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ABSTRACT

Ground date seeds were subjected to thermal analysis in a stream of Nitrogen at four different heating rates (5, 10, 15 
and 20oC.min-1) and their TG – DTG patterns were obtained. Two peaks showed up for the degradation of lignocellulosic 
components. Three iso-conversional methods were used to obtain the activation energy of these steps: the Flynn-Wall-
Ozawa (FWO), the Kissinger-Asahira-Sunoze (KAS) and the Friedmann methods. The results show that the values of 
activation energy for the first step of degradation varied from 113.76 to 117.80 kJ.mol-1, depending on the calculation 
method. For the second step, the corresponding values were 130.99, 123.07 and 127.52 kJ.mol-1. At the end of the second 
peak, biochar was formed that went on cracking off its more volatile constituents at higher temperatures. An artificial 
Neural Network simulation was carried out for the first degradation step. The values obtained from that simulation 
for conversion – temperature curves and for biochar content were in excellent agreement with the corresponding 
experimental figures. However, the simulated values obtained for activation energy at different conversion levels were 
higher.

Index-words: Activation energy, ANN Simulation, Conversion, Date seeds, Percent biochar, 
Pyrolysis.
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I.	 INTRODUCTION

Substituting fossil fuels by waste in many industrial 
fields has become an increasingly common practice 
in the last two decades to alleviate some of the 
effects of the continuous depletion of fossil fuel 
type [1, 2]. A typical example is the partial use of 
some agricultural waste in the firing process in the 
cement industry [3, 4]. In this context, biorefineries 
using agricultural and food waste are considered a 
sustainable energy source [5].  

On the other hand, pyrolysis of vegetable and food 
waste has proved to be a rich source of gaseous, 
and liquid and solid products that possess many 
uses, among which is substituting fossil fuels. Slow 
pyrolysis of agricultural waste at heating rates 
not exceeding 80oC.min-1 results in the formation 
of biochar, which possesses an elevated calorific 
value [6 – 8], besides exhibiting a large surface area 
for use as adsorbent in wastewater treatment [9 – 
11]. Faster pyrolysis at rates reaching 1000oC.min-1 
normally yields biooil rather than solid biochar., 
which is largely used as a promising substitute for 
conventional fuels [12, 13] and as cosmetic material 

[14]. The production of bio-oil can be enhanced using 
flash pyrolysis at heating rates exceeding 1000oC.
min-1 [15, 16]. 

Research involving disclosure of the mechanism 
of slow pyrolysis of agricultural waste has yielded 
abundant literature in which most authors agreed 
on a common mechanism of waste degradation [17 – 
21]. This consists of elimination of moisture followed 
by devolatilization of lignocellulosic material 
(Hemi-cellulose, cellulose, and lignin) and ends at a 
temperature ~400oC  by forming  biochar. At higher 
temperatures, the final elimination of lignin takes 
place as well as cracking of the formed biochar. The 
kinetics of such devolatilization reactions have been 
followed up by thermal analysis. This technique 
involves either following up the change in weight 
with time at constant temperature, or heating at 
constant heating rates. The former method can 
only be used whenever the conditions of reaction 
are isothermal [22, 23] which is hardly the case in 
pyrolysis reactions. That is why kinetics of these 
processes are commonly studied at constant heating 
rates usually using non – model kinetic techniques, 
the most common of which were the Flynn – Wall 
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– Ozawa (FWO), the Kissinger – Asahira – Sunose 
(KAS) and the Friedman techniques. These models 
yield the value of activation energy of the reactions 
occurring on pyrolysis without generally specifying 
the controlling step [24 – 29]. On the other hand, 
model fitting methods that disclose the reaction’s 
controlling step have only been successfully used 
whenever the reaction was well – defined [28, 
27], which is not usually the case in pyrolyzing 
agricultural waste [30, 31]. Nevertheless, whenever 
the most used model fitting method, namely the Coats 
– Redfern model, was used most devolatilization 
reactions of lignocellulosic components turned out 
to follow first order kinetics [32, 33].

