal updates and rely
on established strategies that are immutable across
time. In this study, the authors experimented with
various Al-based time series forecasting algorithms
such as LSTM, and CNN, with different strategies,
including :

° Univariate and Multivariate: using one
dependent variable which is recharge, or with
other impacting factors such as precipitation,
evaporation, etc.

° Forecast for a single time step: using a single
feature, or all features.

° Forecast multiple steps: Single-shot that
consists of mak- ing all predictions at once, or
Autoregressive which makes one prediction at
a time and feeds the output back to the model.

The main algorithm 3 summarizes the entire
system and calls all functions.
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Algorithm 3 Main Algorithm

Input:
DF Z:LOI ; //meteorological dataset as a DataFrame at the
location of interest
R ; //Monthly Recharge
ST m, APWL,,; [/l Available/Amount of water stored in
the root zone for the month m
dates fdate; //Initial and final dates of interest.
Poi(Lpor,lpor) ; /I Longitude and latitude that defines
the location of interest with a point.
Fvp ; [/ Van Bemmelen factor.

Scale; /I A nominal scale in meters of the projection to
work in [in meters].

Output:
MSE,MAE,RMSE --- ; /I all performance metrics

0: procedure MAIN

1: //Initialization

2: DFFOT « DGPF()igates faatesPoi(Lror, lpor)Fv B,
Scale,Source)

32 Ry ST i, APWL,, —

(idatesfaate-Poi(Lporlpror), FvB,

Z.(Poi(Lpor,lpor)) -Source)
4: GDFPOT « FUSION((DF7% Rpps ST iy APWL)):
5: Reshape C,,; //based on T; and C;
6: MSE, MAE, RMSE —
AIM(DFFor R, ST s APWL,,)
6: end procedure=0

T™M()
Scale, ,
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Fig. 2. Map of Morocco as the study area, as well as the Earth’s
largest hot desert, covering nearly all of northern Africa
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III. STUDY AREA AND DATA

A. Study Area

The study area covers Morocco (Fig. 2) which is a
sizable nation in north west Africa, stretching from
the northern most point of the continent to the
Sahel countries in its center. Its terrain and climate
are diverse, with a total size of around 446,300 km?.
It lies between 20°00, 36°00N latitudes, and —18°00,
—2°00E as longitudes. The nation has a tropical
climate overall, with highs of up to 35C (95°F)
and lows of 5°C (41°F). In the Sahara regions have
a hotter, drier continental climate, whereas the
coast has a warm, moderate Mediterranean climate
located on the north-west coast, which is influenced
by south-easterly and north-westerly winds.

Several regions in Morocco heavily rely on
groundwater for the year-round cultivation of crops
and trees, including watermelon, tomato, avocado,
sour cherries, oranges, and other specialty crops.
Agriculture consumes 87% of water resources
according to the High Commission for Planning
(HCP) [18]. The authors use the whole Moroccan
territory for a large-scale spatial prediction study
area. Regarding time series data, the authors use
monthly measurements from 2002 to 2020 from
Taounate’s two locations (Sidi Yahia Bni Zeroual
and Ourtzagh) to forecast groundwater recharge
(GWR) and train the LSTM and CNN-LSTM models.
They choose two zones as test sites for evaluating
their proposed strategy and hypotheses due to
considerable discrepancies in crop output between
the two zones, and reports of in situ groundwater
depletion. Another rationale for selecting these
locations was an understanding of the links
between groundwater depletion for cannabis
irrigation and tree vitality.

B. Data

Remote sensing-based data of characteristics that
directly or indirectly affect groundwater recharge
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were used as input for machine learning models. For
this investigation, the authors combine data such as
meteorological, hydrological, etc, from numerous
sources. The meteorological datasets consist of
the following: MODIS Terra Net that provides
evapotranspiration on an 8-day basis, and Climate
Hazards Group InfraRed Precipitation with Station
Data (CHIRPS) that provides precipitation daily, both
of them with a resolution of 500 m?.

Datasets from OpenLandMap are used to describe
the amounts of clay, sand, and organic carbon in the
soil. Hengl et al. [39] have made a global dataset of soil
water content at the field capacity with a resolution
of 250 m? available.

As a result, both parameters are determined in the
following utilizing the global datasets that show
the soil sand, clay, and organic matter contents
together with the prior equations. As stated in the
summary, in the TM method, the soil wilting point
and field capacity are two hydraulic parameters that
are frequently utilized. The wilting point denotes
the depth beyond which plant roots cannot extract
water, while the field capacity denotes the depth
at which soil can no longer store water. Water
seeps into the lower levels when gravitational pull
exceeds a certain threshold. Allen’s dataset [41] leads
to the reasonable assumption that the effective
rooting depth in the vicinity of the region of interest
Taounate (Olive) is Z, =1.45.

