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Advances and Challenges

ABSTRACT:

Bispecific T-cell engagers (BIiTEs) have revolutionized
cancer immunotherapy, especially in
hematological malignancies. These molecules
simultaneously target tumor antigens and engage
T-cells, which demonstrating potent antitumor
activity in various cancers. However, challenges
such as rapid drug clearance, off-target effects,
and cytokine release syndrome limit their broader
use. Recent advances in BIiTE design aim to address
these obstacles, expanding their therapeutic
potential. This review discusses the latest progress
in BiTEs and related immunotherapies, as well as
strategies to overcome current challenges.

Keywords: Bispecific, immunotherapy, cancer,
cytokine, antibodies.

1. Introduction

Before bispecific antibodies (BsAbs) were
introduced, traditional cancer immunotherap
relied on monoclonal antibodies (MoAbs
molecules targeting a single tumor antigen
[1]. However, the complex nature of some
cancers, with their ability to switch signaling
pathways and evade immune responses,
posed challenges for this approach [2]. A
prime example is the interaction between
Programmed Cell Death Protein 1 (PD-1) and
Programmed Cell Death Ligand 1 (PD-L1), where
tumor cells exploit this interaction to attenuate
the immune response [3]. This manipulation
involves inducing apoptosis in antigen-specific
T cells and inhibiting the apoptosis of regulatory
T cells, affecting the efficacy of single antibody-
targeted immunotherapy [3]. The arrival of
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bispecific antibodies marks a significant shift
in addressing these challenges, offering a
promising avenue for more effective cancer
treatment.

BsAbs are a promising type of therapy that
can target two different tumor antigens
simultaneously [4]. These antibodies typically
consist of two single-chain variable fragment
(scFv) antigen-binding parts linked by a flexible
amino acid linker, offering a more refined
approach against cancer cells [5]. In the case
of the PD-1/PD-L1 axis, bispecific antibodies
can be designed to bind both PD-1 and a
tumor-specific antigen at the same time. This
disrupts immune evasion mechanisms and
strengthens the immune response [6]. Over
100 bispecific antibodies have been evaluated
across various cancer types, with many
receiving marketing approvals (Table1) [7,8]. A
significant achievement occurred in 2022 when
the FDA approved a Bispecific T cell Engager
(BiTE) product targeting CD3/BCMA for treatin
relapsed or refractory multiple myeloma [9].
Subsequently, talquetamab and elranatamab,
both CD3 T-cell engagers, received FDA approval
in 2023 for multiple myeloma treatment (Table
1) [10, 11]. These approvals mark substantial
progress in treating adult patients with relapsed
or refractory multiple myeloma.

While most bispecific antibodies focus on
cancer treatment, some are directed at
chronic inflammatory, autoimmune, and
neurodegenerative diseases and infections.
Examples include emacizumab and faricimab,
both developed for hemophilia A and retinal
vascular disease treatment, respectively
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[12, 13]. These diverse applications highlight
the expanding role of bispecific antibodies
in transformative therapeutic interventions.
Although BsAbs have been effective in cancer
treatment, they still face challenges like a short
in vivo half-life, on-target off-tumor effects,
cytokine release syndrome, and issues in
manufacturing [14-16]. These challenges have
hindered their broader application, indicating
the need foradvanced formats.Recentadvances
have led to innovative approaches addressing
these challenges, paving the way for improved
clinical practices.

In this review, we shed light on the evolving field
of bispecific antibodies, providing insights into
their present status in clinical development.
Additionally, we delve into the challenges
associated with bispecific antibodies and explore
recent modifications aimed at enhancing their
therapeutic efficacy.