Attempts to model the degradation of agricultural 
waste using mathematical analysis were limited 
owing to the complexity of the reactions thereof. 
Using a kinetic analysis of simultaneous reactions, 
Sheth and Babu [34] studied the pyrolysis of wood 
and obtained model results which reasonably agree 
with experimental outcome. A similar approach 
was recently presented by Bieniek et al. on studying 
the pyrolysis of brewery spent grain and medium-
density fiberboard [35]. On the other hand, several 
researchers have used simulation techniques, such 
as ANN (Artificial Neural Networks), to model the 
degradation kinetics of different types of biomasses 
[36 – 39]. 

In particular, the kinetics of pyrolysis of date seeds 
were investigated by Aly et al. [40]. They used several 
model and non–model methods to evaluate the 
activation energy of degradation of lignocellulosic 
components and obtained values of activation 
energy ranging from 135 to 160 kJ.mol-1depending 
on the technique used in calculations. On the other 
hand, Raza et al. [41] used the Coats – Redfern 
technique to obtain a value of activation energy 
ranging from 170 to 190 kJ.mol-1, depending on the 
heating rate used, a result close to that obtained by 
Aly et al. [40].

In the present paper, the kinetic parameters of the 
pyrolysis of date seeds were determined using three 
different iso-conversional methods, and the results 
were compared to those obtained using Artificial 
Neural Networks (ANN) modelling. The use of 
ANN simulation is a step towards further use of 
that simulation technique to predict the different 
outcomes of degradation of agricultural waste 
since no mathematical tool can easily deal with the 
kinetics of the complex reactions occurring thereof.

II.	 MATERIALS AND METHODS

A.	 Raw Material

The sole raw material used in this investigation 
consists of date seeds (Zaghloul type) collected from 
the local market in Cairo, Egypt. These were ground 
and screened between sieves 16 (0.792 mm) and 
20 (0.635 mm) as per ASTM C136-01 [42], with an 
average particle size = 0.714 mm. The ash content 
of the ground powder was determined by heating 
samples of powder to 1000oC. An average ash 
content of 0.62% was obtained.

B.	 Thermal Analysis

This was conducted at four different heating rates (5, 
10, 15 and 20oC.min-1) using about 15 mg of ground 
material, dried overnight in a muffle dryer at 80oC. 
Nitrogen was admitted to the apparatus (Universal 
V4.5A TA Instruments) at the rate of 50mg.min-1. 
Conversion in the main step of the devolatilization 
of lignocellulosic components was calculated using 
the expression:

                                     α  = 0

0 f

m m
m m

−
−

                  \	 (1)  		
		
Where:	

0m  represents the initial mass before 
decomposition.

m       represents the mass after any time along 
the decomposition reaction.

fm  represents the final mass left after 
decomposition.

C.	 Calculation Models

As previously pointed out, non–model techniques are 
more reliable in determining the kinetic parameters 
of degradation of lignocellulosic materials. For that 
reason, three methods were chosen to that aim. 

1. Flynn – Wall – Ozawa (FWO) method

This method relies on integrating the basic kinetic 
equation:			    				  

                      ( ).
E

RTd A e f
dt
α α

−
=  		  (2)

Where:
A  is a pre-exponential factor (s-1)
E  is the activation energy for reaction (J.mol-1)
R  is the general gas constant (J.mol-1K-1)
T  is the temperature (K)



Journal of Renewable Energy and Sustainable Development (RESD)                                       Volume 10, Issue 1, June 2024 - ISSN 2356-8569

http://dx.doi.org/10.21622/RESD.2024.10.1.811

125

http://apc.aast.edu

( )f α
 is a function of conversion that depends 

on the rate controlling step.

Considering the rate of heating to be β  = 
dT
dt

   
oC.min-1, Equation (2) can be written as:

( )                                                      .
E

RTd A e f
dT
α α

β
−

=  			  (3)

Separation of variables and integrating, the following 
expression is obtained:

                ( )
.

E
RTA de dT

f
α

β α
−

∫ = ∫ 		  (4)		
	  				  

The LHS cannot be integrated analytically, and 
requires expanding the integrand into an infinite 
series, of which only the first terms are kept. The 
final expression takes the form:

	 log β =  ln 
( ).