The parameter p is likewise assumed to be constant
and equal to P = 0.65, which is consistent with the
typical values listed in Table 22 in [41], [45].

Input variables (Table I, Fig. 11) are adjusted using the
z-score scaling method. This approach is defined by
Eq. 8, which can be altered to limit the data range to
a small range.

r— U

= ®)
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TABLEI

DETAILS OF REMOTE SENSING DATASETS USED IN THIS STUDY.

Feature Product Dataset provider Resolution period Description
Precipitation CHIRPS UCSB/CHG 0.05°, 1981-2023 | Climate Hazards Group InfraRed Precipitation
Temperature GLDAS-21 NASA GES DISC 0.25°x 0.25° | 2000-2024 Global Land Data As similation System
Evaporization | GLDAS-21 NASA GES DISC 0.25°x 0.25° | 2000-2024 Global Land Data As similation System
SM GLDAS-21 NASA GES DISC 0.25°x 0.25° | 2000-2024 Global Land Data As similation System
GWR GWR TM procedure of SM 2000-2024 Mean groundwater recharge

SM : Soil Moisture, TM: Thornthwaite-Mather

4 - 24
4 &0 22

160
- 140

-15 -10 -5 -15 -10 -5

Fig. 3. Features maps: SM, precipitation, temperature, and GWR

- .l
IV. EXPERIMENTATION
AND DISCUSSION

In this study, the authors successfully advance
recent state- of-the-art works such as [2], [9], and
extend the prediction of current groundwater
recharge to forecast the future recharge of a new
region by offering new insights and new methods,
especially on using univariate and multivariate,
forecasting future based on the past with different
windowing, they also establish a pipeline to expand
the application of their approach to any new region
and relate the groundwater flow from mountains,
trees vitality, and groundwater availability to the
anticipated groundwater recharge and withdrawals.
Finally, they suitably illustrate the extensibility of
their approach to a framework, taking into account
the fact that the used data are available for any
region in the world.

a. Machine Characteristics: The experiment
was conducted on a machine with the
following specifications: 11th Gen Intel(R)
Core(TM) 15-1135G7 processor with 2.40GHz x
2.42GHz and 8.00GB of RAM.

b. Training Paradigm: The authors employe two
ways for data splitting. First, they divide the

dataset into three sections: training, testing,
and validation, with percentages of 50%, 25%,
and 25%, respectively. They set up and loop the
pipeline for numerous iterations to conduct
all necessary tasks such as data preparation,
feature  engineering, model building,
optimization, hyperparameter tuning, and
validation. Second, they replicate the data
for the second time, dividing it into two
parts training and testing, with 50% and 50%
respectively. They train the obtained models
using ideal parameters obtained the first time,
and then they test them on the testing part as
depicted in Fig. 4.

Performance Metrics: For spatiotemporal
prediction, the authors wuse a range of
metrics [46], such as root mean square error
(RMSE), mean square error (MSE), and
mean absolute error (MAE). Apart from the
previously mentioned metrics, time series
forecasting employs additional metrics such
as the persistency index (PI), squared Pearson’s
correlation coefficient (R2), relative root mean
squared errors (rRMSE), absolute and relative
biases (Bias and rBias), and the Nash-Sutcliffe
efficiency (NSE) to evaluate forecast accuracy.
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Fig. 4. Dataset is divided into three sections for training,
validation, and testing

A. Machine Learning-based S patiotemporal
Groundwater Recharge Prediction (ML-GW R-
STP)

The most straightforward model one can build on
a dataset with a standard shape using XGBoost,
Random Forest, or any other machine learning
algorithms, predicts the value of a target variable,
like GWD, based only on the values of the current
predictor variables.

Fig. 5 illustrates the fact that the expected
Groundwater recharge (GWR) for both the training
period (2002-2013) and the wvalidation period
(2013-2020) is rather accurate. The authors built
models such as RF (red line) and XGBoost (yellow
line) can capture the temporal variations precisely.
Here, the authors present just two models to avoid
curve balding. However, one can notice that the RF
model does not adequately capture the temporal
patterns for the peak values low or high. This may
be due to the hyperparameters max depth and min
samples leaf, which control model overfitting. That
conclusion is supported by the performance metrics
mean absolute error (MAE) values of both models
RF and XGBoost, which are 4.7795 mm/month and
4.9936 mm/month, respectively. As a result, the RF
model outperforms all other models as depicted in
table II. The MAE for deep learning-based models
(Keras model) is approximately 7.2255 mm/month,
which is still far from the precision obtained by
ensemble learning techniques as indicated in the
table II. Fig. 6 confirms the outcome. The precise
groundwater recharge estimations for the test or
validation data continue to demonstrate the model
significant generalizability. The Random forest
feature importance for Pr, pet, apwl, and st is 0.60,
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0.063, 0.15, and 0.18, respectively, whereas for
XGBoost it is 0.62, 0.047, 0.34, and 6.98e™%, in that
order. The features importance demonstrates that
recharge is primarily dependent on the amount
of precipitation; the more precipitation, the more
recharge. This is logical because, in the absence of
precipitation, there isno water available for recharge
or plant consumption, regardless of whether
evapotranspiration occurs or not.

