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ABSTRACT

The field of underwater acoustic communication (UWA) has many industrial and maritime applications. This
study focuses on cutting-edge channel estimation algorithms for UWA communications based on
compressed sensing (CS). Since underwater channels involve sparse multipath, this investigation
scrutinizes the process of channel estimation in systems employing multiple-input multiple-output
(MIMO) technology with orthogonal frequency division multiplexing (OFDM). It interprets the utilization of
pilot tones within the framework of a compressive sensing challenge. The performance of Compressive
Sampling Matching Pursuit (CoSaMP) and Sparse Bayesian Learning (SBL) algorithms is compared with
the conventional least square (LS) estimation algorithm by simulation.

The research infers that, methodologies rooted in compressed sensing yield superior channel estimation
compared to the conventional LS algorithm for underwater communication systems utilizing MIMO-OFDM.
For CS algorithms the simulation shows that SBL algorithm outperforms CoSaMP algorithm. Mean square
error (MSE) and bit error rate (BER) are used to quantify this superiority when signal-to-noise ratio (SNR)
conditions vary, employing both uniform and dispersed pilot configurations.

Keywords: channel estimation, sparse signal, Sparse Bayesian Learning, compressed sensing.

INTRODUCTION

Underwater communication systems play a pivotal role in various applications such as environmental
monitoring, underwater surveillance, autonomous underwater vehicles (AUVs), and inspection of oil and
gas pipelines(Dev Pratap Singh and Deepak Batham 2022). Unique challenges are encountered in the
underwater acoustic (UWA) channel, such as long propagation delays, severe multipath effects, limited
bandwidth, and frequency-dependent attenuation. Advanced techniques for accurate channel
estimation and signal recovery are necessary to address these challenges, which significantly impact the
reliability and data rate of communication systems(Khan, Das, and Pati 2020). Due to the use of multiple
narrowband subcarriers, Orthogonal Frequency Division Multiplexing (OFDM) has shown to be an
effective modulation system for underwater communication, reducing multipath fading and inter symbol
interference (ISI). To improve the performance of OFDMin underwater environments, Pilot-based channel
estimate is a well-established approach in which known symbols, or pilots, are embedded in the
transmitted signal to facilitate accurate estimation of the channel response.
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The application of Multiple Input, Multiple Output (MIMO) techniques to underwater communication
systems holds the potential to revolutionize the way we perceive and design underwater communication
networks as it offers increased data rates, improved reliability, and enhanced spectral
efficiency (Altabbaa 2021). MIMO exploits spatial dimensions to enhance communication by transmitting
multiple independent data streams simultaneously (Li et al. 2023). In underwater acoustic communication,
spatial multiplexing involves the use of multiple transducers at both the transmitter and receiver.

In recent years, Compressed Sensing (CS) has garnered considerable attention as a powerful signal
processing paradigm for sparse signal recovery. CS enables the reconstruction of sparse signals from a
reduced set of measurements, providing an efficient and accurate alternative to traditional methods such
as least square (LS). Comparative studies(Mechery and Remadevi 2017; Khan, Das, and Pati 2020) have
evaluated the performance of compressed sensing-based channel estimation against traditional methods
in underwater acoustic communication scenarios, providing insights into the advantages and limitations of
Cs.

Within the realm of underwater acoustic channel estimation, the integration of pilot-oriented MIMO-
OFDM and compressed sensing enhances the performance metrics of mean square error (MSE) and bit
error rate (BER). The improvement is achieved by decreasing the complexity of channel tracking and
lowering the cost of hardware across various system model environments..(Khan, Das, and Pati 2020).
By exploiting the sparsity inherent in the underwater channel, compressed sensing enables accurate
estimation even in scenarios with limited resources or rapidly changing channel conditions.

This study presents a comprehensive comparison between the conventional LS algorithm for channel
estimation and two prominent CS algorithms: Compressive Sampling Matching Pursuit (CoSaMP) and
Sparse Bayesian Learning (SBL). CoSaMP is a greedy pursuit algorithm known for its simplicity and
efficiency, while SBL leverages a probabilistic framework for sparse signal estimation.

