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ABSTRACT

Ocean shipping is the primary means of transportation for international trade since 90% of traded
products are transported over the seas. Accordingly, ensuring that ships operate in an energy -efficient
manner is crucial to ensuring that global transportation becomes more efficient, and that financial savings
are realized. One of the more potent remedies in this area is achieved by producing the ship's efficient
maintenance plan for the engine room. This reduces operating costs while increasing system reliability and
operational safety. To achieve this, the proposed research employs a modern maintenance approach,
namely the proactive maintenance strategy. A small marine diesel engine is employed in this study, and
its operational characteristics are collected to assist in the creation of a condition-based maintenance
plan. In addition, machine learning-based models are experimented with, trained, and tested to forecast
engine performance using diesel engine data. As a result, applying the suggested model to any engine
that is being studied yielded a better maintenance schedule and ensured more effective fault
identification with an accuracy of 89.1%.

Keywords: Shipping, Diesel Engines, Engine Performance, Proactive Maintenance, Machine Learning,
Plan.

Abbreviation Meaning

ML Machine Learning

Al Artificial Intelligence

CBM Condition-Based Maintenance
loT Internet of Things

RCM Reliability -Centred Maintenance
CM Condition Monitoring

SVM Support Vector Machine

KNN K-Nearest Neighbour

MLP Multi-Layer Perceptron

TP True Positive

TN True Negative
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FP False Positive

FN False Negative

The maritime industry is vital to global trade, transportation, and exploration, and it offers priceless
opportunities and experiences. In this industry, safety, efficiency, and profitability are all directly
impacted by maintenance; thus, its significance cannot be emphasised. Recent technological
advancements and their significant contributions to environmental sustainability have proved the promise
of ML and Al-based control systems. The vessel may experience negative impacts from any inaccuracies
in the output function of the engine control unit, such as increased fuel consumption, reduced
manoeuvrability, and in extreme cases, engine failure [1].

Itis impossible to exaggerate the significance of maintenance, considering that the maritime and offshore
sector is the second largest in the world. Effective maintenance practices are essential for maximising
equipment lifespan, ensuring safe operations, and achieving operational efficiency. The maritime industry
today employs several maintenance operations to ensure the effective procedure and maximum
performance of ships. These concepts include CBM, risk-based maintenance, and corrective
maintenance. The maritime environment presents many challenges, including regular use, exposure to
seawater, and severe weather. Having ship maintenance not properly performed puts a ship's lifetime and
crew safety at risk by increasing structural damage to the ship, and system failures [2].

It is becoming increasingly clear as technology develops how Al algorithms and machine learning could
improve the procedure of maritime industry maintenance. These advancements in technology have the
potential to improve maintenance decision-making, minimize downtime, and enhance reliability. By
analysing engine data from the past and present, it becomes feasible to develop models that can predict
and prevent issues. The integration of machine learning and artificial intelligence algorithms into
maintenance methods could lead to operational efficiency in the industry. Ultimately this could result in
increased profitability and improved performance [3].

Maintenance practices play a role in fostering an eco-sustainable maritime industry. They ensure
performance and minimize fuel consumption, which is vital, for efficient goods transportation. Among all
the components of a ship, the diesel engine holds significance [4]. Engine maintenance is necessary to
guarantee continuous functioning, limit disturbances, and maximise fuel economy. This demonstrates how
important it is to keep a strong and operational fleet to support global trade.

The current studies primarily address the challenges and drawbacks associated with maintenance
procedures, in the transportation sector. Due to factors such, as weather conditions, stringent
regulations, and demanding standards, these procedures often fall short of achieving sustainability,
efficiency, and reliability goals set by the industry [5, 6]. This results in higher emissions, downtime, failure
rates, and safety hazards [7]. Predicting and preventing malfunctions is the aim of integrating Al and
machine learning into maritime systems; yet, a fundamental challenge for both human and machine
algorithms is the reliable identification of anomalies [8, 91.

Recently there have been studies focusing on maintenance procedures, in the marine industry. These
studies have examined the impact of maintenance approaches, on performance and productivity utilizing
arange of research methods. On the other hand, Ingemarsdotter in 2021 [10] explored several difficulties
encountered in 2021 when implementing CBM. Having reliable and accurate data collection techniques is
one of these difficulties. Additionally, the research results showed that the successfulimplementation of
CBM depends on the availability of skilled personnel who can effectively analyse the data and make
informed maintenance decisions.
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Machine learning algorithms and predictive analytics are used by the maritime industry to improve
maintenance decision-making. These techniques enable fleets to plan maintenance programs based on
data collected for predictions, using pattern recognition and historical data analysis to predict future
events [11]. Payette and Abdul-Nour [12] carried out a study on the use of machine learning applications
for reliable engineering processes in 2023. The studies resulted in a 24 % increase in equipment reliability
and a 15% reduction in maintenance costs.