The normalized residual histograms in Fig. 7 a) show
that the residuals are slightly left-skewed but closely
reflect a normal distribution. In the same spirit,
residual scatter plots with no discernible trend and
residuals that are concentrated around O are shown
in Fig.7 c)and d) for both the RF and XGBoost models.
As Fig. 7 b) further demonstrates, this implies that
the residuals are independent and nearly normally
distributed. Despite the slight bias, 98.48% of the
standardized residuals of the XGBoost model reside
in the [-2, 2] interval, indicating that its predictions
are extremely robust. On the other hand, although
RF achieves better MAE error performance than
XGBoost, its standardized residuals fall within the
[-25, 25] range. That conclusion is supported by Fig.
7 e) and f ), which show that the regression scatters
between the actual and predicted GWR by XGBoost
follows a 1: 1 relationship (Fig. 7 €)) but is very large
for RF (Fig. 7 f)).

Compared to temporal predictions, the spatial
predictions obtained by machine learning models
are much more accurate as depicted in Fig. 8 and
9. Table III shows that the MAE metric is between
1.3031 mm/month by XGBoost and 0.7330 mm/
month using the Keras model. This result makes
sense considering that there are only minor
variations in the roughly same features and output
in a given location over a month. The large value
of MAE gotten by the AdaBoost model (7.7255 mm/
month) may be due to the hyperparameters tuning
which leads to overfitting. The low values of all
performance measures are caused by the fact that
both the actual and predicted GWR values have
many null values(zeros), which increases the divisor
and lowers the mean value.

Fig. 10 depicts the residual analysis of the model
estimates.
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Fig. 5. Mean actual, XGBoost, and RF-based predicted groundwater recharge (GWR) over the region for each month,
with 2010-2020 being the validation years
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TABLEII

2016 2018

H Pred.

2020

TEST ERROR METRICS OBTAINED USING DIFFERENT MACHINE LEARNING MODELS-BASED TEMPORAL PREDICTION.

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Random Forest Regressor(RF) 47795 190.6882 11.1021 0.4412 0.5401 nan 0.0500

AdaBoost Regressor(ADA) 45949 203.1542 10.9712 0.7540 0.4014 nan 0.8030

CatBoost Regressor(CATBOOST) 4.8592 162.9859 10.7098 0.4595 0.6233 nan 0.4840

Extreme Gradient Boosting(XGBOOST) 49936 212.4883 11.7745 0.3886 0.5507 nan 0.0160

Decision Tree Regressor(DT) 5.6609 299.4790 13.9545 0.5924 0.3698 nan 0.0080
Keras Model 7.2255 274.8504 16.5786 0.4685 Nan 1.8265 1.00

http://apc.aast.edu

328


https://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br

Journal of Renewable Energy and Sustainable Development (RESD)

Recharge Distribution

+0.035
175+ 150
150 0030 125
+0.025
i35 p 100
E
2 10,020 e 75
@ 100 1 3
g L0015 g ©
75 1 5
L0010 A
50 4
0
-0.005
24 5
0.000
0
-50 0 50 100 150 200 250
a)
° 60
3
3 50
g .
£ o £
= 2 13
40
s, o ° E 30
< ° <
B o | e §
Q [ L] L] £
x o PRUSUR. S SUUSRSRURU SUTRRN. L0 YOUUR YO S S SURRRRRROY 3 2
% ° L] o ° S
o x
5 . = 10
g 1 L 3 ©
- o
ut o ° ° g o
@ 8
S )
2 4
o —
2 10
x
3 ° -20
0 25 50 75 100 125 150
Actual GWR (mm/month)
©)
L] 160
3
£ 140
E o £
£ 2 120
€ £
= L]
5. ¢ . E
3 1 L) ° < 100
B o |o e §
Q. [ L] L
g 0 bl @i L 0% YOS Y0 USRS SN SO e 3 80
L] a
o ® e M x
3 ° g o
8 -1 ° =
2 . 2
6 L] L] 8 40
S A
Q-2 4
Q 20
x
= 0 0
0 25 50 75 100 125 150

Actual GWR (mmymonth)

e)

Volume 10, Issue 2, December 2024 - ISSN 2356-8569
http://dx.doi.org/18.21622/RESD.2824.18.2.933

Probability Plot

o ®
o
L
.
J
*
)
P
')
e oo ‘4
-2 -1 0 1 2
Theoretical quantiles
0
° e o
°®
e 0
° ]
® oo
® .
(S S B - Boenns D ...
(] . o .
.
)
. . °
.
L 0
0 25 50 75 100 125 150

