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ABSTRACT 

Ocean shipping is the primary means of transportation for international trade since 90% of traded 
products are transported over the seas. Accordingly, ensuring that ships operate in an energy-efficient 
manner is crucial to ensuring that global transportation becomes more efficient, and that financial savings 
are realized. One of the more potent remedies in this area is achieved by producing the ship's efficient 
maintenance plan for the engine room. This reduces operating costs while increasing system reliability and 
operational safety. To achieve this, the proposed research employs a modern maintenance approach, 
namely the proactive maintenance strategy. A small marine diesel engine is employed in this study, and 
its operational characteristics are collected to assist in the creation of a condition-based maintenance 
plan. In addition, machine learning-based models are experimented with, trained, and tested to forecast 
engine performance using diesel engine data. As a result, applying the suggested model to any engine 
that is being studied yielded a better maintenance schedule and ensured more effective fault 
identification with an accuracy of 89.1%. 

Keywords: Shipping, Diesel Engines, Engine Performance, Proactive Maintenance, Machine Learning, 
Plan. 

Abbreviation Meaning 

ML Machine Learning 

AI Artificial Intelligence 

CBM Condition-Based Maintenance 

IoT Internet of Things 

RCM Reliability-Centred Maintenance 

CM Condition Monitoring 

SVM Support Vector Machine 

KNN K-Nearest Neighbour 

MLP Multi-Layer Perceptron 

TP True Positive 

TN True Negative 
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FP False Positive 

FN False Negative 

 

INTRODUCTION 

The maritime industry is vital to global trade, transportation, and exploration, and it offers priceless 
opportunities and experiences. In this industry, safety, efficiency, and profitability are all directly 
impacted by maintenance; thus, its significance cannot be emphasised. Recent technological 
advancements and their significant contributions to environmental sustainability have proved the promise 
of ML and AI-based control systems. The vessel may experience negative impacts from any inaccuracies 
in the output function of the engine control unit, such as increased fuel consumption, reduced 
manoeuvrability, and in extreme cases, engine failure [1]. 

It is impossible to exaggerate the significance of maintenance, considering that the maritime and offshore 
sector is the second largest in the world. Effective maintenance practices are essential for maximising 
equipment lifespan, ensuring safe operations, and achieving operational efficiency. The maritime industry 
today employs several maintenance operations to ensure the effective procedure and maximum 
performance of ships. These concepts include CBM, risk-based maintenance, and corrective 
maintenance. The maritime environment presents many challenges, including regular use, exposure to 
seawater, and severe weather. Having ship maintenance not properly performed puts a ship’s lifetime and 
crew safety at risk by increasing structural damage to the ship, and system failures [2]. 

It is becoming increasingly clear as technology develops how AI algorithms and machine learning could 
improve the procedure of maritime industry maintenance. These advancements in technology have the 
potential to improve maintenance decision-making, minimize downtime, and enhance reliability. By 
analysing engine data from the past and present, it becomes feasible to develop models that can predict 
and prevent issues. The integration of machine learning and artificial intelligence algorithms into 
maintenance methods could lead to operational efficiency in the industry. Ultimately this could result in 
increased profitability and improved performance [3]. 

Maintenance practices play a role in fostering an eco-sustainable maritime industry. They ensure 
performance and minimize fuel consumption, which is vital, for efficient goods transportation. Among all 
the components of a ship, the diesel engine holds significance [4]. Engine maintenance is necessary to 
guarantee continuous functioning, limit disturbances, and maximise fuel economy. This demonstrates how 
important it is to keep a strong and operational fleet to support global trade. 

The current studies primarily address the challenges and drawbacks associated with maintenance 
procedures, in the transportation sector. Due to factors such, as weather conditions, stringent 
regulations, and demanding standards, these procedures often fall short of achieving sustainability, 
efficiency, and reliability goals set by the industry [5, 6]. This results in higher emissions, downtime, failure 
rates, and safety hazards [7]. Predicting and preventing malfunctions is the aim of integrating AI and 
machine learning into maritime systems; yet, a fundamental challenge for both human and machine 
algorithms is the reliable identification of anomalies [8, 9]. 

Recently there have been studies focusing on maintenance procedures, in the marine industry. These 
studies have examined the impact of maintenance approaches, on performance and productivity utilizing 
a range of research methods. On the other hand, Ingemarsdotter in 2021 [10] explored several difficulties 
encountered in 2021 when implementing CBM. Having reliable and accurate data collection techniques is 
one of these difficulties. Additionally, the research results showed that the successful implementation of 
CBM depends on the availability of skilled personnel who can effectively analyse the data and make 
informed maintenance decisions. 
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Machine learning algorithms and predictive analytics are used by the maritime industry to improve 
maintenance decision-making. These techniques enable fleets to plan maintenance programs based on 
data collected for predictions, using pattern recognition and historical data analysis to predict future 
events [11]. Payette and Abdul-Nour [12] carried out a study on the use of machine learning applications 
for reliable engineering processes in 2023. The studies resulted in a 24% increase in equipment reliability 
and a 15% reduction in maintenance costs. 