0.4567
A f E

d RT
dT

α
α − `	 (5)

Hence, a plot of  log  β against  1/T   should yield, for 
each value of conversion α , a straight line of slope   

0.4567
E

R from which the activation energy can be 
calculated, at each value of α .

2. Kissinger – Asahira – Sunoze (KAS) method

This method is a generalization of the classical 
Kissinger method [43]. The original method was 
based on DTG peak having an inflection point of 

the  Tα − curve. It was later modified to suit any 
conversion, and not necessarily that at inflection. 

The final kinetic equation takes the form:

            ln 2Tα

β
 = 

E
RTα

−  + ln 
( )
( )

.

.
R A
E g

α
α

  		 (6)

Here, Tα  is the temperature corresponding to a 
conversion = α   and ( )g α   is a kinetic function 
related to ( )f α   by the expression:

	 ( )g α =  
( )

d
f
α
α

∫  			   (7)

Equation 6 reveals that a plot of ln 2Tα

β
 against  1/T  

will produce straight lines, for different values of α  

, of slope = /E R− , , from which the value of E  is 
obtained.

3. Friedman method

The merit of that method is that it involves neither 
assumptions nor serious approximations, as it deals 
with the basic kinetic equation 3, by rewriting it in 
the form:

              
( )ln ln .d EA f

dT RT
αβ α= −  		  (8)

The values of 
d
dT
α

 can be obtained from the  Tα −   

plot by calculating 
T
α∆

∆
  at small conversion intervals 

(0.05) and  a plot of ln
T
αβ ∆

∆
 against 1/T   will yield 

straight lines, at each value of α , of slope = /E R− , 

from which the value of  E  can be determined.

This method can also be used to validate a rate 
controlling step using the concept of kinetic 

compensation according to which a plot of ln  A
against E , for different values of conversion, should 

yield a straight line [44]. To obtain the value of  ln ,A  

the intercepts of the  1/T  - ln
T
αβ ∆

∆
 plots are first 

determined at each conversion level. Their values 

= ( )ln . .A f α   Next, a kinetic function ( )f α  is 
assumed from table I. 

The reliability of the different iso-conversional 
methods used in the calculation of the kinetic 
parameters in degradation reactions has been the 
subject of much dispute, although most authors 
prefer using the Friedman method over the two 
other techniques. This is since it relies on using the 
basic kinetic equation (2) without making any serious 
assumptions. Also, it allows for the determination of 
the most probable controlling step of the reaction 
[46]. 
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TABLE I 

THE FUNCTION  f (a)  FOR DIFFEENT RATE 
CONTROLLING STEPS [45]

Desig-
nation Controlling step f (a)

A
Crystallization and grain 
growth (Avrami-Erofeev) ( ) ( )

1

2 1 . ln 1
m
mα α
−

 − − 

F0 Zero order reaction 0

F1 First order reaction 1 α−

Fn nth order reaction (n ≠ 1) ( )1 nα−

R2
Cylindrical: Reaction 
at interface (Shrinking 
cylinder)

( )
1
22 1  α−

R3
Spherical: Surface 
reaction at interface 
(Shrinking sphere)

( )
2
33 1  α−

D1 One dimensional diffusion
1

2

D2
Two-dimensional 
diffusion

( )ln 1  α− −

D3
Three-dimensional 
diffusion (Thin ash layer – 
Jander equation)

( )

( )

2
3

1
3

3 1

2 1

α

α

−

− −

D4
Spherical: diffusion 
through ash (Ginstling – 
Brounstein equation)

( )
1
3

1

2 1 1α − − −  

Usually, the determination coefficients (R2) 

for the plot of ln  A  against E  is obtained for 

probable expressions of ( )f α , the highest value 
corresponding to the most probable controlling 
mechanism.

In general. The Friedman method is often preferred 
to the two other techniques since it relies on little or 
no assumptions, besides disclosing the most probable 
controlling step of the reaction.