Actual GWR (mmymonth)

d)

0 25

75 100
Actual GWR (mmymonth)

f)

125 150

Fig. 7. Standardized residuals are restricted within the [-2,2] interval and Q-Q plots. Residual diagnostics (actual-predicted) for
thegroundwater recharge (GWR) model RF and Keras model, respectively, representing the best and worst predictions for the test
data (2013-2020). Scatter plot of the actual and predicted values For the best prediction model XGBoost and worst prediction RF of

groundwater recharge (GWR)

http://apc.aast.edu

329


https://dx.doi.org/10.21622/RESD.2021.07.2.043
mailto:matheus.holzbach@unemat.br

Journal of Renewable Energy and Sustainable Development (RESD)

Actual GWR

RF Pred.

325
30.0
27.5
25.0

225

0 20

80

Volume 10, Issue 2, December 2024 - ISSN 2356-8569
http://dx.doi.org/18.21622/RESD.2824.18.2.933

XGBOOST Pred. CATBOOST Pred.

100 120 140 160

Fig. 8. Mean actual, machine learning models (XGBoost, RF, CatBoost)-based spatial predicted groundwater recharge (GWR) over
the whole of Morocco

TABLEIII
TEST ERROR METRICS OBTAINED USING DIFFERENT MACHINE LEARNING MODELS-BASED SPATIAL PREDICTION.

E A R > > AP =
Random Forest Regressor(RF) 1.0227 26.5472 5.0089 0.9828 0.2274 0.7767 0.2060
CatBoost Regressor(catboost) 1.2154 31.0845 5.4822 0.9798 0.2779 0.85%94 0.9720

Extreme Gradient Boosting(xgboost) 1.3031 42.2660 6.3056 0.9725 0.2703 0.7446 0.0420

Decision Tree Regressor(DT) 1.2542 46.7057 6.6822 0.9696 0.2269 0.7885 0.0130
AdaBoost Regressor(ADA) 7.7255 103.9699 10.0736 0.9316 1.8740 2.6578 0.9720
erasMode 0 0 9.0798 0 0.8288 0 0.986

Actual GWR ANN model Pred.
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Fig. 9. Mean actual, Keras model-based spatial predicted
groundwater recharge (GWR) over the whole of Morocco

Fig. 10. a) and b) demonstrate that in relevant
recharge areas, models underpredict (negative mean
error) more than they overpredict, and the majority

of these huge errors occur in the extreme west-
north and the chain of mountains of Atlas areas. In
contrast, in the middle and south of Morocco, where
the climate is extremely arid, with annual average
precipitation rates nearing O mm/year in most places
where no recharge occurs, the model predictions
are close to the ground truth. Fig. 10. ¢) and d) depict
residual scatter plots for both models, revealing no
discernable features and residuals concentrated
near O. This indicates that the residuals are nearly
normally distributed and independent. The
standardized residuals for both models are in the
large interval, which leads to worse forecasts. This
is because of the issue with the picks predictions, as
Fig. 10. e) and f ) illustrate.
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Fig. 10. The spatial distribution of the MSE between machine learning model-predicted GWR and interpolated in situ data
throughout the testing period (January 2016). Residual diagnostics (actual-predicted) for the groundwater recharge (GWR) models
RF and XGBoost, which indicate the best and worst predictions based on test data. A scatter plot comparing actual and expected
values

B. Deep Learning-based Groundwater
Recharge Time Series Forecasting (DL-GWR-F)

In this study, the authors extend machine learning-
based models to deep learning-based models for time
series forecasting. They investigate two advanced
deep learning algorithms: Convolutional Neural

Networks (CNN) and Recurrent Neural Networks
(RNN)-based architecture, Long short-term memory
(LSTM) in residual and autoregressive forms, with
varied dataset windowing shapes, one last step to
forecast one future step, many past steps to forecast
one future step, many past steps to forecast many
future steps. The main goal of this work is to forecast
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GWR in a given location. In this section’s exploration
part, the authors investigate the GWR variable and
other features of the dataset to state hypotheses.

Fig. 11 depicts the evolution of all features such as
precipitation (pr), evapotranspiration (pet), water
lost in the field (apwl), water storage (st), and GWR
(rech) over time from 2002 to 2020. They illustrate
the evolution of characteristics over time to create
periodicity hypotheses for time series- based
algorithms. Also, Fig. 11 shows that there are not
many disruptions, which is normal for natural
occurrences. Fig. 12 illustrates the average GWR
resampled over Month, Quarter, and Year for
exploration purposes in order to identify the time
unit of periodicity.
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Fig. 11. Features maps: SM, precipitation, temperature,
and GWR
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Fig. 12. Average GWR resampled over Month, Quarter,
and Year
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Fig. 14. Sine and cosine transform of GWR monthly signal A ®

There are numerous techniques to deal with
periodicity. For example, sine and cosine transform
can be used to figure out the time of season and
year signals, making it possible to obtain acceptable
signals. However, the time of day is not a suitable
model input. Having data on groundwater recharge,
ithasadistinct quarterly and annual cycle, as shown
in Fig. 13, 14.

