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ABSTRACT 

The field of underwater acoustic communication (UWA) has many industrial and maritime applications. This 
study focuses on cutting-edge channel estimation algorithms for UWA communications based on 
compressed sensing (CS). Since underwater channels involve sparse multipath, this investigation 
scrutinizes the process of channel estimation in systems employing multiple-input multiple-output 
(MIMO) technology with orthogonal frequency division multiplexing (OFDM). It interprets the utilization of 
pilot tones within the framework of a compressive sensing challenge. The performance of Compressive 
Sampling Matching Pursuit (CoSaMP) and Sparse Bayesian Learning (SBL) algorithms is compared with 
the conventional least square (LS) estimation algorithm by simulation. 

The research infers that, methodologies rooted in compressed sensing yield superior channel estimation 
compared to the conventional LS algorithm for underwater communication systems utilizing MIMO-OFDM. 
For CS algorithms the simulation shows that SBL algorithm outperforms CoSaMP algorithm. Mean square 
error (MSE) and bit error rate (BER) are used to quantify this superiority when signal-to-noise ratio (SNR) 
conditions vary, employing both uniform and dispersed pilot configurations. 

Keywords: channel estimation, sparse signal, Sparse Bayesian Learning, compressed sensing. 

 

INTRODUCTION 

Underwater communication systems play a pivotal role in various applications such as environmental 
monitoring, underwater surveillance, autonomous underwater vehicles (AUVs), and inspection of oil and 
gas pipelines(Dev Pratap Singh and Deepak Batham 2022). Unique challenges are encountered in the 
underwater acoustic (UWA) channel, such as long propagation delays, severe multipath effects, limited 
bandwidth, and frequency-dependent attenuation. Advanced techniques for accurate channel 
estimation and signal recovery are necessary to address these challenges, which significantly impact the 
reliability and data rate of communication systems(Khan, Das, and Pati 2020). Due to the use of multiple 
narrowband subcarriers, Orthogonal Frequency Division Multiplexing (OFDM) has shown to be an 
effective modulation system for underwater communication, reducing multipath fading and inter symbol 
interference (ISI). To improve the performance of OFDM in underwater environments, Pilot-based channel 
estimate is a well-established approach in which known symbols, or pilots, are embedded in the 
transmitted signal to facilitate accurate estimation of the channel response. 
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The application of Multiple Input, Multiple Output (MIMO) techniques to underwater communication 
systems holds the potential to revolutionize the way we perceive and design underwater communication 
networks as it offers increased data rates, improved reliability, and enhanced spectral 
efficiency(Altabbaa 2021). MIMO exploits spatial dimensions to enhance communication by transmitting 
multiple independent data streams simultaneously(Li et al. 2023). In underwater acoustic communication, 
spatial multiplexing involves the use of multiple transducers at both the transmitter and receiver. 

In recent years, Compressed Sensing (CS) has garnered considerable attention as a powerful signal 
processing paradigm for sparse signal recovery. CS enables the reconstruction of sparse signals from a 
reduced set of measurements, providing an efficient and accurate alternative to traditional methods such 
as least square (LS). Comparative studies(Mechery and Remadevi 2017; Khan, Das, and Pati 2020) have 
evaluated the performance of compressed sensing-based channel estimation against traditional methods 
in underwater acoustic communication scenarios, providing insights into the advantages and limitations of 
CS. 

Within the realm of underwater acoustic channel estimation, the integration of pilot-oriented MIMO-
OFDM and compressed sensing enhances the performance metrics of mean square error (MSE) and bit 
error rate (BER). The improvement is achieved by decreasing the complexity of channel tracking and 
lowering the cost of hardware across various system model environments..(Khan, Das, and Pati 2020). 
By exploiting the sparsity inherent in the underwater channel, compressed sensing enables accurate 
estimation even in scenarios with limited resources or rapidly changing channel conditions. 

This study presents a comprehensive comparison between the conventional LS algorithm for channel 
estimation and two prominent CS algorithms: Compressive Sampling Matching Pursuit (CoSaMP) and 
Sparse Bayesian Learning (SBL). CoSaMP is a greedy pursuit algorithm known for its simplicity and 
efficiency, while SBL leverages a probabilistic framework for sparse signal estimation. 