D.	 Modelling Using Artificial Neural Networks 
(ANN)

Neural networks were used to predict the 
conversion, biochar yield and activation energy 
based on the input variables such as biomass type, 
heating rate, temperature, and residence time. 
Neural networks can also capture the non-linear 
and complex relationships between the input and 
output variables, which are often difficult to describe 
by conventional models [47]. 

In the present work, MATLAB codes for pyrolysis of 
biomass have been used. The conventional steps of 
neural networks modelling were followed [48]:

•	 Collection of data: This step consisted of 
gathering as much data as possible from 
the literature dealing with the pyrolysis of 
vegetable waste. This included the effect of 
time and/or temperature on conversion to 
biochar, its final yield and its composition, and 
the activation energy of degradation.

•	 Modelling: For pyrolysis modeling, a 
feedforward network was used, which is the 
simplest and most common type. It possesses 
an input layer, one or more hidden layers, and 
an output layer. The input layer receives the 
input variables, the hidden layers perform the 
computations, and the output layer produces 
the output variables.

•	 Training: This step is necessary to adjust 
the network weights and biases, which are 
the parameters that determine the network 
output. The learning algorithm is the method 
that updates the network parameters based 
on the error function, which measures the 
difference between the network output 
and the desired output. In the present work, 
backpropagation was used, which calculates 
the error gradient for each network parameter 
and updates them in the opposite direction of 
the gradient.

•	 Validation: This is carried out by determining 
statistical parameters such as root mean 
squared error, correlation coefficient (R), 
determination coefficient (R2), etc. In the 
present work, the determination coefficient 
has been used as it measures to what extent 
variation of output variables relate to variation 
in input variables.

III.	 Results and Discussion

The chosen case was that corresponding to the 
ground material pyrolyzed at a heating rate = 10oC.
min-1. 

A. TG – DTG Results

The TG (Thermogravimetry) – DTG (Differential 
Thermogravimetry) curves for a specimen of powder 
pyrolyzed in Nitrogen at a heating rate of 10oC.min-

1 are shown in Figure 1. There is a sharp DTG peak 
at 316.04oC corresponding to the devolatilization 
of hemicellulose and cellulose and partly lignin, as 
is the case for the pyrolysis of most lignocellulosic 
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materials [21,49]. The full devolatilization of lignin 
ends at about 400oC, whereby biochar is formed 
associated with a second DTG peak at 369.31oC. 
This was assessed by heating 50 g of the material 
in presence of Nitrogen in a muffle furnace at the 
same heating rate after which heating was stopped. 
Figure 2 displays an image of the resulting biochar.

B. Conversion – Temperature Curves for the First 
Degradation Step

From the spreadsheet obtained for TG data, it was 
possible to calculate the conversion at different 
temperatures corresponding to the first DTG peak 
at all four heating rates. Figure 3 shows the curves 
obtained for conversion of ground date seeds for the 
first decomposition step, corresponding to the first 
DTG peak in Figure 1.

C. Determination of Kinetic Parameters for the 
First Degradation Step

As previously pointed out, determination of the 
kinetic parameters was carried out using three 
different non–model methods. The results are 
reviewed in the following sections. 

1. Application of the FWO method

When values of log  β against 1/T   were plotted 
for different conversion levels, straight lines were 
obtained, as evidenced from Figure 4.

From the slopes of the lines, it was possible to 
evaluate the activation energy at each conversion. 
The values and the corresponding values obtained 
by the two other methods are listed in Table III. The 
average activation energy = 116.06 kJ.mol-1. 

Fig. 1. Thermal analysis curves of ground date seeds at 10oC.
min-1

Fig. 2. Biochar prepared by firing in Nitrogen to 600oC

Fig. 3. Conversion – temperature curves for ground date seeds 
(Step 1)

Fig. 4. FWO plots for ground date seeds (Step 1)
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2. Application of the KAS method

In this method, values of ln 2Tα

β
  were plotted against

1/T  to obtain the series of straight lines appearing 
in Figure 5. The average activation energy = 117.80 
kJ.mol-1, a value almost identical to that obtained by 
the previous technique.