The most crucial frequency features are accessible
to the model through Fig. 13 and 14. In this instance,
it is possible to understand the importance of time
frequencies like year and season. For instance, by
extracting features from the Fast Fourier Transform,
one can figure out which frequencies are crucial.
Fig. 15 shows that the noticeable peaks occur at a

frequency closeto __1
Year
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a. Data Windowing: There are four data
windowing paradigms in the literature,
One20ne, One2Seq, Seq20ne, and Seg2Seq
[47],[48], and the choice of one of them is based
on a hypothesis made upon many factors such
as problem formulation, dataset shape, etc.
However, a model that solely relies on the
present circumstances to forecast the value of
a single feature one-time step into the future.
The current input values of a single-time-step
model are unrelated to any previous values.
It is unable to observe how the input features
evolve over time. In order to handle the
problem of forecasting Groundwater Recharge
(GWR) based on predictors, the model requires
access to numerous time steps for that reason
the authors use Seq20ne and Seq2Seq.
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Fig. 15. Evolution of features overtime
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Fig. 16. Two examples of data windows of GWR variable with
Window(input = 12, labels = 1, shift = 1), GWR as feature and
target variable in GWR univariate forecasting

To develop a model that can forecast future
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outputs based on the previous inputs,
one needs to take a time series dataset
which is a list of consecutive entries, and
convert it into a window-shaped dataset of
entries and label pairs (inputs, labels). Data
windowing is a crucial stage in time series-
based algorithms. One needs to specify the
window(s) that determine the time step(s)
in the past, time step(s) in the future, and
offset time. Forecast one step at a time using
all features or just one. To predict numerous
phases at once, use single-shot forecasting.
Make one prediction at a time with
autoregressive, then feed the results back
into the model. Data windowing is one of
the primary pretreatments used to reshape
data suitably for time series-based models.
One may want to construct a variety of data
windows depending on the task and type of
model. To make a prediction one month into
the future based on 12 months of history,
for instance, one might define a window
with (input = 12, labels = 1, and offset = 1),
alternatively, one could base a prediction
12 months into the future on one or several
years of history, as indicated in the Figures
16, and 17).

Fig. 17. Tow examples of data windows of GWR variable with
Window(input = 12, labels = 12, shift = 12), GWR as feature and
target variable in GWR univariate forecasting

b.  Univariate vs. Multivariate Forecasting: In

terms of the features involved, there are two
types: Univariate and multivariate forecasting.
Univariate forecasting uses only one feature,
in this case, the groundwater recharge (GWR)
variable, whereas multivariate forecasting
includes many features (more than two
variables), including precipitation (pr),
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evapotranspiration (pet), water lost in the
field (apwl), and water storage (st) features in
addition to the GWR.

In a window with 12 timesteps of input and
12 timesteps of output, for the precipitation
variable as well as other variables, one may
only provide a series of timesteps of past
values, for instance, 12 timesteps as shown in
Fig. 18, but for the GWR variable, the authors
provide 12 timesteps of past values and 12
timesteps as labels, resulting in 24 timesteps,
as shown in Fig. 19. The 12 timesteps as labels
are used to validate model predictions and
calculate performance indicators.

1. CNN and LSTM-based Univariate GWR
Forecasting

In this study, LSTM and CNN models powered by
remote sensing data are built and evaluated. The
models are built using TensorFlow, Keras, and
Python 3. The LSTM model had an input layer, an
output layer, a dense layer completely connected to
hidden nodes, and an LSTM layer composed of each
cell memory. Data are communicated through the
max-pooling layer and flattened layer in the CNN
model before being delivered from the input layer to
the 2D convolution layer.

The authors build an LSTM model with 100 neurons
in the first hidden layer and 1 neurons in the output
layer to forecast groundwater recharge (GWR). The
suggested model is assessed using the MSE loss
function (Fig. 20), and the model is fitted with a
batch size of 36 instances using the effective Adam
version of stochastic gradient descent. The authors
adjust several hyperparameters, including the
number of training epochs, the dropout rate (20%),
and the input shape, which will be many timesteps
in the past to forecast one in the feature, depending
on the forecasting window shape. Due to its ability
to converge more quickly than the sigmoid or
tangent hyperbolic functions, the ReLU function
was chosen for use as an activation function.
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Fig. 18. Three examples of windows of precipitation feature
with Window(input = 12, labels = None, shift = None), as features
in GWR multivariate forecasting
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Fig. 19. Three examples of Data windows of GWR as feature
and target variable with Window(input = 12, labels = 12, shift =
12), in GWR multivariate forecasting
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Deep learning models performance over Region of
interest (ROI) is shown by the time series in Fig. 21.
The magnitude and variability of GWRs obtained
from the LSTM (red dotted line in Fig. 21) model
were consistent with those of in situ measurements
(blue line). The LSTM univariate model captured
both the monthly and seasonal dynamics of in
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situ GWR, apart from showing stable performance
for the test period (March 2013 to December
2019). However, a comparison of the LSTM model
predictions with in situ measurements indicate that
the model tends to underestimate large values while
overestimating small or zero values of GWRs.