Remote monitoring and diagnostic devices were considered a turning point for the maintenance 
procedures, in the marine industry. These innovative solutions reduce the need for inspections and 
minimize downtime by offering real-time evaluation of ship systems and components from onshore 
locations [13]. In 2020, Alshamrani [14] investigated remote monitoring technologies, such as IoT through 
the use of sensors, connections, and advanced data processing techniques. It has been demonstrated 
that these techniques can reduce maintenance costs by up to 20% and increase equipment availability 
by up to 15%. 

A maintenance approach known as RCM flags essential ship systems and parts as high priority according 
to potential failure modes. In 2010, areas that significantly affected performance and safety were 
researched by Afefy [15] since RCM optimizes maintenance efforts and ensures efficient allocation of 
resources. It has been established from the findings that the implementation of RCM resulted in a decline 
in maintenance costs by as much as 30% and a reduction in equipment failures by as much as 25%. 
Therefore, proper application of RCM requires an understanding of vessel systems, operations, risks and 
consequences [16]. In addition, the complexity of modern vessels makes it challenging to determine 
which sections are necessary and when to do maintenance [17]. 

Fleets can now operate more reliably, safely, and overall more efficiently thanks to the use of real-time 
analytics and sophisticated data analysis tools, but the complexity of these actions makes it impractical 
to simply prioritize without considering the relationships between these actions likewise, a planning 
approach that can quantitatively assess the importance of different actions and the impact on marine 
engine maintenance in practice is lacking and therefore current research on identifying and prioritizing key 
actions in marine engine maintenance applications is limited. 

Despite significant advances in offshore maintenance techniques, there are still areas that need to be 
addressed and improved. The optimization of comprehensive maintenance strategies for the specific 
needs of marine engines and their operating conditions is one such area. Although current methods of 
maintenance show promising results [18], reviews and new standards are needed to ensure proper 
implementation. Another problem is the integration of state-of-the-art technology into current 
comprehensive maintenance strategies [19]. Although several recent ships have started using this 
technology, it still needs to be operated by larger ships all over the industry. This will require significant 
consideration of factors such as feasibility, affordability, and compatibility with current policies. 

This study aims to implement the proactive maintenance method for marine diesel engines. Standardized 
experiments that replicate the effects of diesel engine component malfunctions will be conducted, 
where subsequent temperature changes will be highlighted. Advanced machine learning techniques will 
next be used to analyse the gathered data and create failure detection prediction models. Our objective 
is to use these models to predict and stop problems before they happen, which will ultimately increase 
the marine diesel engine's longevity and dependability. 

METHODOLOGY 

A comprehensive approach is proposed to combine sophisticated machine learning techniques, data 
analytics, and standardized testing to address the issue. The main goal of this approach is to design a 
used-for-emergency maintenance specially designed for marine diesel engines. The diagnostic-
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technical process is shown in Figure 1. This process is repeated periodically after one iteration for 
continuous monitoring and early failure detection. 

 

Figure 1: Methodology Layout. 

The analysis is performed using a temperature sensor mounted on an air-cooled, single-cylinder, 4-stroke 
diesel engine. This simplifies the temperature data needed for the analysis. The engine specifications are 
shown in Table 1. 

Table 1. Diesel engine specifications 

Specification Value 

Engine Model Number 186FA 

Type Air-cooled diesel engine 

Oil SAE 15W-40 

Displacement 418 cc 

Max Power 10 hp 

Normal Speed 3000/3600 rpm 

Injection Timing Intake Open: BTDE 13° 
Intake Close: ATDE 52° 
Exhaust Open: BBDC 57° 
Exhaust Close: ABDC 8’30’’ 

Valve Lash Intake: 0.1 – 0.15 (cold state) 
Exhaust: 0.1 – 0.15 (cold state) 

Fuel Diesel 

Net Weight 48 kg 

Gross Weight 55 kg 

 
The experimental design involves simulating the potential faults of a diesel engine and monitoring the 
resulting temperature changes. To achieve this goal, temperature sensors are attached to the engine 
cylinder head and exhaust gas. Engine configuration and applications are considered when deciding 
where to place the sensors; engine manufacturers and industry experts were consulted to determine the 
best locations to record temperature fluctuations associated with potential breakdowns. The sensors are 
then carefully coupled to the engine using appropriate mounting and running procedures to ensure 
accurate and reliable data collection. This method assures proper distribution of sensors on the engine to 
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enable critical tracking and strategic changing of monitored parameters. A dataset is then collected and 
analysed to easily identify potential problems early and help understand how the engine is behaving. 