3. Application of the Friedman method

As previously explained, plots of ln
T
αβ ∆

∆   against  

1/T were carried out for different conversion 

levels, with an increment 0.05α∆ =  to obtain the 
set of straight lines in Figure 6. Once again, it was 
possible to determine the value of activation energy 
at each conversion. The average value of E  = 113.76 
kJ.mol-1, a value slightly lower than those obtained 
previously. 

Next, the intercepts of the lines in Figure 6 were 

determined and the values of ( )ln .A f α   calculated 
at each value of conversion. Following most previous 
findings, a first order reaction was assumed, having 
the kinetic function:

      		  ( ) 1f α α= −            	 (9)	

This allowed plotting the values of ln A   against E
. A straight line was obtained (Figure 7) with R2 = 
0.980, assessing the validity of the proposed kinetic 
mechanism.

Fig. 5. KAS plots for ground date seeds (Step 1)

The discrepancies in the average values of activation 
energy obtained by different methods are a common 
occurrence, caused by the various assumptions 
made along the establishment of the kinetic model 
[49, 50]. A comparison of the values of activation 
energy obtained at different conversion levels by 
the three methods is given in Table II. 

Fig. 6. Friedman plots for ground date seeds (Step 1)

Fig. 7. Application of kinetic compensation (Step 1)

  

	

ln A  against E . A

	 0.7.≈
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TABLE II 
ACTIVATION ENERGIES OBTAINED BY DIFFERENT METHODS FOR DATE SEEDS (kJ.mol-1)

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Mean

FWO 94.16 94.37 99.47 106.95 115.35 123.38 130.91 134.93 144.98 116.06

KAS 85.58 89.93 96.47 105.56 115.40 126.12 137.20 148.73 155.22 117.80

Friedman 98.73 105.49 109.78 114.19 118.50 121.53 122.85 118.77 114.03 113.76

The values obtained for the activation energy using 
different non–model techniques are close to those 
obtained by Aly et al. [40], on studying the kinetics 
of pyrolysis of date kernels, varying from 126.5 to 145 
kJ.mol-1, depending on the heating rate and method 
of calculation, although they did not specify the 
particle size used in their work. The results obtained 
by Rasa et al. [41] (170 – 190 kJ.mol-1) are less reliable, 
being obtained by the Coats – Redfern technique, 
which is unsuitable for use for complex reactions 
[23].

E. Conversion – Temperature Curves for the Second 
Degradation Step

In Figure 8, the conversion – temperature curves 
for the second step of the degradation of the 
lignocellulosic components ending by the formation 
of biochar are illustrated.

Fig. 8. Conversion – temperature curves for ground date seeds 
(Step 2)

F. Determination of Kinetic Parameters for the 
Second Degradation Step

To avoid any redundancy, only the results obtained 
for average activation energy, as obtained by the 
three techniques (FWO, KAS and Friedman), are 
summarized in Table III.

TABLE III 
AVERAGE ACTIVATION ENERGIES FOR THE SECOND 

DEGRADATION STEP

Method FWO KAS Friedman 

E kJ.mol-1 130.99 123.07 127.52

IV.	 RESULTS OF ARTIFICIAL NEURAL 
NETWORK MODELLING

A.	 Modelling of Conversion Curves

Conversion curves for the first degradation step were 
modelled using Artificial Neural Networks (ANN) 
and compared to experimental points. Figure 9 
illustrates one instance, namely, the case of particles 
heated at 5oC.min-1. The figure reveals an excellent 
match of conversion data. The Root Mean Squared 
Error (RMSE) between experimental and calculated 
conversions possessed a very low value (0.0500). 