GWR (m

]
—— Actual

—— Pred. LSTM

2002 2004 2006 2008 2010

2012 2014 2016 2018 2020

Time step [month]

Fig. 21. GWR time-series comparisons predicted by the LSTM (red dotted line) Univariate model with in situ measurements
(blue line)

2. LSTM and CNN-based Multivariate
Forecasting

In the previous section, the authors attempt to
forecast GWR based just on fluctuations in GWR,
however, in this section, LSTM, and CNN models
are utilized to accurately predict GWR over
Morocco utilizing various feature combinations
from multi-satellite data. The deep learning models
include a variety of input variables (precipitation,
evapotranspiration, changes in soil moisture
storage, and so on). It is critical to understand the
sensitivity of their predictive performance to avoid
overfitting issues. The forecast accuracies of several
parameter combinations are compared during
hyperparameter optimization based on Bayesian
optimization.

a. Seq20ne Multivariate LSTM, and CNN
Forecasting: A comparison of the two deep
learning models’ predictions of groundwater
storage change with in situ measurements of
the GWR in Morocco revealed that the LSTM
model is more accurate with Normalize RMSE
(is determined using the normalized values
of the true values and the anticipated values)
RMSE = 0.2952 mm/month, than the CNN
model with RMSE = 0.3501 mm/month. The
outcomes are depicted in Fig. 22.

B Validation
B Test

S
o

\éi*

Fig. 22. Normalize RMSE error values for LSTM and CNN
models for Test and Validation

The deep learning models performance over
ROl is shown by the time series in Fig. 23. The
magnitude and variability of GWRs obtained
from the LSTM (red dotted line in Fig. 23)
and CNN (green line in Fig. 23) models are
consistent with those of in situ measurements
(blue line). The LSTM and CNN Multivariate
models capture both the monthly and
seasonal dynamics of in situ GWR associated
with all features such as precipitation,
evapotranspiration, APWL, ST, and recharge
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itself, apart from showing stable performance
for the test period (March 2013 to December
2019). However, a comparison of the LSTM

Volume 10, Issue 2, December 2024 - ISSN 2356-8569
http://dx.doi.org/18.21622/RESD.2824.18.2.933

model predictions with in situ measurements
indicates that the model tends to overestimate
GWRs.

—s— Actual
—— LSTM Prediction
—e— CNN Prediction

T T T T T
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T T T T T
2012 2014 2016 2018 2020

Time step [month]

Fig. 23. GWR time-series comparisons Seq20ne Multivariate forecasting by the LSTM, CNN Multivariate model
with in situ measurements

LSTM Residual Model: Building models that
forecast how the wvalue changes in the
following time step rather than the upcoming
valueisatypical practiceintimeseriesanalysis.
Similar to this, in deep learning, residual
networks, or ResNets, refer to topologies
where each layer increases the model
cumulative output. That is how one benefits
from the understanding that the change
should be minimal. In essence, a model with
a residual link facilitates faster convergence
and somewhat improves performance. Any
model can be utilized in conjunction with this
strategy. The LSTM model, to which it is being
applied in thisinstance, has been parametrized
to make sure that the initially anticipated
changes are modest and do not overwhelm
the residual connection.

Fig. 24 illustrates how the residual technique
outperformed LSTM in terms of forecasting,
with RMSE falling from 0.4539 for the LSTM
model to 0.4094 for Residual LSTM. With an
RMSE of 0.3501, CNN remains the best model
out of all those with and without residuals.

Seq2Seq Multivariate LSTM, CNN, and
LSTM Autoregressive Forecasting: Both the
single-output and multiple-output models in
the previous sections made single-time step
predictions, one month into the future. This
section looks at how to expand these models
to make multiple time-step predictions. In a
multi-step prediction, the model needs to learn

http://apc.aast.edu

336

to predictarange of future values. Thus,unlike
a single-step model, where only a single future
point is predicted, a multi-step model predictsa
sequence of future values. There are tworough
approaches to this: (i) Single shot predictions
where the entire time series is predicted at
once. (ii) Autoregressive predictions where
the model only makes single-step predictions
and its output is fed back as its input. In this
section, all the models predict all the features
across all output time steps. For the multi-
step model, the training data again consist of
monthly samples. However, here, first, the
models learn to predict 12 months (one year)
into the future, given 12 months of the past
(Fig. 25), and then to predict one year into the
future, given 3 years of the past.

