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ABSTRACT:

Hypertension = remains a  critical  global
health concern, contributing significantly to
cardiovascular morbidity and mortality. In different
cultures, traditional remedies, such as plant-
based therapeutics, have been widely employed
to manage this condition. However, the limited
scientific understanding of their mechanisms
hinders their integration into standardized
treatment frameworks. This study investigated the
antihypertensive potential of Hibiscus sabdariffa
(HS) by employing molecular docking and ADMET
analyses to elucidate its bioactive compounds
and their molecular interactions. Seventy-four
compounds from HS were docked against five
antihypertensive protein targets. ADMET and
pharmacokinetic analyses were done on the top-
ranking compounds. Molecular docking analysis
revealed promising interactions between key
bioactive compounds of HS, including kaempferol-
3-O-rutinoside,  beta-sitosterol  3-O-beta-D-
galactopyranoside, cianidanol, and Rutin, and
the following crucial antihypertensive targets:
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phosphodiesterase 5A (PDE5A), angiotensin Il type
1 receptor (ATIR), angiotensin-converting enzyme
I (ACE 1), mineralocorticoid receptor (MR), and
voltage-gated L-type calcium channel (VGCC).
The best docking scores for the receptors ranged
from -9.4 to -10.6. Complementary ADMET analysis
provided valuable insights into the pharmacokinetic
properties and safety profiles of these compounds,
underscoring their therapeutic potential. Notably,
cianidanol exhibited favorable docking scores
and pharmacokinetic attributes, including high
bioavailability and low toxicity. These findings
establish a molecular basis for the traditional use
of Hibiscus sabdariffa as a multitarget therapy for
the management of hypertension and support its
potential development as a natural therapeutic
agent. Future experimental studies are essential to
validate and optimize these bioactive compounds
for antihypertensive drug development.
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1. INTRODUCTION

Hypertension, a cardiovascular  disorder
characterized by persistently elevated blood
pressure, is a leading preventable cause of
cardiovascular diseases and premature death
worldwide. Affecting over one billion adults
globally, it imposes a significant health burden,
particularly in low- to middle-income countries,
where nearly 46% of cases are undiagnosed,
owing to its often asymptomatic nature [1-4].

Current treatment strategies typically combine
lifestyle modifications, such as dietary
changes and increased physical activity, with
pharmaceutical interventions. However, the
high cost and side effects of these medications
have spurred interest in alternative natural
therapies, which may offer safer, cost-effective
solutions [5]. Among these natural therapies,
Hibiscus sabdariffa (HS), known for its rich array
of bioactive compounds, has emerged as a
promising candidate [6].

Commonly referred to as Roselle, Jamaica sorrel,
or red sorrel, HS is an annual, flowering subshrub
from the Malvaceae family. Its vibrant red
calyces (sepals) and reddish stems are widely
recognized and cultivated across subtropical
and tropical regions, including Nigeria, Mexico,
and Thailand. Its long history of traditional use
across various cultures highlights its potential
health benefits [7-8].

Preclinical and clinical studies have shown
that HS contains bioactive components that
are beneficial for managing various health
conditions, including hypertension, inflammation,
and diabetes, while maintaining a favorable
safety profile and minimal side effects [7,9-10]. Its
widespread availability, cost-effectiveness, and
proven efficacy in hypertension management
have contributed to its popularity as a natural
therapeutic agent in diverse cultural and
socioeconomic settings [6, 11].

Despite its long history of use in hypertension
management, the specific phytochemicals
responsible for its antinypertensive effects and its
mechanisms of action are not fully understood.
Bridging these knowledge gaps is crucial for
integrating HS into standardized treatment
protocols, as understanding its molecular
interactions is key to confirming its therapeutic
efficacy in hypertension management.

This study utilizes in silico methods — molecular
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docking and ADMET profiling — to examine
the antihypertensive potential of bioactive
compounds found in HS. By assessing the
binding affinities, physicochemical properties,
and  toxicological  properties of these
compounds in the context of hypertension, this
research contributes to the development of
natural treatments for hypertension. Building
on existing research that has highlighted the
general therapeutic potential of HS [7-9], this
study focused on identifying specific bioactive
compounds to elucidate their molecular
mechanisms in hypertension management.
These findings will also help bridge the gap
between traditional herbal medicine and modern
drug discovery, potentially expanding treatment
options for this prevalent health concern.