2. Bispecific T cell Engager

The concept of bispecific antibodies (BsAbs)
has evolved significantly since their initial
description by Nisonoff in 1960, resulting in
the development of several hundred formats
categorized into six diverse mechanisms of
action: (1) bridging cells, (2) receptor inhibition,
(3) receptor activation, (4) co-factor mimetic,
(5) piggybacking I, and (6) piggybacking II
[8, 17]. These diverse BsAb formats have been
engineered to target various components
such as tumor signaling pathways, immune
checkpoint inhibitors (ICIs), inflammatory
cytokines, and more [18-20]. Among these
formats, the bridging cell or Bispecific T-cell
Engager stands out as the most common BsAb
employed for the treatment of both liquid and
solid tumors [21]. A crucial aspect of BiTEs is
their ability to redirect naive T cells to target
tumor cells, leading to T-cell activation, clonal
expansion, and subsequent tumor cytotoxicity
Figure 2 [21, 22]. First-generation BIiTE constructs
were typically designed with two monoclonal
antibodies (mAb) moieties tandemly fused,
with one moiety targeting a specific tumor
antigen and the other binding to CD3 antigen on
T-cell surfaces. This design ensures that T cells
engaged by BiTE molecules become activated
and effectively eliminate malignant cells [23].
More than six decades, seven BiTEs have been
approved for cancer treatment (Table 1), and
several more are undergoing clinical testing
[24]. Despite their efficacy, the use of BITE has
faced challenges associated with ‘on-target,
off-tumor’ toxicities [25, 26]. BiTE therapy
primarily involves identifying suitable tumor-

associated antigens (TAAs) on target cells
that differ from those on normal cells, aimin
to prevent on-target/off-tumor toxicity [25?.
However, the identification of antigenic targets
exclusive to tumor cells presents challenges, as
many target antigens are expressed on both
normal and tumor cells [27]. Even minimal
antigen expression on normal cells can result in
adverse on-target off-tumor toxicities, leading
to cytokine release syndrome (CRS). CRS,
characterized by an excessive immune response
leading to the release of proinflammatory
cytokines, can potentially result in organ failure
and, in severe cases, death [28]. Currently,
the primary clinical interventions to manage
CRS in T cell-engaging bispecific antibody
(TCE) therapies involve dose reduction or the
administration of anti-interleukin antibodies and
corticosteroids [28]. While these interventions
have proven effective in certain scenarios, they
do not provide a complete prevention of CRS.
Accordingly, increasing reports have highlighted
the occurrences of off-target, on-target toxicity
associated with bispecific antibody molecules,
especially BiTE therapeutics [23, 29, 30].

To overcome the significant challenge of on-
target, off-tumor adverse effects, including CRS,
and enhance the therapeutic index of BsAbs,
particularly in the context of solid malignancies,
researchers have been exploring several
modification strategies. One such strategy
focuses on employing avidity-mediated
specificity or the 2 + 1 architecture [31, 32]. In
this novel approach, a bivalent antibody with
low affinity for the tumor antigen is combined
with a monovalent anti-CD3 molecule [32]. This
unique design enables the BIiTE to selectively
bind to tumor cells that overexpress the target
tumor-associated antigen (TAA), facilitating
the specific killing of tumor cells while sparing
normal cells expressing the target antigen at
lower densities.

A study conducted by Bacac et al. exemplifies
this approach, utilizing a bivalent anti-CEA
scFv domain linked with a monovalent anti-
CD3 domain for the treatment of solid tumors
expressingcarcinoembryonicantigen (CEA) [33].
CEA, also known as carcinoembryonic antigen-
related cell adhesion molecule 5 (CEACAMS5),
is associated with glycosylphosphatidylinositol
and is overexpressed in various cancers,
playing a role in adhesion and invasion [34%
The resulting CEA T cell bispecific (TCB
demonstrated sustained antitumor activity in a
preclinical model, exhibiting a notable increase
in T-cell longevity [33]. Moreover, the CEA+CD3
TCB transformed PD-L1-negative tumors into
PD-L1-positive, creating a highly inflamed tumor
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microenvironment. This promising development
has advanced to phase 1 clinical investigation
(NCT02324257), showcasing  pronounced
efficacy and manageable safety profiles [33].

In line with these advancements, another group
used an anti-HER2/CD3 T cell-dependent
bispecific (TDB) antibody to redirect T cells
to eliminate HER2-overexpressing cells,
demonstrating potent antitumor activity [31].
This suggests that avidity-mediated selection
holds promise for treating solid tumors, as
it potentially addresses one of the major
challenges associated with TCE therapies,
offering a more targeted and controlled immune
response. However, since high expression levels
of the TAA are crucial for avidity specificity
and bispecific antibody-mediated tumor lysis,
this strategy applies primarily to cancer cells
expressing very high levels of the target antigen.
The challenge arises when dealing with solid
tumors expressing variable densities of the
target antigen. To address this challenge and
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enhance the versatility of the approach, future
studies are needed to develop a dual bispecific
antibody with a 2+1+1 architecture, where one
target incorporates avidity-mediated specificity
and the other features high-affinity binding. This
approach would offer a comprehensive solution
to rapidly target and eliminate solid tumors
expressing differential levels of the target
antigen.