The structure of this paper is as follows. First the model of the MIMO-OFDM communication system is 
elucidated. An explanation for the UWA channel is presented in Section 4. Section 5 is dedicated to the 
discussion of channel estimation. Simulation results are encapsulated in Section 6. Finally, Section 7 
consolidates the conclusions. 

MIMO SPATIAL MULTIPLEXING SYSTEM 

For acoustic communications, OFDM is a low-complexity substitute for conventional single-carrier 
modulation. We advocate for a MIMO spatial multiplexing system to augment the data rate within a 
restricted acoustic bandwidth. A diagrammatic representation of the UWA OFDM transmitter is illustrated 
in Figure 1. Quadrature amplitude modulation (QAM) is employed to map and encode the binary data 
stream. Modulated signal undergoes a transformation from serial to parallel, with the inclusion of pilot 
tones for determining the channel impulse response (CIR). The UWA MIMO-OFDM system manipulates 
parallel data employing the inverse fast Fourier transform (IFFT). 

𝑥(𝑛) = IFFT{𝑋(𝑘)} 

  

               (1) 

Where x(n) and X(K) are the time domain signal and the frequency domain signal respectively. 

Post-IFFT, the transformation of the N parallel subcarriers into a serial bit stream is executed, 
incorporating guard intervals made of cyclic prefix (CP) samples to avert ISI. Observationally, the final 
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𝑁𝑔 samples of 𝑥(𝑛) are duplicated as a CP and positioned at the commencement of this symbol, 
culminating in the signal 𝑥(𝑛) with a length equivalent to 𝑁 + 𝑁𝑔, where 𝑁𝑔 denotes the length of the CP 
samples. The signal 𝑦𝑔(𝑛) is received subsequent to its transmission through the UWA channel. 

𝑦𝑔(𝑛) = 𝑥𝑔 ⊗ ℎ(𝑛) + 𝑤(𝑛), −𝑁𝑔 ≤ 𝑛 ≤ 𝑁 − 1 (2) 

Herein, ⊗ denotes the circular convolution operator, while 𝑤(𝑛) signifies the additive white Gaussian 
noise (AWGN) with a zero mean, and ℎ(𝑛) symbolizes the CIR. The received signal undergoes division into 
parallel subcarriers, and the CP is removed in the receiver, as illustrated in Figure 2. Fast Fourier transform 
(FFT) operations are employed to convert the time-domain waveform 𝑦(𝑛) into the frequency-domain 
waveform 𝑌(𝑘), as detailed below: 

𝑌(𝑘) = FFT{𝑦(𝑛)} 

 
 
 

 
 

 

         (3) 

Afterward, the transformed signal is captured as a sequence and decoded by the appropriate transmitter 
algorithms after channel estimation. In this step, the UWA MIMO-OFDM system model's output is used to 
obtain the final binary data stream. 

 

Figure 1: UWA communication system transmitter. 

 

Figure 2: UWA communication system receiver. 

 

UNDERWATER ACOUSTIC COMMUNICATIONS CHANNEL MODEL 

The distribution of each channel gain may be deduced to be distinct based on the condition of the sea. In 
scenarios where the receiver is in close proximity to the transmitter in shallow water, the impact of diffuse 
random multipath contributions is considered insignificant, and the gains from channel taps are 
hypothesized to adhere to the Rician distribution. However, when the transmitter and receiver go farther 
apart, large sea dynamics obstruct direct route contributions, leading to a predominance of diffuse 
multipath and a Rayleigh distribution in the channel gains. We employ the channel transfer function 
pertinent to shallow UWA channels, which has been modeled and computed by the authors cited in 
(Qarabaqi and Stojanovic 2013). The UWA channel transfer function is expressed as follows: 

𝐻(𝑓) = 𝐻𝑜 ∑ ℎ𝐿𝛾𝐿(𝑓)𝑒−𝑗2𝜋𝜏𝐿, 
𝐿 

                        (4) 
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                        (5) 

𝐻(𝑓) denotes the channel transfer function, whereas 𝐻𝑜(𝑓) signifies the direct path transfer function. The 
small-scale fading coefficients are represented by 𝛾𝐿(𝑓), while ℎ𝐿 and 𝜏𝐿 correspond to the path gain and 
delay, respectively. The intra-path gains and the propagation delay, associated with the 𝐿𝑡ℎ path, are 
symbolized by ℎ𝐿,𝑖 and 𝜏𝐿,𝑖, respectively. 