2. MATERIAL AND METHODS

2.1 Target Selection

All the targets used in this study were sourced
from the Open Targets platform [12] (https://
platform.opentargets.org/).  Protein  targets
relevantto hypertension pathways and those with
the highest potential for therapeutic intervention
were selected. The X-ray crystallographic
3D structures of the selected targets were
downloaded from the Research Collaboratory
for Structural Bioinformatics (RCSB) online
protein data bank repository [13] (https://www.
rcsb.org/). The following protein targets were
used: phosphodiesterase 5A (PD5A; PDB ID: 1xp0),
angiotensin Il type 1 receptor (ATIR; PDB ID: 4zud),
angiotensin-converting enzyme | (ACE 1; PDB
ID: 7z70), mineralocorticoid receptor (MR; PDB
ID: 6gev), and voltage-gated L-type calcium
channel (VGCC; PDB ID: 8we8).

2.2 Target preparation

Protein structures were prepared via the BIOVIA
Discovery Studio visualizer. Water molecules were
removed, and hydrogen atoms were added to
stabilize the protein structures. The cocrystalized
ligands were used to determine the binding sites
of the targets before removal. Protein chain A,
which contained the active site for each target,
was used in the analysis.

2.3 Ligand Selection

The 74 ligands used in this study were sourced
from the PubChem database [14] (https://
pubchem.ncbi.nlm.nih.gov/). Silicon-containing
compounds were excluded because of
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incompatibility with the PyRx software used for
molecular docking.

2.4 Ligand Preparation

The 2D/3D structures of the bioactive compounds
used were retrieved from PubChem. PyRx was
used in the 3D transformation, optimization, and
energy minimization of the ligands to determine
their most stable pose.

2.5 Molecular analysis

Docking was performed using the AutoDock Vina
module within PyRx, followed by visualization of
ligand-target interactions via BIOVIA Discovery
Studio. The results obtained were ranked on the
basis of their root mean square deviation values
and binding energies in kcal/mol. Ligands with
the lowest binding energies, indicative of strong
target interactions and favorable poses, were
selected for further analysis.

2.6 Setting the Grid Dimension for AutoDock
Calculations

The grid was generated to define the position
and size of the protein’s active site for ligand
docking. The search space coordinates were
provided by AutoDock Vina via PyRx. The target’s
active site was determined via the position of
the cocrystallized ligand at the binding site and
validated via the web-based tool Castp [15]
(http://sts.bioe.uic.edu/castp/index.html?lycs).
The grid settings used in the PyRx interface for
the site-defined docking analysis are as follows:

Phosphodiesterase 5A: Center (Angstrom):
X: -20.2738, Y: 31.8800, Z: 65.3799; Dimensions
(Angstrom): X: 18.2444, Y: 20.8713, Z: 25.4134

Mineralocorticoid receptor: Center (Angstrom):
X: 75056, Y: 16.5037, Z: 15.9444; Dimensions
(Angstrom): X: 17.9585, Y: 20.3215, Z: 27.7966

Angiotensin converting enzyme 1. Center
(Angstrom): X: 8.8189, Y: 4.4763, Z: 23.5860;
Dimensions (Angstrom): X: 29.4904; Y: 34.9122; Z:
32.0535

Angiotensinlitypelreceptor: Center (Angstrom):
X: -40.7332, Y: 67.563], Z: 28.7825; Dimensions
(Angstrom): X: 23.7163, Y: 18.0038, Z: 26.2902

L-type voltage-gated calcium channel: Center
(Angstrom): X: 159.4740, Y: 166.1762, Z: 147.6636;
Dimensions (Angstrom): X: 25.0000, Y: 25.0000, Z:
27.2547
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Default settings were applied for all other
parameters to ensure consistency across the
analyses.

2.7 Docking Validation Protocol

Tovalidatethedockingprotocol,thecocrystallized
ligands for each target protein were extracted
and re-docked into their respective binding sites
using Discovery Studio 2021 and PyRx’'s AutoDock
Vina module. The same docking parameters
applied to the test compounds were used.
The accuracy of redocking was assessed by
calculating the root-mean-square deviation
(RMSD) between the docked pose and the
experimental crystallographic pose of the ligand.
An RMSD < 3.0 A was considered indicative of a
valid docking protocol.