Generally, there is currently no FDA-approved
BiTE molecule for treating solid malignancies.
However, catumaxomab, the first bispecific
T-cell engager approved by the EMA in 2009 to
treat malignant ascites of epithelial cancers,
was later withdrawn from the market due to
severe adverse events, including CRS and
dose-dependent liver toxicity [35]. Ongoing
research and development aim to address
these challenges and further enhance the
clinical applicability of BiTEs, emphasizing
their significance in advancing
immunotherapy.
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Figure 1: BiTE and its mechanism of action.

a. BiTE antibody construct comprises two single-chain
variable fragments of monoclonal antibodies linked together
through a flexible linker. b. One arm of the BiTE molecule is
designed to bind to CD3, an antigen located on the surface
of T cells. Simultaneously, the other arm is engineered to
bind to a tumor-associated antigen (TAA). Upon successful
binding of both arms to their specific targets, a synapse is
formed between the T cell and the cancer cell. Subsequently,
the T cells undergo expansion and release perforin, creating
a pore in the cancer cell's membrane. This pore allows toxic
molecules called granzymes to flow through, ultimately
inducing the death of the cancer cell.

While BiTEs encounter challenges in battling
solid tumors, a promising alternative, immune-

mobilizing monoclonal T-cell receptors against
cancer (ImMmTACs), has emerged [36]. Like BiTEs,
ImMmTACs facilitate the interaction between
cancer cells and T cells by simultaneously
engaging their proteins. However, ImmTACs
take a different approach by employing a T-cell
receptor instead of an antibody fragment to
recognize proteins in cancer cells [36]. This
unique strategy allows ImMmTACs to bind to
intracellular proteins processed and presented
externally, expanding their target range
beyond cell surface proteins. This characteristic
makes IMmMTACs more effective in addressing
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solid tumors, where many cancer-specific
proteins are primarily expressed inside the
cell. Tebentafusp (Kimmtrak), an ImmTAC
therapeutic, has already gained approval for
treating uveal melanoma [37]. Considering
the risks associated with BiTEs in solid tumors,
especially CRS,ImmTACs emerge as a promising
class of therapeutics, offering cancer-fighting
immune cells a distinct advantage.

Blinatumomab, the first FDA-approved BIiTE
construct

Blinatumomab stands out as a significant
success in BiTE therapy, marking the first FDA-
approved BiTE molecule to treat B-cell acute
lymphoblastic leukemia (ALL), Figure 2 [38].

This therapy combines anti-CD19 and anti-CD3
scFv, demonstrating notable clinical efficacy.
Many patients experienced complete tumor
regression, contributing to improved overall
survival rates [39]. In a study with 54 relapsed or
refractory (R/R) patients, 91% (49/54) achieved
a complete response with blinatumomab
treatment, highlighting its clinical effectiveness
in challenging R/R settings [40]. These
outcomes emphasize blinatumomab’s
therapeutic potential and its crucial role in
advancing treatment options for B-cell ALL
patients. Importantly, blinatumomab’s activity
is independent of major histocompatibility
complex activation, ensuring rapid activation of
T cells and the destruction of tumor cells [41].
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Figure 2 The mechanism of action for blinatumomab, the first-in-class BiTE, involves one arm binding to CD3 and the other to

CD19. This interaction activates unstimulated T cells, initiating their attack on CD19+ cells.

Although blinatumomab has demonstrated
significant success, crucial challenges persist.
Factors such as rapid drug clearance, on-target/
off-tumor adverse effects, cytokine release
syndrome, and activation of peripheral immune
cells may potentially limit therapeutic efficacy in
both hematological malignancies [42]. Recent
reports indicate instances of relapse among
patients following blinatumomab treatment,
with the phenomenon associated not only with
the loss of CD19 but also CD58, as proposed
by Jabbour et al. [43]. Previous research has
explored mechanisms contributing to CDI9
escape, including CD19 mutations, CD19-
mutant allele-specific expression, low CDI9 RNA
expression, and mutations in CDI19 signaling
member CD81 [44]. However, limited attention
has been given to CD58 loss and its mechanism
in the context of Blinatumomab treatment.

