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1.	 INTRODUCTION

The use of Artificial Intelligence (AI) in clinical practice is reshaping modern healthcare, 
particularly in oncology, where AI is becoming increasingly valuable for enhancing 
diagnostic precision, customizing treatment plans, and advancing research efforts. 
Cancer remains one of the primary global causes of illness and death, with roughly 18 
million new cases and 10 million deaths recorded each year in recent reports, excluding 
non-melanoma skin cancers [1]. Among all cancer types, breast cancer is especially 
noteworthy. In 2022, it was the most frequently diagnosed cancer among women, 
accounting for over 2.3 million new cases and approximately 670,000 deaths worldwide 
[2]. Projections indicate that if current trends continue, the number of new breast cancer 
diagnoses may rise by 38%, while mortality could increase by 68% by the year 2050, 
reaching an estimated 3.2 million new cases and 1.1 million deaths annually [3]. Within 
this landscape, AI’s capacity to process and interpret large, complex datasets—such 
as medical imaging, genomic profiles, and electronic health records—enables earlier 
detection, improved risk stratification, and personalized treatment strategies supported 
by precision oncology, ultimately contributing to reduced mortality and better patient 
outcomes [4–7].
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This study examines the effectiveness of swarm intelligence algorithms for 
optimizing MobileNet hyperparameters in breast cancer classification using 
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Particle Swarm Optimization (PSO), and the Whale Optimization Algorithm (WOA)—
were applied to identify optimal learning rates, dropout rate, and the optimizer. 
The best hyperparameter sets discovered by each algorithm were used to retrain 
MobileNet to verify consistency and performance stability. The dataset consisted of 
clinically annotated breast ultrasound images representing benign, malignant, and 
normal cases. Model performance was assessed using accuracy, macro-precision, 
macro-recall, and macro-F1-score. The optimized models outperformed the baseline 
configuration, with ABC achieving 62%, PSO achieving 66%, and WOA achieving 
62%. In terms of computational time, PSO required 7710 seconds, ABC 14,148 
seconds, and WOA 7622 seconds, highlighting notable differences in optimization 
efficiency. These findings demonstrate that swarm-based optimization can enhance 
MobileNet’s diagnostic performance while exhibiting varying computational costs, 
offering a reliable framework for computer-aided breast cancer detection in 
ultrasound imaging.
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Deep neural networks (DNNs) have emerged as the leading method for classifying 
breast lesions in ultrasound (US) imaging, showing notable gains in diagnostic accuracy 
and clinical interpretability. In the period following 2021, most studies relied on transfer 
learning using established convolutional neural network (CNN) models such as ResNet, 
DenseNet, and EfficientNet, which achieved strong accuracy and AUC values when 
distinguishing benign from malignant lesions on widely used datasets. More recent 
research, however, has shifted toward designing specialized DNN architectures that 
better capture the unique properties of ultrasound imaging [8,9]. These include attention-
enhanced CNNs, hybrid CNN–transformer systems, and multi-view fusion networks 
that combine information from several US image planes to provide richer contextual 
understanding [10].

To further improve model generalization, researchers have incorporated strategies 
such as synthetic data generation with GANs, domain adaptation, and ensemble-based 
methods, all of which help minimize overfitting and bolster robustness across different 
ultrasound machines and scanning protocols [11,12]. Collectively, post-2021 DNN-based 
classifiers have progressed from straightforward binary models to more clinically 
focused and interpretable systems, reaching performance levels comparable to expert 
radiologists in controlled settings and advancing steadily toward deployment in real-
world clinical environments.

Hyperparameter optimization plays a critical role in enhancing the accuracy and 
overall performance of convolutional neural network (CNN) classification models. 
Hyperparameters—such as learning rate, batch size, dropout rate, number of filters, and 
optimizer settings—directly influence how effectively a CNN learns patterns from data. 
Poorly chosen hyperparameters can lead to issues like slow convergence, underfitting, 
overfitting, or unstable training. Systematic optimization methods, including grid search, 
Bayesian optimization, evolutionary algorithms, and particle swarm optimization, help 
identify the optimal combination of hyperparameters that maximizes classification 
accuracy. By fine-tuning these values, models achieve better feature extraction, 
improved generalization to unseen data, and more robust decision-making. As a 
result, hyperparameter optimization is essential for unlocking the full potential of CNN 
architecture and ensuring high-quality, reliable classification performance.

Our work makes a significant contribution to the field of CNN-based medical image 
classification by systematically exploring multiple transfer learning models and leveraging 
various swarm optimization algorithms to optimize their hyperparameters. While transfer 
learning allows CNNs to benefit from pre-trained knowledge on large datasets, the 
choice of model and its hyperparameters greatly impacts performance. By integrating 
different swarm intelligence methods—such as Particle Swarm Optimization, Ant Colony 
Optimization, and others- our approach efficiently searches the hyperparameter space 
to identify optimal configurations, improving both convergence and classification 
accuracy. This comprehensive strategy not only enhances model performance but 
also provides a versatile framework for applying CNNs to diverse datasets, making it a 
robust and generalizable contribution to the development of high-accuracy, optimized 
deep learning models. The main contributions of our work are as follows:

1. We explore the optimization of hyperparameters across a transfer learning model on 
breast cancer ultrasound images.

2. Different swarm optimization algorithms, including Particle Swarm Optimization (PSO) 
and other swarm-based methods, are employed to efficiently identify the optimal 
MobileNet hyperparameter and the optimal swarm optimizer.

3. We systematically compare the performance of different optimizers in terms of both 
classification accuracy and computational time, providing insights into their 
effectiveness and efficiency.

