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Abstract - As regards moving towards electrification
of transportation, there is need to replace gas stations
with Electric Vehicle (EV) charging stations at equally
convenient locations and look at various energy
storage methods onboard an electric vehicle. There
are various charging methods which have been
discussed in the literature. This paper discusses some
new charging technology that can possibly have a
tremendous impact on the future of energy storage in
transportation electrification.
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I. INTRODUCTION

Charging of an Electric vehicle can be universally
classified into Plug-in Charging Technique and
Wireless Charging Technique. Plug-in Charging can
be further classified into AC charging and DC
charging. Plug-in AC charging is achieved by
connecting the AC grid to the onboard battery
charging system through a connector. The on-board
battery charging system consists of the onboard
rectifier, the power factor correction stage and the

DC-DC converter/charger as shown in Fig 1 using a
block diagram. [1][2][3]

Fig.2, shows the typical architecture of an off-board
Plug-in DC charging station. All the power conversion
units are off-board the electric vehicle. The galvanic
isolation for safety is achieved either through a bulky
60Hz isolation transformer between the AC grid and
the rectifier or a High frequency (HF) isolation
transformer at the DC-DC conversion stage. DC
charging of an EV reduces the need of multiple power
conversion units on-board as well as off-board the
EV. The battery on-board the electric vehicle is
directly charged by the off-board converters. [4][5]
The Society of Automobile Engineers (SAE) has
included DC level | and level Il charging in the J1772
standard [6].

Wireless charging of Electric vehicle batteries can
also be classified as an on-board charging technique.
The power transfer is achieved by contactless plates,
through capacitive power transfer (CPT), or
contactless coils or magnetic cores, through Inductive
Power Transfer (IPT). The overall structure of the
power conversion system remains the same for both
IPT and CPT as shown using a block diagram in
Fig.2.
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Fig.1. Block diagram of a typical on-board plug-in AC charging architecture
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Fig.2. Block diagram of a typical off-board plug-in DC charging architecture
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Fig.3. Block diagram of a typical wireless charging architecture

The lines marked in red can either be contactless
plates or coils depending on the power transfer
technique used. The AC grid provides the entire
power required by the EV to charge the battery. The
power factor correction stage and the primary of the
high frequency transformer is moved off-board. The
secondary of the high frequency transformer which is
connected to the battery using a rectifier is present
on-board the electric vehicle. [6]-[8]

The on-board chargers are with limited power and
compact size which are suitable inside a vehicle. On
the other hand, for off-board charging eliminates the
need for power conversion units on-board the EV.
The off-board charging involves redundant power
electronic components with bulky size and the
associated extra costs for installations. The use of
renewable energy for charging of EVs has become a
very important area of interest in recent times. During
charging of EV using the plug-in off-board technique
and even the WPT techniques, there is a huge
dependency on the AC grid. Use of multiple power
conversion stages contribute to the overall reduction
in efficiency.

The wuse of a renewable energy source
interconnected to the AC for energy storage has been

used in the past for energy storage systems providing

4

back up power as well as for charging of electric
vehicles. As mentioned previously, EV charging
systems require multiple stages and the number of
stages increases further when interconnecting such
charging infrastructure to the AC grid. Usually,
residential or semi commercial solar photovoltaic
arrays have a lower voltage available at the output of
the array and require a boost stage to match the
photovoltaic output voltage to the grid connected
inverter.

Table 1. DC Charging Electrical Ratings (North America)

Charging Battery Type of Max.
Level Voltage Level charger Continuous
V) Current (A)
Level-l 200-450V Off-Board 80A
Level-ll 200-450V Off-Board 200A
Level Il 200-450V Off-Board 400A
(proposed)

For future electrified transportation, some of the key
areas of interests are the development of
technologies which are compact, highly efficient and
less dependent on the AC grid.

In the following sections, new technologies have
been discussed which are going to play important
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roles in the electrification of transportation as there is
a trend to move towards a greener planet. In section
lll, a solar-grid interconnected single stage DC
charger has been discussed for residential and semi-
commercial applications providing level | and Level I
charge (DC) for EVs, section IV discusses an
onboard EV motor drive integrated energy storage
system and section V, on-board EV charging has
been discussed.

[I. SOLAR-GRID INTERCONNECTED SINGLE
STAGE DC CHARGING FOR
RESIDENTIAL/SEMI-COMMERCIAL OFF-
BOARD CHARGING

Z-source inverters were first proposed in [10]. They
have a unique ability to buck or boost in a single
stage through two inductors and two capacitors in a
‘X’ shaped connection. A modified Z-source inverter
(M-ZSI) for DC charging, shown in Fig.4, was first
proposed in [11][12]. Each of the impedance network
capacitance in split into two capacitors, CHB.

Each of the two capacitors leg acts as a source to
split primary isolated half bridge converter. The

secondary of the high frequency transformer, T, is
connected to the EV battery, for simplicity, using a
battery internal resistance, rB and a battery voltage
VB. The switch S5, is used instead of a diode to
prevent unwanted turn on and off and maintain a
constant current for bidirectional power flow. The
diode bridge of the secondary side of the high
frequency transformer, T, is replaced by an active
bridge for bi-directional power flow operation.