CHANNEL ESTIMATION 

Channel estimation employs pilot symbols, which are mutually recognized by both the transmitter and the 
receiver. Within the framework of OFDM frames, these pilot symbols can be allocated in the time domain, 
frequency domain, or both, resulting in various configurations such as comb-type, block-type, and 
scattered-type(Coleri et al. 2002; Barhumi, Leus, and Moonen 2003). Numerous interpolation 
methodologies can be employed to compute the channel responses of each subcarrier within the pilot 
symbols, subsequent to the state estimation at these pilot symbols. In this investigation, we utilize the 
pilot symbols at uniform intervals to scrutinize the optimal pilot sequence for UWA channel estimation and 
juxtapose it with the scattered configuration. 

LS 

Presume that the channel’s sparsity level is denoted by 𝒌 and the total count of taps is symbolized by 𝑳. 
Given the sparse nature of the UWA channel, it implies that k is significantly less than L. The received 
vector can be articulated as follows: 

 
 
 
Where, 𝒀 = [𝒀(𝟎), 𝒀(𝟏), … , 𝒀(𝑳 − 𝟏)]𝑻is the received signals after removing the CP, 𝑿 is a 𝑵 ×𝑵 diagonal 
matrix of transmitted signal, includes the data matrix 𝑫 and the pilot matrix 𝑷, i.e., 𝑿 = 𝑫 + 𝑷 = 𝒅𝒊𝒂𝒈[𝑿(𝟎), 
𝑿(𝟏), … , 𝑿(𝑵 − 𝟏)]𝑻, 𝑭 is 𝑵 × 𝑳 DFT matrix, the channel vector 𝒉 = [𝒉(𝟎, 𝒉(𝟏), … , 𝒉(𝑳 − 𝟏)]𝑻, and 𝒘 = 
[𝒘(𝟎), 𝒘(𝟏), … , 𝒘(𝑳 − 𝟏)]𝑻 is the noise vector which obeys a Gaussian distribution with zero-mean. The 
received pilot symbol samples are utilized for the channel estimate, which can be stated as follows: 

𝑌𝑝 = 𝑃𝐹𝑝ℎ + 𝑤𝑝 = 𝐴ℎ + 𝑤𝑝 

 

Herein, 𝑁𝑝 denotes the pilot subcarriers. Conventionally, 𝐴 = 𝑃𝐹𝑝 is identified as the sensing. 𝑃 represents 
the 𝑁𝑝 × 𝑁𝑝 diagonal matrix of the pilot symbols. 𝐹𝑝 is a 𝑁𝑝 × 𝐿 matrix, constituted by the initial 𝐿 columns 
of the DFT matrix 𝐹, and the 𝑁𝑝 rows of the selected matrix correlated with the pilot subcarriers, which 
can be articulated as(Shi and Yang 2016): 

 

𝑌 = 𝑋𝐹ℎ + 𝑤                                  (6) 
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where 𝜔 = 𝑒−𝑗2𝜋⁄𝑁. According to (Shi and Yang 2016), the LS algorithm offers the following solution for 
channel estimation, assuming that the estimated channel impulse response is 𝐻̂: 

 

Compressed sensing algorithm 

A multitude of algorithms have been explored in (Khan, Das, and Pati 2020; Yahia, Alim, and Korany 
2023) for the purpose of estimating the CIR of the UWA channel. A substantial number of pilots are 
necessitated for channel estimation, given that LS is profoundly influenced by noise and fails to account 
for the sparseness of the UWA channel. Furthermore, compressed sensing (CS) methodologies are 
contemplated for addressing these issues. CS employs a limited quantity of measurements, fewer than 
the signal dimensions, to identify a compressive representation of a signal (Mechery and Remadevi 2017; 
Wu et al. 2020; Jiang et al. 2018). As a result, the ensuing underdetermined linear system can be 
resolved: 