Remote monitoring and diagnostic devices were considered a turning point for the maintenance
procedures, in the marine industry. These innovative solutions reduce the need for inspections and
minimize downtime by offering real-time evaluation of ship systems and components from onshore
locations [13]. In 2020, Alshamrani [14] investigated remote monitoring technologies, such as loT through
the use of sensors, connections, and advanced data processing techniques. It has been demonstrated
that these techniques can reduce maintenance costs by up to 20% and increase equipment availability
by up to 15%.

A maintenance approach known as RCM flags essential ship systems and parts as high priority according
to potential failure modes. In 2010, areas that significantly affected performance and safety were
researched by Afefy [15] since RCM optimizes maintenance efforts and ensures efficient allocation of
resources. It has been established from the findings that the implementation of RCM resulted in a decline
in maintenance costs by as much as 30% and a reduction in equipment failures by as much as 25%.
Therefore, proper application of RCM requires an understanding of vessel systems, operations, risks and
consequences [16]. In addition, the complexity of modern vessels makes it challenging to determine
which sections are necessary and when to do maintenance [17].

Fleets can now operate more reliably, safely, and overall more efficiently thanks to the use of real-time
analytics and sophisticated data analysis tools, but the complexity of these actions makes it impractical
to simply prioritize without considering the relationships between these actions likewise, a planning
approach that can quantitatively assess the importance of different actions and the impact on marine
engine maintenance in practice is lacking and therefore current research on identifying and prioritizing key
actions in marine engine maintenance applications is limited.

Despite significant advances in offshore maintenance techniques, there are still areas that need to be
addressed and improved. The optimization of comprehensive maintenance strategies for the specific
needs of marine engines and their operating conditions is one such area. Although current methods of
maintenance show promising results [18], reviews and new standards are needed to ensure proper
implementation. Another problem is the integration of state-of-the-art technology into current
comprehensive maintenance strategies [19]. Although several recent ships have started using this
technology, it still needs to be operated by larger ships all over the industry. This will require significant
consideration of factors such as feasibility, affordability, and compatibility with current policies.

This study aims to implement the proactive maintenance method for marine diesel engines. Standardized
experiments that replicate the effects of diesel engine component malfunctions will be conducted,
where subsequent temperature changes will be highlighted. Advanced machine learning techniques will
next be used to analyse the gathered data and create failure detection prediction models. Our objective
is to use these models to predict and stop problems before they happen, which will ultimately increase
the marine diesel engine's longevity and dependability.

A comprehensive approach is proposed to combine sophisticated machine learning techniques, data
analytics, and standardized testing to address the issue. The main goal of this approach is to design a
used-for-emergency maintenance specially designed for marine diesel engines. The diagnostic-
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technical process is shown in Figure 1. This process is repeated periodically after one iteration for
continuous monitoring and early failure detection.
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Figure 1: Methodology Layout.

The analysis is performed using a temperature sensor mounted on an air-cooled, single-cylinder, 4-stroke
diesel engine. This simplifies the temperature data needed for the analysis. The engine specifications are
shown in Table 1.

Table 1. Diesel engine specifications

Specification Value

Engine Model Number 186FA

Type Air-cooled diesel engine
Oil SAE 15W-40
Displacement 418 cc

Max Power 10 hp

Normal Speed 3000/3600 rpm
Injection Timing Intake Open: BTDE 13°

Intake Close: ATDE 52°
Exhaust Open: BBDC 57°
Exhaust Close: ABDC 8'30''

Valve Lash Intake: 0.1 - 0.15 (cold state)
Exhaust: 0.1 - 0.15 (cold state)

Fuel Diesel

Net Weight 48 kg

Gross Weight 55 kg

The experimental design involves simulating the potential faults of a diesel engine and monitoring the
resulting temperature changes. To achieve this goal, temperature sensors are attached to the engine
cylinder head and exhaust gas. Engine configuration and applications are considered when deciding
where to place the sensors; engine manufacturers and industry experts were consulted to determine the
best locations to record temperature fluctuations associated with potential breakdowns. The sensors are
then carefully coupled to the engine using appropriate mounting and running procedures to ensure
accurate and reliable data collection. This method assures proper distribution of sensors on the engine to
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enable critical tracking and strategic changing of monitored parameters. A dataset is then collected and
analysed to easily identify potential problems early and help understand how the engine is behaving.