The structure of this paper is as follows. First the model of the MIMO-OFDM communication system is
elucidated. An explanation for the UWA channel is presented in Section 4. Section 5 is dedicated to the
discussion of channel estimation. Simulation results are encapsulated in Section 6. Finally, Section 7
consolidates the conclusions.

For acoustic communications, OFDM is a low-complexity substitute for conventional single-carrier
modulation. We advocate for a MIMO spatial multiplexing system to augment the data rate within a
restricted acoustic bandwidth. A diagrammatic representation of the UWA OFDM transmitter is illustrated
in Figure 1. Quadrature amplitude modulation (QAM) is employed to map and encode the binary data
stream. Modulated signal undergoes a transformation from serial to parallel, with the inclusion of pilot
tones for determining the channel impulse response (CIR). The UWA MIMO-OFDM system manipulates
parallel data employing the inverse fast Fourier transform (IFFT).

x(n) = IFFT{X(k)}

=
[N

1 72T ke
=N X(k)e’ v ™7, n=01..,.N—1 (1)
0

=
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Where x(n) and X(K) are the time domain signal and the frequency domain signal respectively.

Post-IFFT, the transformation of the N parallel subcarriers into a serial bit stream is executed,
incorporating guard intervals made of cyclic prefix (CP) samples to avert ISI. Observationally, the final
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Ng samples of x(n) are duplicated as a CP and positioned at the commencement of this symbol,
culminating in the signal x(n) with a length equivalent to N + Ng, where Ng denotes the length of the CP
samples. The signal yg(n) is received subsequent to its transmission through the UWA channel.

yg(n) =xg Q h(n) +w(n),-Ng<n<N-1 )

Herein, @ denotes the circular convolution operator, while w(n) signifies the additive white Gaussian
noise (AWGN) with a zero mean, and h(n) symbolizes the CIR. The received signal undergoes division into
parallel subcarriers, and the CP is removed in the receiver, as illustrated in Figure 2. Fast Fourier transform
(FFT) operations are employed to convert the time-domain waveform y(n) into the frequency-domain
waveform Y (k), as detailed below:

Y(k) =FFT{y(n)}

-1
1 L 2T
=NZ yme ™™, k=01,.,N-1 )
n=0

Afterward, the transformed signal is captured as a sequence and decoded by the appropriate transmitter
algorithms after channel estimation. In this step, the UWA MIMO-OFDM system model's output is used to
obtain the final binary data stream.

) x(n) o
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Figure 1: UWA communication system transmitter.
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Figure 2: UWA communication system receiver.
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The distribution of each channel gain may be deduced to be distinct based on the condition of the sea. In
scenarios where the receiver is in close proximity to the transmitter in shallow water, the impact of diffuse
random multipath contributions is considered insignificant, and the gains from channel taps are
hypothesized to adhere to the Rician distribution. However, when the transmitter and receiver go farther
apart, large sea dynamics obstruct direct route contributions, leading to a predominance of diffuse
multipath and a Rayleigh distribution in the channel gains. We employ the channel transfer function
pertinent to shallow UWA channels, which has been modeled and computed by the authors cited in
(Qarabagi and Stojanovic 2013). The UWA channel transfer function is expressed as follows:

H(f) = H, X hyy (f)er2m, @)
L
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D= 1 ) a0 )
i=0
H(f) denotes the channel transfer function, whereas Ho(f) signifies the direct path transfer function. The
small-scale fading coefficients are represented by yL(f), while hL and tL correspond to the path gain and
delay, respectively. The intra-path gains and the propagation delay, associated with the Lt path, are
symbolized by hL,i and 7L,i, respectively.