𝑦 = 𝐴𝑥                                        (10) 

In this case, 𝑦 ∈ ℝ𝑚is the measurement vector, 𝐴 is a 𝑚 × 𝑛 which is called sensing matrix with 𝑚 < 𝑛 , and 
𝑥 ∈ ℝ𝑛 is the signal we seek to identify, In compressed sensing and related fields, It is widely 
acknowledged that if the signal x possesses a sparse representation (a limited number of non-zero 
components), It can be distinctly reinstated (Mechery and Remadevi 2017)(Jiang et al. 2018). Finding 
the sparse solution for the underdetermined linear system requires solving the following optimization 
problem: 

 

Herein, ‖𝑥‖0 denotes the count of non-zero components in vector 𝑥, referred to as the𝑙0 − norm ‖𝑥‖0 ≝ # 
{𝑖 ∶ 𝑥𝑖 ≠ 0}. After solving the optimization issue represented by (11), a sparse solution is obtained, which 
represents the given vector y as a linear combination of minimum number of columns of the measurement 
matrix 𝐴. relaxing the 𝑙0 − norm to an 𝑙1 − norm is a possible approach for obtaining a solution to (11) since 
that the 𝑙0 − norm is a nondeterministic polynomial (NP)-hard problem which is a convex function, to 
ascertain the values of each coefficient 𝑥𝑖 for which the 𝑙1 − norm ≝ ∑|𝑥𝑖| is minimized(Ramirez, 
Kreinovich, and Argaez 2013; Elad 2010; Tropp 2006; Natarajan 1995): 

 

Employing greedy algorithms is another prevalent strategy for identifying a sparse solution to the 
underdetermined linear system as depicted in equation (10). These algorithms are efficacious and 
beneficial, and they find extensive application in compressed sensing due to their straightforward 
implementation and relatively modest computational demand Two prominent greedy algorithms utilized 
for compressed sensing are OMP and CoSaMP algorithms. Columns of the measurement matrix that show 
the strongest correlation with the residual signal are iteratively selected by the greedy OMP algorithm. 
CoSaMP is an OMP modification that augments performance by incorporating a thresholding step. The 
predicament with OMP and CoSaMP is that it may not be feasible to ascertain the sparseness degree k 
of the sparse vector 𝑥 in advance while estimating sparse multipath channels (Aich and Palanisamy 2017; 
Rao and Kartheek 2018; Lu et al. 2019). To circumvent this issue, we employed the Sparse Bayesian 
Learning algorithm (SBL). 
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Compressive Sampling Matching Pursuit (CoSaMP) 
CoSaMP is predicated on OMP, discerns the support set 𝑆 by computing the correlation between each 
measurement matrix 𝐴 column and the residual vector 𝑟. Subsequently, these correlations are sorted in a 
descending sequence, and the top 2𝑘 indices 𝑗 are selected and appended to 𝑆. Next, utilizing least- 
squares on the submatrix 𝐴𝑠, an estimate for the signal 𝑥𝑠 is calculated, this is created by choosing just 
the columns that match the indices in 𝑆. The largest 𝑘 elements of |𝑥𝑠| are utilized as a new 𝑥𝑠 . 