http://apc.aast.edu

A recent study by Yizhen et al. has identified
a crucial intrinsic factor, PAX5 mutation,
significantly = downregulating CD58. This
downregulation has been linked to a reductionin
blinatumomab activity, particularly observed in
patients with ALL [45]. Further researchis needed
to address the PAX5 mutation in ALL models
under Blinatumomab treatment, providing a
more comprehensive understanding of the
role of PAX5 in CD58 loss. Moreover, additional
studies have suggested regulatory T cells
(Tregs) as potential regulators in the resistance
process against blinatumomab, indicating that
multiple factors may contribute to resistance
and a reduced response rate to this therapeutic
approach [44]. These findings suggest the
complexity of the mechanisms behindresistance
to Blinatumomab, emphasizing the necessity for
ongoing research to unravel these intricacies
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and ultimately pave the way for more effective
and personalized treatment strategies.

Furthermore, the phenomenon of lineage
switch represents a significant challenge
associated with blinatumomab treatment,

wherein refractory B lymphoblastic leukemia
(B-ALL) can undergo a transition to acute
myeloid leukemia (AML) [46-48]. This shift in
lineage was initially documented by Stass and
colleagues following standard chemotherapy
for acute leukemia [49]. The occurrence of
lineage switching has been observed not only
in blinatumomab therapy but also in other
immunotherapies, including CDI19-specific
chimeric antigen receptor (CAR) T cells |_P50] It
is particularly noteworthy that this switch occurs
when CDI19 B-cells acquire a distinct phenotype
after the loss of CD19 [51-53]. While several other
theories have been proposed to explain the
mechanisms leading to lineage switch [54, 55],
the prevailing view suggests that the selective
pressure resulting from CD19-directed therapy

lays a crucial role in this phenotypic transition
56-58]. Studies on lineage switching highlight
various rearrangements of the gene encoding
histone-lysine N-methyl-transferase 2A
(KMT2A, also known as mixed-lineage leukemia,
MLL) as a key regulator of this switch [59-61].
The development of this immunophenotype is
recognized as a critical factor contributing to
relapses and resistance to several antibody-
targeted therapies.

In the case of blinatumomalb, five chromosomal
rearrangements linked to lineage switch have
been identified: KMT2A-AFF1 [62, 63], KMT2A/

AFF4 [58], BCR-ABLI [64], hyperdiploidy [65%,
and KMT2A/EPSI5 [66]. The t(4;11) (921,923
rearrangement with the KMT2A/AFF1 fusion
protein is particularly common, especially in
infants with ALL [67-69]. Lineage conversion has
been observed in pediatric patients with ALL,
impacting blinatumomab treatment monitoring.
A switch from CDI19-positive B-precursor ALL
to CD19-negative AML has been documented
following blinatumomab therapy [47]. Efforts to
overcome this challenge include incorporating
blinatumomab into the Interfant-06 backbone
regimen. In an analysis of 30 infants with acute
leukemia treated with standard chemotherapy
and post-induction blinatumomab, no lineage
switches were observed [70]. Similarly,
promising outcomes have been reported in
infants with KMT2A-rearranged ALL, where the
addition of blinatumomab to the Interfant-06
chemotherapy trial significantly improved
the 2-year overall survival compared to the
Interfant-06 alone [71]. It is essential to note
that the follow-up time in these studies was
relatively short, and longer-term monitoring
is required to comprehensively evaluate the
safety and efficacy of this combined therapy.
Furthermore, blinatumomab has shown promise
as an effective salvage therapy following anti-
CD19-CAR-T failure, surpassing chemotherapy
options. In R/R B-ALL patients, blinatumomab
showed an improved complete remission rate,
even in those expressing low CDI9 levels [72].
However, inconsistent findings warrant further
comparable studies to validate its potency as
a rescue or pretreatment therapy, as some
reports suggest prior blinatumomab treatment
can maintain anti-CD19-CAR-T efficacy [73].

Table 1: Summary of BsAbs approved for the market worldwide for clinical use as of 2014

Year
Approved

2014

Drug Target

antigen
cD3/cD19

Approved
Countries

Approved indications

(company)

FDA Adults and children with B-cell
precursor ALL in first or second
complete remission with min-
imal residual disease (MRD)

reater than or equal to 0.1%.