Continuous recording of temperatures between 60 and 120 seconds could provide a comprehensive
understanding of thermodynamics. Advanced machine learning algorithms are used to efficiently process
the acquired readings, and Python programming is used train and test those models numerically. This
analytical approach saves engine performance and efficiency by improving the ability to detect
parameter changes caused by faults or environmental changes. Data collected from experiments were
used to train different machine learning models using a 5-fold cross-validation data partitioning scheme.
The data collected included patterns for different scenarios identified as 8 classes, with one class
representing normal driving performance and the other representing 7 problems requiring urgent attention.
Classes are named normal operation, air filter blockage 20 %, air filter blockage 40%, air filter blockage
60%, air filter blockage 80 %, oil level 25%, oil level 50 %, and oil level 75%. The training portion of the
data in a single fold was used to train Logistic Regression, Random Forest, Support Vector Machine
(SVM), K-Nearest Neighbour (KNN), Naive Bayes, Decision Tree, Multi-Layer Perceptron (MLP), and
AdaBoost models. A comparison of the results achieved will be presented in the following section to
choose the best model to implement the machine learning approach to marine diesel engines.

Evaluation Matrix

The evaluation matrix is calculated for each machine learning model investigated using the following
equations [20] to assess the effectiveness of each model:

Eq. (1) is used to calculate the accuracy of each model defining the closeness of the generated results
to the actual experimental results.

TP+TN

Accuracy =
TP+TN+FP+FN 0

Precision describes how close various results of the same quantity are to one another and is calculated
for each model using Eq. (2).

TP
TP + FP 2)

Precision =

Each model's recall is obtained using Eq. (3) which describes the cases the model predicted correctly.

TP
TP +FN (3)

Recall =
The fl-score of each model is calculated using Eq. (4) and it summarizes the precision and recall
parameters by obtaining the harmonic mean.

Precision x Recall
Precision + Recall (4)

fl=2x

In the previous equations, TP indicates the true positive, TN; true negative, FP; false positive, and FN;
false negative. Macro-averaged values of the mentioned matrix were also obtained which considers that
all the proposed classes contribute to the final average quantity equally. In addition, weighted-averaged
values, which show the contribution of each class to the average quantity depending on its size, were
also investigated.
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Experimental Results

The engine was operated normally to collect the temperature data, for daily operation with a clean air
filter and a full oil sump and use them as the base data for the machine learning model in the case of no
failure as recorded in Table 2. The data show an average exhaust gas temperature of 54.4°C and an
average cylinder head temperature of 24.8°C.

Table 2. Normal operating temperatures for the diesel engine

Air Filter Blockage (0 %) Oil Level (100%)

Tim.e Exhaust Gas Cylinder Head Exhaust Gas Cylinder Head
(minutes) | (=c) (°C) (°C) (°C)

10 53 24 53 24

n 53.2 24.2 53.2 241

12 53.3 24.4 53.5 24.2

13 53.6 24.5 53.9 24.5

14 53.7 24.7 54 24.6

15 53.9 24.8 54.3 24.4

16 54 25 54.8 24.7

17 54.9 25.4 55.1 25.1

18 55.7 25.6 55.7 25.2

19 56 25.7 56.1 25.4

20 56.5 25.8 56.4 25.7

Two failure modes were investigated on the single-cylinder engine artificially. The first failure mode was
achieved by the blockage of the air intake filter by various percentages and the temperatures were
recorded for the exhaust gases as well as the engine's cylinder head as shown in Table 3.

Table 3. Air filter blockage failure results

Air Filter Blockage | Air Filter Blockage | Air Filter Blockage | Air Filter Blockage

— (20%) (40%) (60%) (80%)

(minutes) Exhaust | Cylinder | Exhaust | Cylinder | Exhaust | Cylinder | Exhaust | Cylinder
Gas Head Gas Head Gas Head Gas Head
(°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)

10 65 25.8 73 27.2 77.3 29 80.5 31.1

12 65.7 25.9 73.4 27.3 77.5 29.2 80.7 31.3

14 66.2 25.7 73.5 27.6 77.6 29.3 80.9 31.7

16 67 25.6 73.7 27.8 78 29.6 92 31.9

18 68 25.8 74.3 28.4 78.6 30 96 32.1

20 69 26 75 28.7 80.3 30.1 90 32.3
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The second failure mode was achieved by the reduction of the oil level in the sump by various percentages
and the temperatures were recorded for the exhaust gases as well as the engine’s cylinder head as shown

in Table 4.