Following this, the absolute values of 𝑥𝑠 are sorted in descending order, and the first 𝑘 values are taken. 
To verify convergence, one can calculate the residual vector's norm. The algorithm reaches the maximum 
number of iterations or this norm decreases below a certain tolerance threshold, in which case the loop 
is broken(Lu et al. 2019; Needell and Tropp 2009). The CoSaMP algorithm according to (Aich and 
Palanisamy 2017) is elucidated as follows: 
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Sparse Bayesian Learning algorithm (SBL) 
Sparse Bayesian learning is an effective method recently used for UWA channel estimation in CS(Qiao et 
al. 2018; Jia et al. 2023). It creates a flexible and reliable strategy that can adjust to the data by 
integrating the idea of sparsity with a Bayesian approach to learning(Yang, Xie, and Zhang 2012). Starting 
with a prior distribution that reflects our initial assumptions about the parameters, it uses the data that 
has been observed to update its distribution. The result is the posterior distribution, which represents our 
updated assumptions about the parameters. The sparsity of the representation is controlled by 
hyperparameters. In SBL, these hyperparameters are also learned from the data, which is a key advantage 
of the method. The learning algorithm in SBL involves iteratively updating the model parameters and the 
hyperparameters until convergence. This is typically done using an Expectation- Maximization (EM) 
algorithm(Ament and Gomes 2021). The Sparse Bayesian Learning (SBL) algorithm is elucidated in depth 
as follows: 
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SIMULATION AND RESULTS 

Derived from the empirical data procured from the Kauai AComms Multidisciplinary University Research 
Initiative (MURI) (KAM), conducted proximate to the shoreline of Kauai Island, HI, USA, the carrier 
frequency was established at 13 kHz. The aquatic depth was measured at 100 m, and both the transmitter 
and the receiver were positioned at 58 and 59 meters above the seabed, respectively. The signals were 
intercepted by the receiver, situated 3 km distant from the transmitter(Qarabaqi and Stojanovic 2013). 
An approximate representation of the UWA CIR is exhibited in Figure 3. In the simulations, pilot carriers are 
employed to find the channel frequency response. Table 1 contains the simulation's variables. 

 

Figure 3: Channel impulse response of KAM experiment. 

 
Table 1. Table 1 MIMO_OFDM Communication system parameters 

Variable Value Variable Value 

FFT size 512 No. of transmitter antenna 2 

CP length 128 No. of receiver antenna 4 

Modulation 16-QAM Channel model MIMO  

SNR, dB 0:5:30 Channel configuration UWA-KAM 

 

In Figures 4 and 5, a comparative analysis of the performance metrics, namely MSE and BER, is presented 
for standard LS, CoSaMP, and SBL under varying SNR conditions, utilizing a regular pilot arrangement. The 
analysis reveals a superior performance of SBL in comparison to both CoSaMP and LS. 

Figure 6 elucidates the performance characteristics of the SBL algorithm, employing both regular and 
scattered pilot arrangements. Upon comparative evaluation, it becomes evident that the regular pilot 
arrangement exhibits a higher degree of compatibility with the SBL algorithm. 
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Figure 4: The performance of MSE for LS, CoSaMP, and SBL.          Figure 5: The performance of BER for LS, CoSaMP, and SBL 

Given that the SBL and the LS algorithms do not necessitate channel sparsity, Figure 7 juxtaposes the 
original channel with the estimated channel derived from both SBL and LS algorithms. The comparative 
analysis indicates that SBL generates a sparse signal, predominantly characterized by zero values 
interspersed with occasional spikes. Conversely, LS disregards the channel’s sparsity, resulting in a 
practical non-zero value for all its components. Consequently, the performance of SBL surpasses that 
of the LS estimate. 

                       

Figure 6: The pilot arrangement effect on the SBL algorithm.                                  Figure 7: Channel Impulse Response. 

CONCLUSIONS 

This research undertakes the estimation of a pilot-assisted MIMO-OFDM-based underwater channel 
utilizing algorithms such as LS, CoSaMP, and SBL. A comparative performance analysis of these 
algorithms is conducted. The findings illustrate that the compressed sensing algorithms, CoSaMP and 
SBL, outperform the conventional LS method in the context of Underwater Acoustic channel estimation. 
However, CoSaMP’s performance is contingent on the knowledge of the degree of sparsity, which is 
typically unavailable in most multipath channel scenarios, thereby positioning SBL as the optimal 
compressed sensing candidate. For the SBL algorithm, a regular pilot arrangement proves to be more 
efficacious for UWA channel estimation compared to a scattered arrangement. Future research 
endeavors will focus on further exploration of Bayesian-based compressed sensing algorithms for UWA 
channel estimation. 
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