2.8 Pharmacokinetic and Toxicity Analysis

The ADMET properties of the selected lead
compounds were evaluated using in silico
predictive models to assess their potential
efficacy, safety, and bioavailability. The
SwissADME web application (168) (http://www.
swissadme.ch/) was used to assess the ADME
properties of the compounds - lipophilicity (mean
Log Po/w), aqueous solubility (via the estimated
SOLubility (ESOL) model), human gastrointestinal
absorption, and interactions with metabolizing
enzymes. The drug likeness of the compounds
was evaluated on the basis of bioavailability
scores and adherence to Lipinski's Rule of Five.
Compounds meeting these criteria are more
likely to exhibit favorable oral bioavailability and
therapeutic potential [16]. The ProTox-Ill online
server [17] (https://comptox.charite.de/protox3/)
was used to predict toxicological endpoints,
including acute toxicity class, lethal dose LD50),
hepatotoxicity, carcinogenicity, mutagenicity,
cytotoxicity, and immunotoxicity of the lead
compounds.

3. RESULTS AND DISCUSSION

3.1 Molecular Docking Analysis

Hypertension continues to pose a significant
global health challenge, with its prevalence and
associated burden projected to escalate in the
coming years. Several enzymes and receptors
have been identified as key in the development
and progression of hypertension and are
often the targets of common antihypertensive
medications.Effectivemodulationofthesetargets
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is essential in managing this prevalent condition
[18]. The use of combination pharmacotherapy,
which has demonstrated superior efficacy
compared with single-pill therapy, may be
hindered by its higher costs, increased risk of side
effects, and complexity of multidrug regimens.
Consequently, the exploration of alternative
therapeutic strategies, particularly those derived
from natural sources, is imperative. HS offers a
promising avenue for the development of safe,
cost-effective antihypertensive agents [5, 10].

This study elucidates the molecular interactions
between key bioactive compounds from HS
and hypertensive targets, revealing several
compounds with binding affinities surpassing
those of established drugs. These findings
highlight the therapeutic potential of HS-
derived compounds, particularly their capacity
to modulate critical enzymes and receptors
involved in hypertension pathophysiology.

3.1.1Target 1: Phosphodiesterase 5A (PD5A)

Table 1 summarizes the docking scores for the
top five bioactive compounds and the standard
drug sildendafil against PD5A. Kaempferol-3-
O-rutinoside, HS03, and Rutin showed similarly
high predicted binding affinities (-10.2 to -10.1
kcal-mol™), while epigallocatechin gallate and
quercitrin scored slightly lower (-10 to -9.6
kcal-mol™).

Kaempferol-3-O-rutinoside formed  several
hydrogen bonds with residues ASN662, GLUG82,
THR723, and ASP764 within the active site of the
target. Pi—alkyl and pi—pi stacking interactions
were also observed with the hydrophobic
amino acid residues LEU725 and VAL782 and
the aromatic amino acid residue PHE820 (Fig.
1). Taken together, the docking poses and
interaction patterns suggest these compounds
warrant further investigation as potential PD5A
binders. The interaction between the reference
drug, sildenafil, and PD5A is shown in Fig. 2.

The docking protocol reproduced the
crystallographic binding pose of the co-
crystalized ligand, Vardendfil, with an RMSD of 0
A and binding affinity of —9.0 kcal/mol, which is
within the acceptable cutoff for validation.

http://apc.aast.edu

Table 1: Docking scores of the five top-scoring compounds of
HS and standard drug against the antihypertensive target
phosphodiesterase 5A (PD5A)

Compound Structural class Docking score
(ligand) (Kcal/mol)
Kaempferol-3- Trihydroxyflavone -10.2
O-rutinoside

HSO03 Terpenoid -10.1
Rutin Tetrahydroxyflavone -10.1
Epigallocate- Flavans -10
chin Gallate

Quercitrin Tetrahydroxyflavone -9.6
Sildendafil PD5A Inhibitor -9.6
(standard)

HS03 = (3R,5S,9S,10R,13S,14R17S)-17-[(E,2S,5S)-5-
ethyl-6-methylhept-3-en-2-yl]-10,13-dimethyl-
2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-
cyclopentala]phenanthren-3-ol
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3.1.2 Target 2: Mineralocorticoid Receptor (MR)

Table 2 summarizes the docking scores for the
top five bioactive compounds and the standard
drug spironolactone against the MR. Quercetin,
gossypetin, and cianidanol formed multiple
hydrogen bonds with key residues GLN776 and
MET807, alongside pi—sulfur interactions at
MET845, pi—alkyl interactions with hydrophobic
residues, and pi—-pi stacking interaction with
PHE829. These interactions, depicted in Figs. 3-5,
contributed to their strong predicted binding
affinity (-9.3 kcal/mol), which is comparable to
that of spironolactone (-10.4 kcal/mol, Fig. 6).
Therefore, these flavonoids may be considered to
have a similar binding potential to the standard
drug.