Autoregressive refers to that the output of
each model can be fed back into itself at each
stage, and predictions can be made based on
the preceding one. The authors used both
of the above models (CNN and LSTM) in an
autoregressive feedback loop, but they build
an LSTM-Autoregressive (LSTM-AR) model
that is specifically designed for autoregressive
feedback. Fig. 27 depicts the obtained result,
which shows that LSTM-AR (sky blue line)
captures well the change of GWR, after which
CNN and LSTM executed an autoregressive
feedback loop. The obtained RMSE for the
three approaches are 0.4185, 0.4419, and
0.4590, in that order: LSTM-AR, CNN, and
LSTM as shown in Fig. 26.
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Long-term Autoregressive LSTM Forecast:
Given the importance of long-term forecasting
systems in general, and groundwater in
particular, the authors anticipate a lengthy
duration of investigation to pave the way
for building lengthy-term memory by
investigating autoregressive principles. For
predicting the future value of GWR, the RMSE
function is used following the number of time
steps to be taken into account. One can learn
about the best window shape for accurate
prediction. Fig. 28 shows the plot showing
the correlation between the RMSE and the
number of history timesteps used to forecast
the GWR value during the whole period. As
seen in Fig. 28, the value of a window from
which one obtains the minimum MSE is the
three timesteps in a month. When they try to
anticipate the far future, the MSE value rises;
the further they go into the future, the more
imprecision they receive.

The authors discovere that a good period in
the past to predict one year in the features is
three years after hyper-parameters tweaking
with regard to the past period and future
period. Figure 29 displays the predictions made
using the LSTM autoregressive model and the
ground truth of the GWR. More than any
other model before it, the model accurately
represents the high and low values in GWR.
This conclusion is supported by Normalized
MAE RM AE = 0.4815 as depicted in Fig. 28.
As shown in Fig. 29, they investigate 3 years in
the past to predict 1 year in the future.

It is well understood that groundwater
recharge cannot be readily monitored and
is influenced by spatially and temporally
complicated processes. In addition,
Groundwater is critical to the preservation of
ecosystems and the adaptation of humanity
to climate change which is with long-term
impacts. However, given the importance of
long-term forecasting systems in general,
groundwater  recharge, storage, and
withdrawal in particular, and as shown in
Fig. 30, the authors investigate the prospect
of long-term future forecasting, which, while
not precise, is a significant tool for capturing
groundwater dynamics and providing
scientific guidance for decision-makers.
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e. Hyperparameters Tuning: In this study, the
hyperparameters tuning for the deep learning
algorithms such as CNN, and LSTM are
found using cross-validation using Bayesian
optimization techniques based on Python’s
Keras tuning library. The optimization range
of values and hyperparameter sets are set up
as depicted in Table I'V.

TABLEIV
HYPERPARAMETERS OF THE DEEP LEARNING MODELS
AND THE OPTIMIZATION RANGE OF VALUES.

Model Hyperparameter Range of values
Number of hidden layers {1,2,---,10}
Number of nodes per layer {5,10,---,150}
Time lag (month) {1,2,---,12}

LSTM | Dropout rate {0.1,0.2,---,0.5}
Batch size {16,32,---,128}
Epoches {1,2,--+,100}
Seq lenth {1,2,---,52}
Number of filters {16,32---,128}
Number of hidden layers {1,2,---,10}
Number of nodes per layer {1,10,---,100}
Time lag (month) {1,6,---,12}

CNN Dropout rate {0.1,0.2,---,0.5}
Batch size {5,10,---,128}
Epoches {1,10,---,100}
Dense Size {1,2,---,256}
Seq length {1,2,---,52}
Number of filters {1,2,---,256}

Table V shows the most performance

measures for both techniques with tuned
hyperparameters, which favor the LSTM
technique over CNN.

TABLEV
TEST ERROR METRICS OBTAINED USING DIFFERENT
AI-BASED ALGORITHMS WITH TUNED

HYPERPARAMETERS.
Model Error metric Range of values
NSE -0.87
R? 0.10
RMSE 20.05
LSTM | rRMSE 1219
Bias 1513
rBias 9.19
PI -0.43
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NSE 0.05
R? 0.09
RMSE 22.31
CNN rRMSE 13.56
Bias 2.80
rBias 1.70
PI -0.07

C. Hypothesis Validation with the in Situ
Information

Fig. 31 displays the annual precipitation average in
millimetersper year (mm/year), whileFig.32displays
the annual recharge average in millimeters per year
(mm/year). While recharge varies between O mm/y
and 500 mm/y, precipitation rates range from 500
mm/y to 1500 mm/y. The blue dots in Fig. 31 indicate
a rate of precipitation of about 900 mm/year; the
authorsobserve consistency in Fig. 32, and the green
points indicate a rate of recharge of about 300 mm/
year, and so on for all points pairwise comparisons
between Figures 31 and 32. One can observe that
the rates of recharge (Fig. 32) and precipitation (Fig.
31) are completely correlated. Recharge increases in
direct proportion to precipitation, and vice versa.
This conclusion backs up the previous one that is
reached using temporal data. One can infer from
this that precipitation and recharge are spatially
correlated. Consequently, there is a spatiotemporal
regression between precipitation and recharging.