74]

Blinatumomab (Amgen) | Blincyto

FDA 2017 The treatment is recommend-
ed for adult and pediatric pa-
tients, including newborns, with
hemophilia A. This includes in-
dividuals with congenital fac-
tor VIII deficiency, whether or
not they have developed factor

Vit (FVIN) inhibitors [75]

Emacizumab-kxwh Hemlibra

(Genentech)

FIXa/ FX
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Amivantamab-vmjw(- Rybrevant | EGFR/c-Met | FDA/EMA 2021 Adult patients with locally ad-
Janssen Biotech) vanced or metastatic non-

small cell lung cancer who
have EGFR exon 20 insertion
mutations and have previously
received platinum-based che-
motherapy [76]

Tebentafusp-tebn Kim- cD3/ gpl00 FDA 2022 For the treatment of adult pa-
(Immunocore) mtrak* tients with unresectable or
metastatic uveal melanoma
who are HLA-A*02:01-positive.
[77]

Faricimab-svoa (Roche) |Vabysmo | VEGF-A/Ang- | FDA 2022 To treat neovascular (wet)

2 age-related macular degen-
eration and diabetic macular
edema [78]

Mosunetuzumab-axgb Lunsumio | CD3/CD20 EMA/FDA 2022 Patients with advanced non-
(Genentech) small cell lung cancer (NS-
CLC) harboring EGFR exon 20
insertion mutations face dis-
ease progression after plat-
inum-based  chemotherapy

[79]
Cadonilimab Kaitanni PD-1/CTLA-4 | CFDA 2022 For patients with relapsed or
(Akeso) metastatic cervical cancer (r/

mCC) who have experienced
disease progression following
platinum-based chemothera-

py [80]
Teclistamab-cqyv Tecvavli | CD3/BCMA EMA/FDA 2022 Adult patients with relapsed or
(Janssen Biotech) refractory multiple myeloma

who have received at least four
prior lines of therapy, including
a proteasome inhibitor, an im-
munomodulatory agent, and
an anti-CD38 monoclonal an-

tibody

[81]
Epcoritamab-bysp Epkinly CD3/CcD20 FDA/EMA 2023 Adults with relapsed or re-
(Genmab) fractory diffuse large B-cell

lymphoma (DLBCL), including
cases arising from indolent
lymphoma and high-grade
B-cell ymphoma after two or
more lines of systemic therapy

[82]
Glofitamab-gxbm (Ge- | Columvi cDb3/cD20 FDA 2023 For adults with relapsed or re-
nentech) fractory diffuse large B-cell

lymphoma (DLBCL, NOS) or
large B-cell lymphoma (LBCL)
arising from follicular lympho-
ma after two or more lines of
systemic therapy [83].

Talguetamab-tgvs Talvey GPRC5D/ CD3 | EMA/FDA 2023 Adults with relapsed or refrac-
(Janssen Biotech) tory multiple myeloma who
have undergone at least four
prior lines of therapy, including
a proteasome inhibitor, an im-
munomodulatory agent, and
an anti-CD38 monoclonal an-
tibody.

[84]
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Elranatamab (Pfizer) Elrexfio BCMA/CD3

FDA/EMA

2023 For adults with relapsed or re-
fractory multiple myeloma
who have received at least four
prior lines of therapy, including
a proteasome inhibitor, an im-
munomodulatory agent, and
an anti-CD38 monoclonal an-

tibody [85]

Odronextamab CcD20/cD3

Regen-
(ordspono)

eron

FDA

2024 Adult patients with relapsed/
refractory (R/R) follicular lym-
phoma (FL) or R/R DLBCL who
have progressed after at least
two prior systemic therapies

[se]

*Kimmtrak is technically a bispecific molecule,
not a bispecific antibody. Like some of the
other bispecific antibodies used to treat some
cancers, Kimmtrak has one arm using an
antibody fragment to bring killer T cells to the
tumor. Kimmtrak’s other arm is an analogous
structure found on T cells, the T cell receptor,
instead of an antibody fragment to target a
tumor antigen.