Channel estimation employs pilot symbols, which are mutually recognized by both the transmitter and the
receiver. Within the framework of OFDM frames, these pilot symbols can be allocated in the time domain,
frequency domain, or both, resulting in various configurations such as comb-type, block-type, and
scattered-type(Coleri et al. 2002; Barhumi, Leus, and Moonen 2003). Numerous interpolation
methodologies can be employed to compute the channel responses of each subcarrier within the pilot
symbols, subsequent to the state estimation at these pilot symboils. In this investigation, we utilize the
pilot symbols at uniform intervals to scrutinize the optimal pilot sequence for UWA channel estimation and
juxtapose it with the scattered configuration.

LS

Presume that the channel’s sparsity level is denoted by k and the total count of taps is symbolized by L.
Given the sparse nature of the UWA channel, it implies that k is significantly less than L. The received
vector can be articulated as follows:

Y =XFh+w (6)

Where, Y = [Y(0), Y(1), ..., Y(L - 1)]7is the received signals after removing the CP, X is a N xN diagonal
matrix of transmitted signal, includes the data matrix D and the pilot matrix P,i.e., X = D + P = diag[X(0),
X(1), ..., X(N - 1)I7, Fis N x L DFT matrix, the channel vector h = [h(0, h(1), ..., h(L - 1)]7, and w =
[w(0), w(1), ..., w(L - 1)]7 is the noise vector which obeys a Gaussian distribution with zero-mean. The
received pilot symbol samples are utilized for the channel estimate, which can be stated as follows:

Y,=PF,h+ w,=Ah+ w,

y(0) PL OO 0 h(0) w(0)
y(;l) _ 8 1;2 0 8 - Frpt h(;1) N wEl) -
y(Ny—=1)] lo 0 0 Pwp hiL-1] lwN, -1)

Herein, Np denotes the pilot subcarriers. Conventionally, A = PFp is identified as the sensing. P represents
the Np x Np diagonal matrix of the pilot symbols. Fp is a Np % L matrix, constituted by the initial L columns
of the DFT matrix F, and the Np rows of the selected matrix correlated with the pilot subcarriers, which
can be articulated as(Shi and Yang 2016):

1 Pt .. Pt
1 1 P2 p2(L-1)

Fp B \/_N : Cb‘: ® 2: (8]
1 wPyp v ybNpl-1)
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where w = e7/2"V, According to (Shi and Yang 2016), the LS algorithm offers the following solution for
channel estimation, assuming that the estimated channel impulse response is H:

A= (ala)y ' aty 9)
Compressed sensing algorithm

A multitude of algorithms have been explored in (Khan, Das, and Pati 2020; Yahia, Alim, and Korany
2023) for the purpose of estimating the CIR of the UWA channel. A substantial number of pilots are
necessitated for channel estimation, given that LS is profoundly influenced by noise and fails to account
for the sparseness of the UWA channel. Furthermore, compressed sensing (CS) methodologies are
contemplated for addressing these issues. CS employs a limited quantity of measurements, fewer than
the signal dimensions, to identify a compressive representation of a signal (Mechery and Remadevi 2017;
Wu et al. 2020; Jiang et al. 2018). As a result, the ensuing underdetermined linear system can be
resolved:

y=Ax (10)

In this case, y € Rmis the measurement vector, A is am x n which is called sensing matrix withm <n, and
x € Rn is the signal we seek to identify, In compressed sensing and related fields, It is widely
acknowledged that if the signal x possesses a sparse representation (a limited number of non-zero
components), It can be distinctly reinstated (Mechery and Remadevi 2017) (Jiang et al. 2018). Finding
the sparse solution for the underdetermined linear system requires solving the following optimization
problem:

min||x|[, subject to Ax =y (11)
x

Herein, Ixlo denotes the count of non-zero components in vector x, referred to as thelo — norm lxlo & #
{i : xi # O}. After solving the optimization issue represented by (11), a sparse solution is obtained, which
represents the given vector y as a linear combination of minimum number of columns of the measurement
matrix A. relaxing the lo - norm to an l; - norm is a possible approach for obtaining a solution to (11) since
that the lo - norm is a nondeterministic polynomial (NP)-hard problem which is a convex function, to
ascertain the values of each coefficient xi for which the I} - norm & X|xi| is minimized(Ramirez,
Kreinovich, and Argaez 2013; Elad 2010; Tropp 2006; Natarajan 1995):