According to Fig. 33, Sidi Yahia Bni Zeroual's (place
1) annual recharge is approximately twice as high as
Ourtzagh'’s (place 2). The outcome also demonstrates
a high degree of yearly recharge variability, with
values in places 1 and 2 ranging from O mm/year
to 430 mm/year and O mm/year to 220 mm/year,
respectively. The result also demonstrates that
there has been no recharging in the two locations
over the last three years. The authors observe
during their visit to both locations that, despite
the first location receiving more recharge due to
its higher precipitation, the vitality of the trees has
decreased and the habitats are suffering from thirst
and well depletion, whereas the second location,
despite receiving less recharge and precipitation,
has healthy trees and wells that are still filled with
water. Because of the changing climate, Morocco
and the rest of the world are experiencing lower
precipitation. Given the established spatiotemporal
relationship between groundwater recharge and
precipitation, one can conclude that groundwater
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is a limited resource, and uncontrolled depletion of
this priceless substance poses a serious risk to the
sustainability of life.

Fig. 31. Average annual of precipitation rates (mm/year),
including two areas of study, in the north of Morocco

Fig. 32. Average annual of recharge rates (mm/year), including
two areas of study, in the north of Morocco
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Fig. 33. Groundwater recharge comparison between
the two places
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Fig. 34. Water equivalent thickness of place 1 (ROI1)

For areas dominated by Groundwater irrigation, as
shown in Place 1, groundwater withdrawal causes
a negative water equivalent thickness and drop in
total water storage as shown in Fig. 34. It is evident
that starting in 2019, the overall water storage has
decreased below zero and has continued to decline
significantly, even dropping.

The scenario is as follows, according to the data the
authors have gathered from the locals of the area:
Around 20 years ago, people used surface water for
agriculture and the water came from mountains.
Agriculture consisted of subsistence crops such
as wheat, vegetables, and melons. Since the year
2000, residents of place 1 have switched from
subsistence farming to cannabis farming, which is
a spring-summer culture with little precipitation.
Farmers began digging wells illegally and without
authorization, and as people realized that each
well meant a loss of a source of water flow from
mountains, more wells were drilled until there was
no longer a source of water flow from mountains.
The locals began drinking water from wells. When
the water in the wells first started to run out, they
were around 60 meters deep. Farmers then dug
new, deeper wells, and so on. More than 50 wells of
various depths are now counted in the area of 6 km?
in place 1. People in that area suffer from thirst, so
the local authority brings drinking water pipes from
another location because there are only two wells
with a high deep depth and little water available
in Place 1. Locals have informed the authors during
their tour that many families had left the region and
moved to large cities like Tanger, Fes, and Casablanca.
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V. CONCLUSION, PERSPECTIVE,
AND RECOMMENDATION

Physical modeling of the GWSC requires extensive
data for numerous variables, and highly skilled
researchers, and is a nonlinear and demanding
undertaking. A viable alternative to traditional
models for capturing complicated interactions
between GWR-related factors is artificial
intelligence (Al). Additionally, it is simple to
include satellite data for multiple factors to forecast
spatiotemporal GWR with Al models. In this study,
several feature combinations from multi-satellite
data are used to forecast GWR across Morocco
accurately using CNN and LSTM models, including
different variations of residual and autoregressive
models. Different input variables (precipitation,
average evapotranspiration,changesin soil moisture
storage, AWPL, and ST) are used in the deep learning
models. To prevent overfitting issues, it is important
to comprehend the sensitivity of their predictive
performance. Different parameter combinations
are used for hyperparameter optimization based
on Bayesian optimization, and the combinations
prediction accuracies are compared. Overall, the
findings demonstrate that, in terms of the RMSE,
the LSTM autoregressive model predict GWR maps
somewhat better than the other models described
in this study.

As was previously noted, managing groundwater
involves keeping track of wvarious processes,
including recharge, storage, withdrawal, depth
level, etc. The first natural process is a recharge, in
which freshwater seeps into the earth to restock
subsurface aquifers. The other processes mentioned
above follow and are the focus of the authors’
following studies.

Active monitoring of groundwater recharge,
storage, and withdrawals is still restricted to
just a few places worldwide, despite the growing
global drive toward sustainable groundwater
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