Fig. 9. Experimental and modelled data for pyrolysis at 5oC.
min-1

B.	 Biochar Yield

According to the findings of most authors [51 – 53], 
biochar is produced from the pyrolysis of vegetable 
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waste at temperatures ranging from 300 to 500oC. 
Its use as adsorbing material necessitates, however, 
increasing the temperature to more than 600oC to 
ensure the formation of enough porosity to allow 
for its use to that aim [54]. The percentage biochar 
formed in the present work was assessed from 
TG data at the temperature at which the second 
DTG peak ends (Figure 1). As can be seen from that 
figure, corresponding to pyrolysis at 10oC.min-1, the 
second peak ends at 420oC, followed by a constant 
rate weight loss up to 455oC, after which the rate 
of weight loss slightly decreased up to 600oC. 
At 420oC, the total weight loss was about 62.8%, 
corresponding to the remaining char percentage 
of 36.6% (Excluding about 0.62% ash content). At 
600oC, this value drops to about 22.9%. These ratios 
were determined at all heating rates. A comparison 
between the observed values and calculated 
values from the neural networks model at 400oC 
and 600oC at 10oC.min-1 are shown in Table IV. The 
average error in the evaluation of the biochar yield, 
using neural network simulation is 4.76%, with a 
maximum of 11.65%, proving that the simulated 
values fairly coincide with the values determined 
experimentally. The root mean squared error 
(RMSE) was calculated and found to be 1.61 and 1.84, 
on comparing experimental to simulated values at 
400oC and 600oC, respectively.

TABLE IV 
COMPARISON BETWEEN OBSERVED AND CALCULATED 

VALUES OF BIOCHAR YIELD

Heating 
rate 

oC.min-1

Biochar yield %

420oC 600oC

Observed Simulated Observed Simulated

5 34.3 33.17 26.6 23.5

10 36.6 36.12 27.0 26.42

15 37.5 35.43 27.3 26.78

20 38.4 40.54 27.5 25.67

RMSE 1.61 1.84

C.	 Activation Energy

The calculated values of activation energy of the first 
degradation step, at different levels of conversion, 
by the three iso-conversional models, were different 
but yielded very close average values. Also, it can 
be noticed that the first two methods resulted in an 
increase in activation energy while in the Friedman 
method, it reached a local maximum at a conversion

0.7.≈  

As for the values obtained from ANN simulation, 
they were higher than those obtained by the three 

models by an average of 11.6% besides reaching a 
maximum value at a conversion ≈ 0.6, as is the case 
with the Friedman method (Figure 10). The values of 
RMSE for the comparison between the results of the 
three methods and the simulated values were found 
to be 21.42 kJ.mol-1, 15.29 kJ.mol-1 and 7.96 kJ.mol-1 for 
the KAS, FWO and Friedman methods respectively, 
proving that the results of this last method were the 
closest to those obtained by ANN simulation.

Fig. 10. Experimental and ANN simulated values of activation 
energy

It seems therefore, that ANN simulation could 
produce very close values to those determined 
experimentally for conversion – temperature points 
and biochar yield. The prediction of activation 
energy, however, resulted in higher results. 

V.	 CONCLUSIONS

Date seeds were ground to an average particle size 
of 0.714 mm and subjected to pyrolysis in a thermal 
analyzer with flowing Nitrogen at four different 
heating rates: 5, 10, 15 and 20oC.min-1. In all cases, 
two DTG peaks showed up associated with the 
devolatilization of lignocellulosic components. 

Activation energies were calculated for the two 
degradation steps by three different iso-conversional 
methods, namely the Flynn – Wall – Ozawa, the 
Kissinger – Asahira – Sunoze and the Friedman 
methods. The calculated values showed slight 
variations between the three methods. For the first 
degradation step, these values were respectively 
116.06, 117.80 and 113.76 kJ.mol-1, while for the 
second step, the obtained values were: 130.99, 123.07 
and 127.52 kJ.mol-1. 

ANN simulation was carried out for the first 
degradation step and the simulated values for 
conversion – temperature curves and biochar yield 
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at 420oC and 600oC were in excellent agreement 
with experimentally obtained values, resulting in 
low values of RMSE between experimental and 
simulated data. On the other hand, simulated values 
for activation energies showed moderate deviation 
from those calculated by the three iso-conversional 
methods. In particular, the Friedman method gave 
the minimum RMSE between experimental and 

simulated data among the three methods. 

It is recommended to extend ANN simulation 
to predict the proportion of the lignocellulosic 
components of various agricultural waste as well as 
the effect of particle size on the different pyrolysis 
parameters. 
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