min||x||, subjectto Ax =y (12)
X

Employing greedy algorithms is another prevalent strategy for identifying a sparse solution to the
underdetermined linear system as depicted in equation (10). These algorithms are efficacious and
beneficial, and they find extensive application in compressed sensing due to their straightforward
implementation and relatively modest computational demand Two prominent greedy algorithms utilized
for compressed sensing are OMP and CoSaMP algorithms. Columns of the measurement matrix that show
the strongest correlation with the residual signal are iteratively selected by the greedy OMP algorithm.
CoSaMP is an OMP modification that augments performance by incorporating a thresholding step. The
predicament with OMP and CoSaMP is that it may not be feasible to ascertain the sparseness degree k
of the sparse vector x in advance while estimating sparse multipath channels (Aich and Palanisamy 2017;
Rao and Kartheek 2018; Lu et al. 2019). To circumvent this issue, we employed the Sparse Bayesian
Learning algorithm (SBL).
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CoSaMP is predicated on OMP, discerns the support set S by computing the correlation between each
measurement matrix A column and the residual vector r. Subsequently, these correlations are sortedin a
descending sequence, and the top 2k indices j are selected and appended to S. Next, utilizing least-
squares on the submatrix 4s, an estimate for the signal xs is calculated, this is created by choosing just
the columns that match the indices in S. The largest k elements of |xs| are utilized as a new xs .

Following this, the absolute values of xs are sorted in descending order, and the first k values are taken.
To verify convergence, one can calculate the residual vector's norm. The algorithm reaches the maximum
number of iterations or this norm decreases below a certain tolerance threshold, in which case the loop
is broken(Lu et al. 2019; Needell and Tropp 2009). The CoSaMP algorithm according to (Aich and

Palanisamy 2017) is elucidated as follows:

Input the sensing matrix (A),
the measurement vector (y), the
sparsity (/c), threshold, max number
of iterations.

!

i = the max numhelr of iterations, 5= |

v

1- ¢ = A"r  where c is the correlation vector.
2-  j =the indices of the top 2k of the absolute values in ¢
3- Augment § with j
4- Find out the least squares problem solution.
minl||A.x, — r||; to drive x.
5- Get the indices of the top k of the absolute values in x,
6- Refresh § using the updated indices.
7- Updater =y — Ax, ,i=--1

Yes

If {#0 or
[|I7|l. <threshold

Output
#(S) = x,
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Sparse Bayesian learning is an effective method recently used for UWA channel estimation in CS(Qiao et
al. 2018; Jia et al. 2023). It creates a flexible and reliable strategy that can adjust to the data by
integrating the idea of sparsity with a Bayesian approach to learning(Yang, Xie, and Zhang 2012). Starting
with a prior distribution that reflects our initial assumptions about the parameters, it uses the data that
has been observed to update its distribution. The result is the posterior distribution, which represents our
updated assumptions about the parameters. The sparsity of the representation is controlled by
hyperparameters. In SBL, these hyperparameters are also learned from the data, whichis a key advantage
of the method. The learning algorithm in SBL involves iteratively updating the model parameters and the
hyperparameters until convergence. This is typically done using an Expectation- Maximization (EM)
algorithm(Ament and Gomes 2021). The Sparse Bayesian Learning (SBL) algorithm is elucidated in depth

as follows:

Input the sensing matrix (4), the
measurement vector (), threshold,
max number of iterations.

v

Initiate the counter { = 0 and the hyperparameters §, & = I

v

1- Compute the posterior covariance @
og=(a+ BATA)?
2-  Compute the posterior covariance g
p= pod’y
3-  Update the hyperparameters [3, @
|l