Figure1:2D (top) and 3D (bottom) interactions of kaempferol3-

Redocking yielded a perfect overlap with the
crystallographic pose for the co-crystalized

O-rutinoside with the phosphodiesterase A5 active site

T ligand, RSCB ligand ID: EWN, with an RMSD of 0 A
-y i 453 and a binding affinity of —12.2 kcal/mol, indicating
- N — excellent docking reliability.
A"-‘-'r::. _'_>—-‘ "\.H_,_J,
o i__ Table 2: Docking scores of the five top-scoring compounds
- @ - — s of HS and standard drug against the antihypertensive target
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— a 7.2 " e
7 L
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PD5A is an enzyme involved in the degradation
of cyclic guanosine monophosphate ?cGMP) in .
vascular smooth muscle cells. The inhibition of L =
this enzyme by HS-derived flavonoids, including
kaempferol-3-O-rutinoside and  structurally
related compounds, could increase cGMP
levels, promote vasodilation, and reduce blood
pressure. These results are consistent with
studies that highlighted the antihypertensive Ao o
effects of kaempferol-3-O-rutinoside (19-21). e L
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The MR, a nuclear receptor central to sodium
and water homeostasis, plays a key role in
blood pressure regulation. This study revealed
that quercetin, gossypetin, and cianidanol
scored slightly lower than the standard drug
spironolactone. However, these compounds
exhibited structural similarities and favorable
binding profiles, highlighting their potential as
scaffolds for developing novel MR antagonists.
The diverse biological activities of quercetin,
including its antidiabetic, neuroprotective, and
antihypertensive effects, are well documented
[22-23]. The antihypertensive actions of
quercetin have been attributed to multiple
mechanisms, including attenuation of oxidative
stress, modulation of the renin—angiotensin
system, and improvement of endothelial
function [24]. Similarly, cianidanol (catechin)
has shown therapeutic potential in regulating
lipid metabolism and stimulating nitric oxide
production — mechanisms that collectivel
contribute to its antihypertensive effects [25—27{.

Consistent with prior studies reporting the
diuretic effects of quercetin and its analogs [28-
29], our findings suggest that these compounds
may modulate MR activity. By potentially
influencing aldosterone-mediated sodium and
water retention, these HS-derived flavonoids
may contribute to the observed diuretic and
antihypertensive effects of HS.

3.1.3 Target 3: Angiotensin Il Type | Receptor
(ATIR)

Table 3 summarizes the docking scores for the
top five bioactive compounds and the standard
drug Valsartan against ATIR. Several HS-
derived compounds, including beta-sitosterol
3-0O-beta-D-galactopyranoside, gossypol, and
kaempferol-3-O-rutinoside, demonstrated high
predicted binding affinities (-10.1 to —9.6 kcal/
mol), which were comparable or slightly more
favorable than valsartan (-9.0 kcal/mol). These
binding affinities suggestthatmultiple structurally
diverse HS compounds may serve as potential
ATIR modulators. Beta-sitosterol 3-O-beta-D-
galactopyranoside formed hydrogen bonds with
key residues such as PROI9, ALA2], and ARG23,
alongside pi—pi interactions with ILE288 and
TRP84 (Fig. 7). These interactions suggest that
multiple structurally diverse HS compounds may
serve as potential ATIR modulators.

Redocking of the cocrystallized ligand,
Olmesartan, yielded RMSD values of 2.62 A (lower
bound) and 3.87 A (upper bound) for the best
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pose. The lower-bound RMSD indicates a near-
native alignment, while the upper-bound value is
slightly above the commonly used 3.0 A threshold.
Thus, the redocking result is borderline: a near-
native pose was recovered, but conservative
alignment metrics suggest some deviation from
the crystallographic orientation. The resulting
pose showed a molecular overlay RMSD of 0.94 A
compared to the crystallographic conformation
via Discovery Studio.