The basic operation of this proposed topology is
based on the power balance equation given by,
Pcharge=Ppv + Parid

The various modes of operation are PV to GRID,
PV+GRID to EV battery and EV battery to GRID.
During the PV to Grid mode, the generated
photovoltaic power is directly fed into the grid in the
absence of an EV connected to the charger. In the
PV + Grid to EV mode, the grid and the PV provide
the required power for the battery. Any fluctuation in
the PV power is compensated by the grid. The
various power-efficiency curves for this topology is
shown in figure 5.

LIN

Fig.4. Proposed modified Z source converter based single stage topology
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Fig.5. Efficiency curves for different modes of operation for a
MZSI charger [11]

From the curves, it can be seen that the efficiency of
the PV-BAT is the highest at 95.9%. For Grid to
Battery or Battery to Grid (V2G) it is almost the same
at 95%. The efficiency from PV to Grid is 93%. The
advantages of the proposed topology are: Reliability,
lesser number of power stages during different
modes of operation.
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lIl. INTEGRATED MOTOR DRIVE AND ON-BOARD
BATTERY CHARGERS

The on-board chargers have restriction of power due
to their weight, space, cost constraints and isolation
requirements [13]. To limit these constraints,
integration of charging task in the electric traction
system is a feasible solution as these operations are
not simultaneous. The basic idea of an integrated
charger is usage of motor windings as filter inductors
or an isolated transformer and the inverter functions
as a bi-directional AC-DC converter and these are
considered as the integrated motor drive and battery
chargers [14], [15]. This provides a major advantage
that levels 2 and 3 have a high power bidirectional
charger with unity power factor at low cost [16].
These chargers can be classified based on converter
configuration, motor type and construction, number of
motor phases and type of wheel drive. An integrated
motor drive and battery charger system were
commercially used in electric cars by AC Propulsion
Inc. [17] based on an induction machine and General
Motors Inc. [18], Ford company [19], Valeo Engine
and Electrical Systems [20] use split winding AC
motor topology without switch like a contactor [21].
These integrated chargers are already used in two
wheelers [22], fork lift trucks [23] and cars [24]. A few
advancements in motor topology modifications in
order to operate as a three phase PFC coupled boost
rectifier are split-phase induction motor [25], special

580

double winding machine [26], split-phase permanent
magnet synchronous motor [27], split-phase
permanent magnet assisted synchronous reluctance
motor  [28], delta-star  permanent  magnet
synchronous motor [29], split-phase switched
reluctance motor [30] and multiphase machines [31],
[32]. Few examples of using topologies without.
without motor modifications are in four-wheel drive
system [33] and integrated charger with switched
reluctance motor (SRM) drive presented in [34] uses
embedded components of motor and converters with
voltage boosting feature and PFC charging and [35]
multilevel converter fed SRM.

In this section, main focus is on Modular Multilevel
Converter (MMC) which serves as an integrated
converter for onboard fast charger and motor drive
system. The MMC offers advantages such as
modular realization, inherent redundancy, low total
harmonic distortion, higher efficiency with standard
devices, filter less configuration, no capacitors at DC
bus, no filters at AC and DC side which are made to
use in EVs [36], [37]. MMC can be realized as a i)
power converter driving the motor ii) effective battery
management system by submodule control iii) AC
charging through arm inductances with sequence of
operation of submodules. In addition, MMC provides
fault tolerant capability, redundancy of modules and
elimination of large DC link capacitors.
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Fig.6. Schematic of a 3 phase motor drive.
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Fig.7. Schematic of a MMC based motor drive

However, these are associated with some problems
and can be summarized as [38]-[41]: i) It requires a
higher number of semiconductors, gate drivers and
corresponding control equipment. ii) Energy stored in
distributed capacitors is considerably higher than
conventional inverters. iii) It also requires a higher
number of sensors to monitor capacitor voltages and
arm currents. The major issue with MMC is that it
requires a capacitor balancing algorithm and
circulating current suppression control as it contains a
double frequency component, which increases the
stress and losses in power switching devices [40],
[41]. MMC with the use of wide gap power switching
devices can be a future solution for integrated fast on
board charger and motor drive system in autonomous
vehicles with features of high reliability, efficiency and
redundancy. This makes the easy and identical
modules manufacturing, hierarchical redundancy
capability and reduction in dimensions of the whole
converter for automotive manufacturers at the cost of
improved technology at submodule.

IV. ONBOARD-CHARGING

In all the autonomous and self-driven electric
vehicles, energy in the battery can be refilled with
battery chargers which must be highly efficient and
reliable, with high power density, low cost, and low
volume and weight. The charging time and battery life
are linked to the characteristics of the battery
charger. The most important criteria in selection of
on-board battery charger for a vehicle is based on the
available battery pack ratings (kwWh) and limited
weight to space ratio to maintain average charging
time to a low value.