Continuous recording of temperatures between 60 and 120 seconds could provide a comprehensive 
understanding of thermodynamics. Advanced machine learning algorithms are used to efficiently process 
the acquired readings, and Python programming is used train and test those models numerically. This 
analytical approach saves engine performance and efficiency by improving the ability to detect 
parameter changes caused by faults or environmental changes. Data collected from experiments were 
used to train different machine learning models using a 5-fold cross-validation data partitioning scheme. 
The data collected included patterns for different scenarios identified as 8 classes, with one class 
representing normal driving performance and the other representing 7 problems requiring urgent attention. 
Classes are named normal operation, air filter blockage 20%, air filter blockage 40%, air filter blockage 
60%, air filter blockage 80%, oil level 25%, oil level 50%, and oil level 75%. The training portion of the 
data in a single fold was used to train Logistic Regression, Random Forest, Support Vector Machine 
(SVM), K-Nearest Neighbour (KNN), Naive Bayes, Decision Tree, Multi-Layer Perceptron (MLP), and 
AdaBoost models. A comparison of the results achieved will be presented in the following section to 
choose the best model to implement the machine learning approach to marine diesel engines. 

Evaluation Matrix 

The evaluation matrix is calculated for each machine learning model investigated using the following 
equations [20] to assess the effectiveness of each model: 

Eq. (1) is used to calculate the accuracy of each model defining the closeness of the generated results 
to the actual experimental results. 

TP TN
Accuracy

TP TN FP FN

+
=

+ + + (1)
 

Precision describes how close various results of the same quantity are to one another and is calculated 
for each model using Eq. (2). 

TP
Pr ecision

TP FP
=

+ (2)
 

Each model’s recall is obtained using Eq. (3) which describes the cases the model predicted correctly. 

TP
Recall

TP FN
=

+ (3)
 

The f1-score of each model is calculated using Eq. (4) and it summarizes the precision and recall 
parameters by obtaining the harmonic mean. 

Pr ecision Recall
f1 2

Pr ecision Recall


= 

+ (4)
 

In the previous equations, TP indicates the true positive, TN; true negative, FP; false positive, and FN; 
false negative. Macro-averaged values of the mentioned matrix were also obtained which considers that 
all the proposed classes contribute to the final average quantity equally. In addition, weighted-averaged 
values, which show the contribution of each class to the average quantity depending on its size, were 
also investigated. 
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RESULTS AND DISCUSSION 

Experimental Results 

The engine was operated normally to collect the temperature data, for daily operation with a clean air 
filter and a full oil sump and use them as the base data for the machine learning model in the case of no 
failure as recorded in Table 2. The data show an average exhaust gas temperature of 54.4°C and an 
average cylinder head temperature of 24.8°C. 

Table 2. Normal operating temperatures for the diesel engine 

Time 
(minutes) 

Air Filter Blockage (0%) Oil Level (100%) 

Exhaust Gas 
(°C) 

Cylinder Head 
(°C) 

Exhaust Gas 
(°C) 

Cylinder Head 
(°C) 

10 53 24 53 24 

11 53.2 24.2 53.2 24.1 

12 53.3 24.4 53.5 24.2 

13 53.6 24.5 53.9 24.5 

14 53.7 24.7 54 24.6 

15 53.9 24.8 54.3 24.4 

16 54 25 54.8 24.7 

17 54.9 25.4 55.1 25.1 

18 55.7 25.6 55.7 25.2 

19 56 25.7 56.1 25.4 

20 56.5 25.8 56.4 25.7 

 

Two failure modes were investigated on the single-cylinder engine artificially. The first failure mode was 
achieved by the blockage of the air intake filter by various percentages and the temperatures were 
recorded for the exhaust gases as well as the engine’s cylinder head as shown in Table 3. 

Table 3. Air filter blockage failure results 

Time 
(minutes) 

Air Filter Blockage 
(20%) 

Air Filter Blockage 
(40%) 

Air Filter Blockage 
(60%) 

Air Filter Blockage 
(80%) 

Exhaust 
Gas 
(°C) 

Cylinder 
Head 
(°C) 

Exhaust 
Gas 
(°C) 

Cylinder 
Head 
(°C) 

Exhaust 
Gas 
(°C) 

Cylinder 
Head 
(°C) 

Exhaust 
Gas 
(°C) 

Cylinder 
Head 
(°C) 

10 65 25.8 73 27.2 77.3 29 80.5 31.1 

12 65.7 25.9 73.4 27.3 77.5 29.2 80.7 31.3 

14 66.2 25.7 73.5 27.6 77.6 29.3 80.9 31.7 

16 67 25.6 73.7 27.8 78 29.6 92 31.9 

18 68 25.8 74.3 28.4 78.6 30 96 32.1 

20 69 26 75 28.7 80.3 30.1 90 32.3 
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The second failure mode was achieved by the reduction of the oil level in the sump by various percentages 
and the temperatures were recorded for the exhaust gases as well as the engine’s cylinder head as shown 
in Table 4. 