Table 3: Docking scores of the five top-scoring compounds of
HS against the antihypertensive target angiotensin Il Type 1
receptor (ATIR)

Compound Structural class | Docking score
(ligand) (Kcal/mol)
Beta-Sitosterol Plant steroid -10.1
3-O-beta-D-ga-

lactopyranoside

Gossypol Sesquiterpenes -9.6
Kaemp- Trihydroxyflavone -9.6
ferol-3-O-rutino-

side

HS03 Flavonoids -9.6
HS05 Flavonoids -9.6
Valsartan ATIR antagonist -9.0
(Standard)

HS03 = (3R,5S,95,10R,13S,14R,17S)-17-[(E,2S,5S)-5-
ethyl-6-methylhept-3-en-2-ylI]-10,13-dimethyl-
2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-
cyclopentala]phenanthren-3-ol

HSO5 = 5-hydroxy-2-(4-methoxyphenyl)-8-
(3-methylbut-2-enyl)-7-[(2S,3R,4S,5S,6R) -
3,4,5-trihydroxy-6-(hydroxymethyl)
oxan-2-yl]oxy-3-[(2R,3R,4R,5R,6S)-3,4,5-
trihydroxy-6-methyloxan-2-yl]Joxychromen-4-
one
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Figure 8: 2D ligand interaction of Valsartan (Standard) with
the ATIR active site

ATIR is integral to hypertension pathophysiology,
mediating vasoconstriction and sodiumretention
via the renin—angiotensin system. Several HS-
derived compounds, including beta-sitosterol
3-0O-beta-D-galactopyranoside, gossypol,
and kaempferol-3-O-rutinoside, exhibited high
predicted affinities for ATIR, suggesting potential
for antagonistic activity. Such interactions could
counteract angiotensin ll-mediated effects
and thereby contribute to blood pressure
reduction. Notably, beta-sitosterol 3-O-beta-
D-galactopyranoside has been reported to
possess diverse biological activities, including
antidiabetic and gastroprotective effects [30-
31]. While its antihypertensive potential has been
less explored, our findings suggest that this
compound, alongside other HS phytochemicals
with comparable docking profiles, may serve
as promising candidates for ATIR-targeted

http://apc.aast.edu
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therapies.

3.1.4 Target 4: Angiotensin-Converting Enzyme
1

Table 4 summarizes the docking scores for the
top five bioactive compounds and the standard
drug lisinopril against ACE 1. Several flavonoids,
including Rutin (-10.6 kcal/mol), kaempferol-3-
O-rutinoside (-10.4 kcal/mol), and gossypitrin
(-10.2 kcal/mol), demonstrated high predicted
binding affinities, all more favorable than the
standard drug lisinopril (=7.6 kcal/mol) (Fig. 10).
For instance, Rutin formed hydrogen bonds with
GLU162, THR282, and LYS5I], along with a carbon-—
hydrogen bond with ASP377 (Fig. 9), contributing
to its strong binding profile. These results
suggest that multiple HS compounds may act as
potential ACEl inhibitors, offering scaffolds for the
development of novel antinypertensive agents.

Redocking of the cocrystallized ligand,
fosinoprilat, yielded RMSD values of 2.48 A (lower
bound) and 4.15 A (upper bound) for the best
pose. The lower-bound RMSD indicates a near-
native alignment, while the upper-bound value is
slightly above the commonly used 3.0 A threshold.
Thus, the redocking result is borderline: a near-
native pose was recovered, but conservative
alignment metrics suggest some deviation from
the crystallographic orientation.

Table 4: Docking scores of the five top-scoring compounds
of HS against the antihypertensive target angiotensin
converting enzyme (ACE1)

Compound Structural class Docking
score

(Kcal/mol)

(ligand)