The power flow from the battery chargers can be
unidirectional or bidirectional. In Unidirectional
charging the power flow is from grid to the vehicle. So
it limits hardware requirements and simplifies
interconnection issues. In a bidirectional charging it
allows charging from the grid and battery energy
injection back to the grid (vehicle to grid).

Table 2. AC Charging Electrical Ratings (North America)

http://apc.aast.edu

Charging Level Voltage Level Type of Charger | Interface Equipment | Power Level | Charging Time

120 V ac(US) On-Board Upto-3.3KW 6-9hours
Level-I 230 V ac(EU) Type-1(31772)

240 V ac(US) On-Board 7.7-43KW 1-4 hours
Level-ll 400 V ac(EU) Type-Il connector

Single phase and 3 >20kW
Level-Ill phase
(proposed)
RESD © 2018
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This is the latest trend in the charging systems with
the automotive (CAR2HOME) to grid. It stabilizes the
power with adequate power conversion when it is
plugged to grid. The on-board charging through the
renewable generations (Solar) helps to minimize the
additional power stabilizing equipment in the vehicle.
The concept of sun2car shown in Fig: 1 is one of the
solutions for charging the vehicle through a PV used
by Toyota and Nissan. Fig: 2 shows the Tesla’s super
charger, which provides a huge research scope in
extracting the maximum energy from the sun and
utilize it for charging the EV battery pack. There are
various topologies involved in onboard charger for
charging the electric vehicle [3] [41]. Most of the
onboard chargers have the front-end topology as AC-
DC power conversion to maintain the power quality in
the system when the vehicle was connected to a grid
supply for charging [42]. The converted DC will
normally have a huge low frequency ripple which will
affect the life of the battery especially the li-ion
battery [43]. There should a two-stage power
conversion required in a li-ion battery pack to reduce
the low voltage ripple content and to make it easy to
implement the charger control algorithms [44]. There
are many topologies in PFC like interleaved,
bridgeless, semi-bridgeless, which can improve the
output ripple in capacitors and the heat management
problems in the converter. In this paper, the
researchers are interested in reducing the charge
time of the vehicle with high power quality. There are
different topologies in ac—dc converters with good
power quality and less harmonics discussed in [45] -
[46]. Proper selection of the PFC topology helps to
minimize the low frequency ripple, the power quality,
and the size of EMI filter and emissions.
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Fig. 9. Tesla Super Charger

To avoid the bulky capacitors at the PFC, [48]
provides a solution for sinusoidal charging that can
be implemented through using bidirectional
converters. There are different stages in the battery
charger, represented in the block diagram (Fig. 3).
The main motivation is to compact the size of the
charger and improve the efficiency at full load
conditions. There are many contributions to improve
the efficiency of the converters [45]-[47]. The
resonant converters at the DC/DC side have the
major role in deciding the efficiency of the whole
charger with isolation transformer and wide control
algorithms implementations for charging the battery
packs [49].

High Frequency Rectifier
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Fig. 10. Block diagram of on board charger stages
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In the block diagram of Fig. 3, Stages lI&l are the
same for both conductive and inductive power
chargers [49]. Stage Il in the wireless charger is
separated with a magnetic coil of specified air gap
length and the corresponding compensations on
primary and on secondary. The EMI filter shown in
the charger is required to filter the common mode and
differential mode noise, surge protector and
harmonics suppressor. There are many challenges
in using the resonant converters for the charging
application to have a wide output voltage [51] - [52].
The overview of the paper is to design a charger with

minimized size and weight, universal output voltage
and faster rate of charge. An EV charger must ensure
that the utility current is drawn with low distortion to
minimize the power quality impact and at high power
factor to maximize the real power available from a
utility outlet. IEEE-1547, SAE-J2894, IEC1000-3-2,
ECR-10(Rev.4), CISPR-25, and the U.S. National
Electric Code (NEC) 690 standards limit the allowable
harmonic and dc current injection into the grid, and
EV chargers are usually designed to comply [53]-[59].
The overview of the stages is shown in Fig.4.
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Fig.11. Overview of an isolated onboard charger [61]

The two-stage topology as shown in Fig.11 consists
of only AC-DC power conversion. To avoid the
additional DC-DC converter for the low voltage (LV)
modules the integrated on-board with AC-DC for
main Battery and DC-DC converter for auxiliary loads
operated with LV supply (12/24 V) as proposed in
[62]-[63].

V. CONCLUSIONS

This paper discusses some of the topologies in the
area of energy storage for electric vehicles. Various
charging technology for onboard electric vehicle
battery was discussed. Some possible state of the art
technologies have been presented in this paper.
Using solar grid tied inverter/chargers can be used for
charging at residential locations converting residential
houses into a charging station. MMC technology is an
attractive solution for onboard energy storage and AC
onboard charging directly from the grid is a
convenient way of charging directly from the AC
supply. The various standards for charging are also
presented for the discussed topologies.
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