Table 4. Oil level failure results

S Oil Level (75%) Oil Level (50%) Oil Level (25%)
(minutes) Exhaust Cylinder Exhaust Cylinder Exhaust Cylinder
Gas (°C) Head (°C) Gas (°C) Head (°C) Gas (°C) Head (°C)

10 70 24.6 75 26 76.6 26.8

12 70.6 24.8 75.3 26.2 76.8 27

14 70.9 24.9 74.8 26.4 77.1 27.5

16 71.2 25.2 73 26.9 77.3 27.7

18 72.3 25.7 72 27.6 78.2 28.7

20 73 26.3 75.1 28 78.6 29.3

Machine Learning Results

The machine learning models were implemented using python programming on Google Colaboratory. The
main package used was sklearn which provided the libraries for cross validation splits, machine learning
models and the evaluation metrics. The dataset collected during the experimentation represented by the
two temperature features “"Exhaust Gas” and "Cylinder Head” were first analysed using correlation
measurements to further understand their relationship with the 8 classes previously introduced. Figure 2
shows that the correlation between the "Exhaust Gas" feature and the “Class” is -0.08, the correlation
between the “Cylinder Head" and the “Class” is -0.27 and there is a high correlation between the
"Exhaust Gas" and the “Cylinder Head". This makes the “Class” feature challenging to determine directly
from the available features.

Correlation Map Between Features

- 10

- 08

Cylinder Head Exhaust Gas
| \

Class

i
Exhaust Gas Cylinder Head Class

Figure 2: Correlation of Features and Class.
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Afterwards, the collected data were split using the 5-fold cross-validation scheme. Accordingly, each
training split was used to build a model and test with the remaining portion. The average of the testing
results for all splits is then presented. The obtained classification results are shown in Table 5 using the

various machine learning models previously mentioned.

Table 5. Machine learning model results

~13
arl“<-g

Macro Macro Macro Weighted | Weighted | Weighted
Model Accuracy | Average | Average | Average | Average Average Average
Precision | Recall fl1-score | Precision | Recall f1-score
Logistic 0.75 0.6635 0.667 0.643 0.748 0.75 0.733
Regression
Random 0.859 0.822 0.813 0.807 0.866 0.859 0.856
Forest
SVM 0.688 0.66 0.583 0.597 0.745 0.688 0.698
KNN 0.828 0.835 0.771 0.773 0.877 0.828 0.83
Naive 0.844 0.803 0.792 0.794 0.852 0.844 0.845
Bayes
Decision 0.891 0.872 0.854 0.853 0.904 0.891 0.89
Tree
MLP 0.406 0.175 0.208 0.17 0.269 0.406 0.305
AdaBoost | 0.5 0.282 0.333 0.286 0.462 0.5 0.464

The results showed that the highest accuracy was obtained using the “Decision Tree” model which
achieved an accuracy of 0.891 in accurately predicting the engine failure type. The "Decision Tree" model
likewise produced the greatest f1-score of 0.853. This demonstrates that, given the collected data, the

"Decision Tree" model is the most accurate in forecasting an engine failure as shown in Figure 3.
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Figure 3: Accuracy and Macro Average Score Results of ML Models.
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This research aims to utilize machine learning models to maintain marine diesel engines by predicting
system faults before they occur. To achieve this goal an experimental model was created using a single -
cylinder, four-stroke, air-cooled diesel engine. During the engine operation, various issues related to the
oil level and air filter were deliberately induced to collect data on these failures. This dataset was then
used to train and evaluate machine learning models through a 5-fold cross-validation split.

¢ Multiple machine learning models were examined using the collected data to determine the best
one based on accuracy and macro average fl-score.

¢ The experimental data revealed that with each induced failure there was an increase in exhaust gas
and cylinder head temperatures.

¢ When applied to machine learning models, the results showed that the "Decision Tree" model had
both the highest average f1-score among all investigated models and an accuracy of 89.1%.

These findings indicate that this particular machine learning modelis the most effective in predicting diesel
engine problems based on the readings obtained from the engine contributing to the establishment of
proactive maintenance systems on board ships through predicting failures before they occur thus
preventing them.

Future research will include the examination of more failure modes as well as a different larger diesel
engine to reach closer results for system implementation on ship engines. The machine learning models
will be trained based on more parameters such as machine vibration as well as engine load. This will help
improve the ML model to predict more failure modes in ships’ main engines and thus reduce maintenance
cost and machinery downtime.
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