Rutin Tetrahydroxyflavone -10.6
Kaemp - Trihydroxyflavone -10.4
ferol-3-O-ruti-

noside

Gossypitrin Flavonols -10.2
Epigallocate- Flavans -10.1
chin Gallate

Quercitrin Tetrahydroxyflavone -9.8
Lisinopril (Stan- ACE 1inhibitor -7.6
dard)
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ACE 1 is a pivotal enzyme within the renin-
angiotensin-aldosterone system that
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catalyzes the conversion of angiotensin |
to the vasoconstrictive angiotensin Il. Rutin
exhibited a high predicted binding affinity for
ACE 1, characterized by multiple hydrogen
bonds and strong carbon-hydrogen bond
interactions. These findings suggest that Rutin
and structurally related compounds may act as
potential ACE 1 inhibitors, thereby attenuating
angiotensin Il production and promoting blood
pressure reduction. Rutin has been reported
to exhibit various biological effects, including
antioxidant, antidiabetic, anti-inflammatory,
neuroprotective, and antihypertensive effects
[30, 32]. Studies have linked its antihypertensive
properties to mechanisms such as stimulation
of the nitric oxide/guanylate cyclase pathway,
ACE 1 inhibition, and antagonism of angiotensin
Il type 1 and mineralocorticoid receptors [32-
34]. These actions are comparable to those of
the known inhibitor lisinopril. Our findings further
support Rutin’s potential role as a multifaceted
antihypertensive agent, with ACEl inhibition
forming a key mechanism underlying its efficacy.

3.1.5 Target 5: L-type Voltage-gated Calcium
Channel (VGCC)

Table 5 summarizes the docking scores for the
top five bioactive compounds and the standard
drug amlodipine against VGCC. HS03 and
beta-sitosterol 3-O-beta-D-galactopyranoside
were the top-scoring compounds, each with
a predicted binding affinity of —9.4 kcal/mol.
Both formed multiple pi-interactions with
hydrophobic residues, including VALIO53, ILE1046,
METI509, and PHE1513, within the active site.
Beta-sitosterol 3-0O-beta-D-galactopyranoside
additionally engaged in two pi-interactions
with PHET181 and LEU1510 and a hydrogen bond
with GLNIO60, suggesting subtle differences in
binding mode. These interactions, shown in Figs.
11 and 12, highlight their potential to modulate
VGCC activity. The binding affinities of these
compounds surpassed that of amlodipine, the
known VGCC blocker (Fig. 13), which had a score
of -6.9 kcal/mol.

Redocking of the VGCC cocrystallized
ligand, amlodipine, did not reproduce the
crystallographic pose within the docking protocol
employed (closest RMSD = 3.071 A). This likely
reflects limitations of standard small-molecule
docking for this ligand/target (e.g. large peptide
ligand or induced-fit pocket).
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Table 5: Docking scores of the five top-scoring compounds of

HS against the antihypertensive target VGCC

Compound Structural class Docking
(ligand) score
(Kcal/mol)
HS03 Terpenoids -9.4
(Steroid)
Beta-Sitosterol Plant steroid -94
3-O-beta-D-ga-
lactopyranoside
C anidin| Anthocyanidin -9.2
3-(6""-acetyl-ga- glycoside
lactoside)
Epigallocatechin Flavan -9 Figure 11: 2D (top) and 3D (bottom) interactions of HS03 with
Gallate the VGCC active site
HSO7 Terpenoids -8.9
(Steroid) p e
A:1046 A1049
Amlodipine VGCC Blocker -6.9 SR PHE
(Stondard) < uED ATiE1
© 60
HS03 = (3R,5S,9S,10R,13S,14R,17S)-17-[ (E,25,55)-5- )
ethyl-6-methylhept-3-en-2-yl]-10,13-dimethyI- l . Al169
2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H- =
cyclopentala]phenanthren-3-ol . w1173
A:1053 R
HSO07 = (35,8S,9R,10R,135,145,17S)-10,13- Attose . it
dimethyl-17-[(2R)-6-methylheptan-2-yl]- e W o
2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H- A:1508
cyclopentala]phenanthren-3-ol
Interactions
e D Van der Waals E Aldkyl
& ALA
= Wy 4:1512 - Conventional Hydrogen Bond D Pi-Alkyl
A:1509 a:\f&a
A10%6
ke e
5 Yg , \J\
ILE 3
A:1173 a:il'&s ', Gy
n:51£1“32 Jl%%? P @ Dotar
atslo
J\:Tl?:is
Interactions
D Van der Waals E Alkyl Reciptl ‘

- Pi-Sigma D Pi-Alkyl

Figure 12: 2D (top) and 3D (bottom) interactions of beta-
sitosterol 3-0-beta-D-galactopyranoside with VGCC active

site
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Figure 13: 2D ligand interaction of amlodipine (Standard) with
VGCC active site