Immune checkpoint bispecific antibodies

In cancer immunotherapy, the use of immune
checkpoint inhibitors (ICls) has been a
breakthrough, articularly when wused as
monotherapies [87, 88]. These inhibitors tap
into the potential of natural T cells that infiltrate
tumors. Cancer cells often exploit immune
checkpointstoavoidimmuneresponses,andICls
counteract this by blocking specific checkpoints
[89, 90]. Approvals of drugs like ipilimumab,
pembrolizumab, and nivolumab  signify
significant strides in ICI development (Table
2) [87]. However, the effectiveness of single
antibody targets against immune checkpoints
and their ligands has shown limited impact,
especially in treating “cold tumors” — tumors
that hinder immune responses by preventing
the infiltration of immune cells into the tumor [ 91,
92]. Consequently, only a minimal fraction of the
patient population has experienced significant
benefits from ICI monotherapies.

Recent advancements in bispecific antibodies
have addressed this limitation by focusing on
the dual targeting of immune checkpoints,
encompassing both receptors and ligands [93%
Notably, programmed death protein 1 (PD-1

and programmed cell death ligand 1 (PD-L1)
checkpoint inhibitors have gained attention for
their ability to restore T cells exhausted due to
tumor-induced suppression [79]. PD-L1 and
PD-L2, widely expressed ligands across various
cancer types, have been a focus of study. PD-
L2, known to bind PD-1 more strongly than PD-

L1, presents an opportunity for more impactful
outcomes when targeted [94, 95]. In contrast
to monospecific PD-1 and PD-L1 antibodies,
bispecific antibodies targeting both PD-1 and
PD-L1 have demonstrated powerful antitumor
responses. LY3434172, a bispecific antibody co-
targeting PD-1 and PD-L], exhibited significant
in vivo antitumor potency even at lower doses
in preclinical studies, suggesting a synergistic
effect and a distinctive pathway interaction in
modulating immune responses [96].

Approximately 60% of cancers express both PD-
L1 and PD-L2, while around 30% express either
PD-L1 or PD-L2, expanding the binding effect
and reducing off-target toxicities of bispecific
antibody constructs [97]. Ongoing studies
are exploring dual-specific antibodies to co-
target stromal cells, Tregs, and myofibroblasts
in the tumor microenvironment, facilitating the
influx of T cells into poorly infiltrated tumors
[98]. Emerging strategies aim to target specific
surface proteins, including PD-L1/PD-12, CD25/
CTLA-4, PD-L1/ICOS, PD-1/CD47, and PD-LI/T
cell immunoreceptor with Ig and ITIM domains
(TieIT) (Table 1) [99, 100]. For instance, dual-
specific monoclonal antibodies designed to bind
PD-L1 and PD-L2 have demonstrated enhanced
immune-driven anti-tumor activity [101]. In the
context of treating HER2-positive solid tumors, a
bispecific combination of PD1 and HER2 exhibited
high effectiveness in killing HER2-positive tumor

cells through antibody-dependent cellular
cytotoxicity ﬁoz].
Undoubtedly, bispecific antibodies tailored

against PD-L1 and PD-L2 play a pivotal role
in facilitating the migration of host immune
responses to tumor cells, thereby enhancing
antitumor responses. The targeting of PD-LI
in dual antibody regimens has demonstrated
effectiveness in various settings of human
tumors, as evidenced by the numerous ongoing
clinical trials exploring PD1/PDLl combination
regimens [103]
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Table 2: Studies investigating the efficacy of PD1/PDL1 combination regimens in patients with advanced solid tumors (Clinical
trials are registered at clinicaltrials.gov)