2 4] _

Iyl
¥
B = :

lly = Aullz
4-  Increment i by 1.

y

if i « max number
of iterations and

2
||l7ff+1 = ai"z >
threshold

No

Fnd
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Derived from the empirical data procured from the Kauai AComms Multidisciplinary University Research
Initiative (MURI) (KAM), conducted proximate to the shoreline of Kauai Island, HI, USA, the carrier
frequency was established at 13 kHz. The aquatic depth was measured at 100 m, and both the transmitter
and the receiver were positioned at 58 and 59 meters above the seabed, respectively. The signals were
intercepted by the receiver, situated 3 km distant from the transmitter(Qarabaqgi and Stojanovic 2013).
An approximate representation of the UWA CIR is exhibited in Figure 3. In the simulations, pilot carriers are
employed to find the channel frequency response. Table 1 contains the simulation's variables.
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Figure 3: Channel impulse response of KAM experiment.

Table 1. Table 1 MIMO_OFDM Communication system parameters

Variable Value Variable Value

FFT size 512 No. of transmitter antenna 2

CP length 128 No. of receiver antenna 4
Modulation 16-QAM Channel model MIMO
SNR, dB 0:5:30 Channel configuration UWA-KAM

In Figures 4 and 5, a comparative analysis of the performance metrics, namely MSE and BER, is presented
for standard LS, CoSaMP, and SBL under varying SNR conditions, utilizing a regular pilot arrangement. The
analysis reveals a superior performance of SBL in comparison to both CoSaMP and LS.

Figure 6 elucidates the performance characteristics of the SBL algorithm, employing both regular and
scattered pilot arrangements. Upon comparative evaluation, it becomes evident that the regular pilot
arrangement exhibits a higher degree of compatibility with the SBL algorithm.
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Figure 4: The performance of MSE for LS, CoSaMP, and SBL. Figure 5: The performance of BER for LS, CoSaMP, and SBL

Given that the SBL and the LS algorithms do not necessitate channel sparsity, Figure 7 juxtaposes the
original channel with the estimated channel derived from both SBL and LS algorithms. The comparative
analysis indicates that SBL generates a sparse signal, predominantly characterized by zero values
interspersed with occasional spikes. Conversely, LS disregards the channel's sparsity, resulting in a
practical non-zero value for all its components. Consequently, the performance of SBL surpasses that
of the LS estimate.

16° Scattered and Regular spaced pilots for SBL
¥ Scattered g qx10° The Original Channel
‘ Regular %
S Fos
i E
% OM\-__,JlA A .
— a 5 10 15 20 25 30 35 40
E time [ms]
o0 r ’
b P =107 LS channel
E g £
IS] gos 4
= 1
- x HULH,, hrarladet
@ @ 00 5 10 15 20 25 30 35 40
time [ms]
o, x107 SBL Estil Channel
a5 1
3
=
A g')u I
1
107 : ‘ ! £, Al aan]
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40
SNR [dB] time [ms]
Figure 6: The pilot arrangement effect on the SBL algorithm. Figure 7: Channel Impulse Response.

This research undertakes the estimation of a pilot-assisted MIMO-OFDM-based underwater channel
utilizing algorithms such as LS, CoSaMP, and SBL. A comparative performance analysis of these
algorithms is conducted. The findings illustrate that the compressed sensing algorithms, CoSaMP and
SBL, outperform the conventional LS method in the context of Underwater Acoustic channel estimation.
However, CoSaMP's performance is contingent on the knowledge of the degree of sparsity, which is
typically unavailable in most multipath channel scenarios, thereby positioning SBL as the optimal
compressed sensing candidate. For the SBL algorithm, a regular pilot arrangement proves to be more
efficacious for UWA channel estimation compared to a scattered arrangement. Future research
endeavors will focus on further exploration of Bayesian-based compressed sensing algorithms for UWA
channel estimation.
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