VGCC is a critical regulator of intracellular
calcium levels and is essential for vascular
smooth muscle contraction and cardiac
function. HS03 and beta-sitosterol 3-O-beta-
D-galactopyranoside  exhibited  significantly
high predicted binding affinities for VGCC, with
interactions primarily involving hydrophobic
residues within the binding site. By modulating
calcium influx, these compounds may induce
vasorelaxation, contributing to the observed
antihypertensive effects of HS. HSOS, structurally
similar to campesterol, has been previously
reported to exhibit hypotensive effects, although
the precise mechanisms remain unclear (35).
Our findings indicate a potential role for HS03
and HS phytochemicals with comparable
docking profiles in VGCC modulation, providing
a plausible pathway for their antihypertensive

effects. Similarly, beta-sitosterol 3-O-beta-
D-galactopyranoside showed promise
as a VGCC inhibitor, suggesting that a

multifactorial mechanism underlies its observed
antihypertensive effect.

Overall, the results of the molecular docking
analyses revealed promising interactions
between  several bioactive compounds
from HS and the selected antihypertensive
targets. Kaempferol-3-O-rutinoside,  beta-
sitosterol 3-0O-beta-D-galactopyranoside,
and Rutin displayed notable binding affinities
with phosphodiesterase 5A, angiotensin Il TI
receptor, and angiotensin-converting enzyme 1,
respectively. The formation of multiple hydrogen
bonds and pi interactions suggests that these
compounds are potential lead molecules. These
findings provide molecular insights into the
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antihypertensive mechanisms of HS, which align
with previous experimental observations [5-6,10].
These findings also suggest a plausible molecular
basis for the observed efficacy of Hibiscus
sabdariffain traditional medicine and could pave
the way for the development of multitargeted
natural therapeutics for hypertension
management. The differences in docking scores
of <1.0 kcal/mol fall within the margin of error for
most docking algorithms. Therefore, compounds
with similar scores were interpreted as having
comparable predicted binding affinities, and
emphasis was placed on groups of promising
ligands rather than strict numerical rankings.
It is important to acknowledge the limitations
of in silico studies, including the simplifications
and assumptions inherent in computational
modeling. Experimental validation through in
vitro and in vivo studies will be crucial to confirm
these computational predictions. The complete
docking scores and interaction details are
presented in the Supplementary Tables.

3.2 Pharmacokinetic and

Evaluation

Toxicological

The top lead compounds (Fig. 14) presented
varied pharmacokinetic profiles. Quercetin and
cianidanol demonstrated high gastrointestinal
absorption with no Lipinski violations, indicating
favorable oral bioavailability. In  contrast,
glycosylated compounds such as Rutin and
kaempferol-3-O-rutinoside  were  predicted
to have poor absorption and multiple Lipinski
violations due to their higher molecular weights
and lower lipophilicity (Table 6). Toxicological
analysis revealed that most of these compounds,
including beta-sitosterol 3-O-beta-D-
galactopyranoside, presented high safety
margins with no significant cytochrome P450
(CYP450) enzyme inhibition. However, they were
flagged for immunotoxicity, indicating potential
risks to immune system function. Quercetin
and gossypetin, despite their promising
docking affinities, were identified as specific
CYP450 inhibitors and flagged for potential
carcinogenicity (Table 7).

Kaempferol-3-O-rutinoside Quercetin Gossypetin
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Bato-Sitosterol 3-0-beto- HE03
D-gaolactopyranoside

Cianidanol Rutin

Figure 14: Chemical structure of the top-scoring compounds of Hibiscus sabdariffa against five selected antihypertensive

targets

Table 6: Physicochemical Properties and Pharmacokinetics of top-scoring HS compounds

ompound oleculo 0g Absorptio o olatio Bioavailab
=iis o ore
Kaempferol-3-O-rutinoside 594.52 g/mol | -0.73 Low 3 0.17
HS03 412.69 g/mol | 6.87 Low 1 0.55
Rutin 610.52 g/mol | -129 Low 3 0.17
Beta-Sitosterol 3-O-beta-D-ga- | 576.85 g/mol 5.51 Low 1 0.55
lactopyranoside
Quercetin 302.24 g/mol 1.23 High 0 0.55
Gossypetin 31824 g/mol | 0.96 Low 1 0.55
Cianidanol 290.27 g/mol | 0.85 High 0 0.55