Target Name Condition Status Phase NCT ID
PD-L1and TGF-p | SHR-1701 | Advanced solid tumors | Unknown Phasel |NCT03710265
CTLA-4xPD-LI KNO64 | Advanced Solid Tumors | Completed | Phasel |NCT0373395I1
PD-1and CTLA-4 | MEDI5752 | Advanced solid tumors | Recruiting Phasel |NCT03530397
MGDO019 | Advanced solid tumors | Active, not Phase1 |[NCT03761017
recruiting
AK104 Hepatocellular carci- Recruiting | Phase I/Il | NCT04444167
noma
COMPAS- | Advanced solid tumors | Active, not | Phase I/Il | NCT03852251
SION-03 recruiting
LAG-3 x PD-LI ABL501 | Advanced solid tumors | Recruiting Phase |l |NCTO05101109
FS118 Advanced solid tumors | Active, not | Phase I/Il | NCT03440437
recruiting
AK104 NSCLC Active, not | Phase I/II NCT04646330
recruiting
LAG-3 x PD-1 MGDO13 | Advanced liver cancer | Terminated | Phase I/l | NCT04212221
RG6139 | Advanced solid tumors | Recruiting | Phase I/l | NCT04140500
Not Given | Advanced solid tumors | Recruiting Phasel |NCT05577182
TIM-3 x PD-L1 | LY3415244 | Advanced solid tumors | Terminated | Phasel |NCT03752177
ABL501 | Advanced solid tumors | Recruiting Phase | |NCTO05101109
TIGITxPD-LI HLX301 | Advanced solid tumors | Recruiting | Phase I/ll | NCT05102214
TIGITxPD-1 ARTE- Advanced NSCLC Recruiting | Phase I/Il | NCT04995523
MIDE-01
LB1410 Advanced Solid Tumor | Recruiting Phase| |NCT05357651
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TIM-3 x PD-1 AZD7789 Lymphoma Recruiting | Phase I/Il | NCT04931654
RG7769 | Advanced Solid Cancer | Recruiting Phasel |NCT03708328
Lomvgs— Advanced Solid Cancer Activg, .not Phasell |NCT04785820
tomig recruiting
Tobem- Non-small Cell Lung Recruiting | Phasell |NCT05775289
stomig Cancer
4-1BBxPD-LI ABL503 | Advanced Solid Cancer | Recruiting Phasel |NCT04762641
PRS-344 | Advanced Solid Cancer | Recruiting | Phase I/Il | NCT05159388
GEN1046 | Advanced Solid Cancer | Recruiting | Phase I/Il | NCT03917381
CD27xPD-LI1 CDX-527 | Advanced Solid Cancer | Completed | Phasel |NCT04440943
PD-L1and CD137 | MCLA-145 | Advanced Solid Cancer | Recruiting Phasel |NCT03922204
AP203 Advanced Solid Cancer Not xet Phase I/Il | NCT05473156
recruiting
FS222 Advanced Solid Cancer | Recruiting Phase |l |NCT04740424
PD-L1and VEGF | PM8002 | Advanced Solid Cancer | Recruiting | Phasell |NCT05879055
HB0025 | Advanced Solid Cancer | Recruiting Phasel |NCT04678908
IMM2510 | Advanced Solid Cancer | Recruiting Phase|l |NCT05972460
PD-1/ VEGF AK112 NSCLC Recruiting | Phasell |NCT04736823

3. Future directions

Looking ahead, the success of BsAbs in effectively
treating hematological malignancies is evident
with FDA approvals. However, it's noteworthy
that there is currently no FDA-approved BiTE
molecule for addressing solid malignancies.
Ongoing initiatives are exploring innovative
approaches, such as incorporating masks linked
through protease-cleavable linkers into first-
generation TCEs, including Conditional Bispecific
Redirected Activation, Probody TCB, and
precision-activated TCEs. These attempts aim
to enhance the therapeutic efficacy of bispecific
T-cell engagers in treating solid tumors.

In addressing complications like cytokine
release syndrome CRS associated with
BsAbs therapy, future research is focused on
optimizing the design to trigger immunological
responses exclusively towards tumors. Unlike
previous designs involving a single BsAb agent,
emerging strategies adopt a unique approach
by employing two Bispecific Antibodies BsAb
components. Each component features a split
anti-CD3 paratope and a binding moiety for a
tumor antigen. These advancements signify a
promising direction in the evolution of BiTE for
more effective and targeted treatments of solid
tumors.

http://apc.aast.edu
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4. Conclusion

The field of bispecific antibodies BsAbs,
particularly exemplified by BITE therapies,
has witnessed remarkable strides in cancer
immunotherapy and appears superior to
conventional chemotherapy in at least
hematological malignancy settings. The clinical
success of over 100 evaluated bsAbs, with seven
BiTE approved for market use, highlights their
remarkable achievements. However, challenges
such as rapid drug clearance, off-target effects,
and cytokine release syndrome persist, limiting
their widespread application. Despite this,
innovative modifications, including avidity-
mediated specificity, paratope masking, and the
two BsAbs system, hold promise in addressing
on-target/off-tumor adverse effects. Moreover,
immune checkpoint bispecific antibodies,
co-targeting receptors, and ligands like PD-1
and PD-LI present a paradigm shift in cancer
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