Table 4. Oil level failure results 

Time 
(minutes) 

Oil Level (75%) Oil Level (50%) Oil Level (25%) 

Exhaust 
Gas (°C) 

Cylinder 
Head (°C) 

Exhaust 
Gas (°C) 

Cylinder 
Head (°C) 

Exhaust 
Gas (°C) 

Cylinder 
Head (°C) 

10 70 24.6 75 26 76.6 26.8 

12 70.6 24.8 75.3 26.2 76.8 27 

14 70.9 24.9 74.8 26.4 77.1 27.5 

16 71.2 25.2 73 26.9 77.3 27.7 

18 72.3 25.7 72 27.6 78.2 28.7 

20 73 26.3 75.1 28 78.6 29.3 

 

Machine Learning Results 

The machine learning models were implemented using python programming on Google Colaboratory. The 
main package used was sklearn which provided the libraries for cross validation splits, machine learning 
models and the evaluation metrics. The dataset collected during the experimentation represented by the 
two temperature features “Exhaust Gas” and “Cylinder Head” were first analysed using correlation 
measurements to further understand their relationship with the 8 classes previously introduced. Figure 2 
shows that the correlation between the “Exhaust Gas” feature and the “Class” is -0.08, the correlation 
between the “Cylinder Head” and the “Class” is -0.27 and there is a high correlation between the 
“Exhaust Gas” and the “Cylinder Head”. This makes the “Class” feature challenging to determine directly 
from the available features.  

 

Figure 2: Correlation of Features and Class. 
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Afterwards, the collected data were split using the 5-fold cross-validation scheme. Accordingly, each 
training split was used to build a model and test with the remaining portion. The average of the testing 
results for all splits is then presented. The obtained classification results are shown in Table 5 using the 
various machine learning models previously mentioned.  

Table 5. Machine learning model results 

Model Accuracy 
Macro 
Average 
Precision 

Macro 
Average 
Recall 

Macro 
Average 
f1-score 

Weighted 
Average 
Precision 

Weighted 
Average 
Recall 

Weighted 
Average 
f1-score 

Logistic 
Regression 

0.75 0.6635 0.667 0.643 0.748 0.75 0.733 

Random 
Forest 

0.859 0.822 0.813 0.807 0.866 0.859 0.856 

SVM 0.688 0.66 0.583 0.597 0.745 0.688 0.698 

KNN 0.828 0.835 0.771 0.773 0.877 0.828 0.83 

Naive 
Bayes 

0.844 0.803 0.792 0.794 0.852 0.844 0.845 

Decision 
Tree 

0.891 0.872 0.854 0.853 0.904 0.891 0.89 

MLP 0.406 0.175 0.208 0.17 0.269 0.406 0.305 

AdaBoost 0.5 0.282 0.333 0.286 0.462 0.5 0.464 

 

The results showed that the highest accuracy was obtained using the “Decision Tree” model which 
achieved an accuracy of 0.891 in accurately predicting the engine failure type. The "Decision Tree" model 
likewise produced the greatest f1-score of 0.853. This demonstrates that, given the collected data, the 
"Decision Tree" model is the most accurate in forecasting an engine failure as shown in Figure 3. 

 

Figure 3: Accuracy and Macro Average Score Results of ML Models. 
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CONCLUSION 

This research aims to utilize machine learning models to maintain marine diesel engines by predicting 
system faults before they occur. To achieve this goal an experimental model was created using a single-
cylinder, four-stroke, air-cooled diesel engine. During the engine operation, various issues related to the 
oil level and air filter were deliberately induced to collect data on these failures. This dataset was then 
used to train and evaluate machine learning models through a 5-fold cross-validation split. 

• Multiple machine learning models were examined using the collected data to determine the best 
one based on accuracy and macro average f1-score. 

• The experimental data revealed that with each induced failure there was an increase in exhaust gas 
and cylinder head temperatures. 

• When applied to machine learning models, the results showed that the "Decision Tree" model had 
both the highest average f1-score among all investigated models and an accuracy of 89.1%. 

These findings indicate that this particular machine learning model is the most effective in predicting diesel 
engine problems based on the readings obtained from the engine contributing to the establishment of 
proactive maintenance systems on board ships through predicting failures before they occur thus 
preventing them. 

Future research will include the examination of more failure modes as well as a different larger diesel 
engine to reach closer results for system implementation on ship engines. The machine learning models 
will be trained based on more parameters such as machine vibration as well as engine load. This will help 
improve the ML model to predict more failure modes in ships’ main engines and thus reduce maintenance 
cost and machinery downtime. 
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