Table 7: Toxicological and Metabolic Highlights of the top-scoring HS compounds

ompo d ethal Dose 50 P pItIO otapble To
Kaempferol-3-O-rutinoside 5000 mg/kg None Immunotoxicity
HS03 2000 mg/kg None Immunotoxicity
Rutin 5000 mg/kg None Immunotoxicity
Beta-Sitosterol 3-O-beta-D-ga- 8000 mg/kg None Immunotoxicity
lactopyranoside
Quercetin 159 mg/kg CYP1A2, CYP3A4, CYP2D6 Carcinogenicity, Immuno-
Inhibitor toxicity
Gossypetin 159 mg/kg CYP1A2, CYP3A4, CYP2D6 Carcinogenicity, Immuno-
Inhibitor toxicity
Cianidanol 10000 mg/kg None None
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ADMET analysis revealed critical insights into the
pharmacokinetic parameters of the bioactive
compounds from HS. Despite their favorable
binding affinities, lead compounds such as
Rutin and kaempferol-3-O-rutinoside exhibited
suboptimal gastrointestinal absorption,
bioavailability, and multiple Lipinski violations.
This could limit their efficacy in vivo by hindering
their ability to reach therapeutic concentrations
at their target site. While our results indicate
potential bioavailability challenges for
certain compounds, the literature suggests
a more nuanced perspective. Ma et al. (2017)
reported favorable gastrointestinal absorption
permeability for kaempferol-3-O-rutinoside [36],
and Ganeshpurkar and Saluja (2016) reported
approximately 10% oral bioavailability for Rutin
[37]. Rahman et al. (2021) further emphasized
Rutin’s robust biological activities [38]. These
findings suggest that these compounds and
their analogs may retain therapeutic potential

despite challenges associated with their
predicted bioavailability.
Interestingly,  beta-sitosterol  3-O-beta-D-

galactopyranoside and its analogs exhibited
satisfactory bioavailability despite their poor
gastrointestinal absorption. Strategies such
as nanoparticle-based delivery, liposomal
encapsulation, prodrug design, or cocrystals
have been proposed to enhance the oral
bioavailability of potential phytocompounds
[39]. Incorporating such approaches may
improve the translational potential of these
promising compounds. In contrast, quercetin
and its analogs demonstrated favorable
pharmacokinetic properties, including high
gastrointestinal absorption and bioavailability,
making them strong candidates for further
development as antihypertensive agents.

The low likelihood of CP450 enzyme inhibition
for most compounds minimizes the risk of drug—
drug interactions, a crucial factor in combination
therapies. However, quercetin and its analogs
were identified as potential CYP450 inhibitors,
necessitating careful consideration in clinical
applications.

Toxicological evaluation revealed generally
acceptable acute toxicity profiles but raised
concerns regarding potential immunotoxicity.
These findings necessitate further investigation
into their potential immunomodulatory effects
and long-term safety. Quercetin and several of
its analogs were identified as potential mutagens
and carcinogens, highlighting the need for
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structural optimization to improve safety while
preserving their therapeutic efficacy.

While this study provides a detailed assessment
of individual bioactive compounds, the
pharmacokinetic and safety profiles within the
Hibiscus sabdariffa matrix may be influenced
by complex synergistic interactions. These
interactions warrant further investigation to fully
understand the holistic therapeutic potential of
this medicinal plant.

4. CONCLUSION

This in silico study provides evidence for the
antihypertensive potential of HS through its
ability to modulate multiple molecular targets
associated with blood pressure regulation.
The identification of key bioactive compounds,
such as Rutin, kaempferol-3-O-rutinoside, and
beta-sitosterol 3-O-beta-D-galactopyranoside,
which have favorable binding affinities for
critical enzymes and receptors, provides a
robust foundation for the development of
natural antihypertensive therapeutics. These
findings underscore the potential for HS as
a complementary or alternative therapeutic
approach to conventional antihypertensive
medications. While these results offer valuable
molecular insights, further validation through in
vitro and in vivo studies is essential to confirm
their therapeutic efficacy and elucidate their
detailed mechanisms of action. Moreover,
addressing the pharmacokinetic challenges
associated with certain compounds and
optimizing their safety profiles will be crucial
for the successful translation of these findings
into clinical applications. By integrating
computational methodologies with existing
experimental evidence, this study represents a
pivotal step forward in natural product-based
drug discovery and cardiovascular research.
Such interdisciplinary efforts hold promise for
developing novel, multitargeted treatments
for hypertension, ultimately improving patient
outcomes and addressing the global burden of
this condition.
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