The remainder of the article is structured as follows: Section 2 introduces the study and 
reviews related works, Section 3 details the materials and methods, Section 4 presents 
the experiments and results, and Section 5 provides conclusions and recommendations 
for future research.
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2.	 RELATED WORK

Deep learning, particularly Convolutional Neural Networks (CNNs), has become the 
foundation of modern breast cancer classification due to its ability to automatically 
extract high-level imaging features. Transfer learning has further accelerated progress 
by leveraging pretrained models such as VGG, ResNet, DenseNet, Inception, and 
NASNet for small medical datasets. For breast ultrasound images specifically, Kormpos 
et al. evaluated multiple pretrained architectures and proposed a hierarchical two-
stage classifier that improved robustness over conventional flat multi-class models, 
demonstrating the effectiveness of CNNs for BUSI ultrasound classification [11]. 
Ahishakiye and Kanobe later introduced a hybrid DenseNet201 + Bayesian-Optimized 
FLN framework that achieved high accuracy by optimizing key learning parameters such 
as dropout, learning rate, and hidden-layer size [12]. These studies highlight both the 
potential of pretrained CNNs and the Sensitivity of their performance to hyperparameter 
selection.

Hyperparameter optimization has therefore emerged as a critical research direction. 
Among metaheuristic techniques, Particle Swarm Optimization (PSO) is one of the earliest 
and most widely adopted. Aguerchi et al. used PSO to optimize CNN hyperparameters—
including filter size, stride, and network depth—for mammography, achieving accuracies 
above 98% on DDSM and MIAS datasets [13]. Their work remains a benchmark showing 
that swarm intelligence can efficiently explore complex CNN design spaces. Similarly, 
several PSO-CNN studies in other medical imaging domains report improvements in 
learning rate tuning, dropout selection, layer freezing, and classifier training when 
applied to pretrained models such as VGG-16, ResNet50, and DenseNet121.

Beyond PSO, other swarm-intelligence algorithms have been widely applied to CNN 
tuning. Ant Colony Optimization (ACO) has been used by Fauzi et al. to optimize ultrasound 
classification models based on texture features, outperforming non-optimized baselines 
[14]. Genetic Algorithms (GA) have long been adopted for evolving CNN architectures and 
optimizing filter parameters [15]. Grey Wolf Optimizer (GWO) [16] and Whale Optimization 
Algorithm (WOA) [17] have been used to tune deep architectures such as ResNet and 
Inception, often providing stronger convergence stability than PSO. Differential Evolution 
(DE) [18] has been employed to tune convolutional layers and learning hyperparameters, 
while Firefly Algorithm (FA) [19] and Cuckoo Search (CS) [20] have been reported to 
enhance CNN training performance across multiple medical image analysis tasks.

Overall, the literature demonstrates that swarm-intelligence optimizers play an 
increasingly important role in improving CNN classification performance, especially for 
medical images where fixed hyperparameters often fail to generalize. However, only 
limited studies systematically apply swarm-based optimization—particularly PSO and 
related algorithms—to multiple pretrained CNN models specifically for breast ultrasound 
images. This gap motivates the present study, which evaluates several CNN architectures 
and employs swarm-intelligence optimization to automatically identify hyperparameter 
configurations that maximize performance on breast ultrasound cancer classification.

3.	 MATERIALS AND METHODS

3.1.   DATASET

In this section, we provide a detailed description of the breast ultrasound dataset 
used to evaluate our work. Moreover, Figure 1 illustrates samples of normal, benign, 
and malignant cases from the dataset. The Breast Cancer Multimodal Imaging Dataset 
(BCMID) [21] includes data from 323 adult female patients collected between 2019 and 
2022, aged 26–82 years. Acquired at Ayadi Hospital in Alexandria, Egypt, the dataset 
contains ultrasound and mammography scans, along with validated reports summarizing 
the physician’s BI-RADS-based diagnosis. For this study, only ultrasound images were 
used. The dataset comprises three classes—normal (152 images), benign (734 images), 
and malignant (259 images). Multiple ultrasound views or scans from different dates per 
patient result in a total number of images exceeding the number of patients.
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Figure 1: Ultrasound image samples from the BCMID dataset showing normal, benign, and malignant 
cases

3.2.   DATA PREPROCESSING AND AUGMENTATION

Before starting to run the model, all available ultrasound images with validated 
diagnostic labels (normal (N), benign(B), or malignant(M) )were included in the analysis, 
while corrupted, duplicate, or unlabeled images were excluded. Only ultrasound images 
were used. The dataset was divided using the ratio of 70% for training, 20% for testing, 
and 10% for validation. The data preprocessing pipeline also incorporated a dataset-
specific procedure in which BCMID images were manually cropped to ensure that all 
clinically relevant regions were clearly included. This manual cropping step allowed 
the preprocessing stage to better focus on the essential areas of interest within each 
image. Subsequently, all images were resized to 224×224 pixels to comply with the 
input dimensions required by the pre-trained machine learning models. Pixel intensities 
were normalized to the [0,1] range to maintain consistency across the dataset. These 
preprocessing procedures were applied uniformly to the training, validation, and test 
sets in all experimental configurations. 

To address the class imbalance depicted in Table 1, without altering the size or 
distribution of the dataset, we applied class weighting during model training. Instead 
of down-sampling or up-sampling the classes (which would either reduce the dataset 
excessively or introduce significant computational overhead), we assigned higher 
weights to underrepresented classes and lower weights to overrepresented ones 
as delivered in Figure 2. This approach allowed the model to pay proportionally more 
attention to minority classes while preserving the original dataset and ensuring efficient 
training.

To address the class imbalance present in the training data, class weights were computed 
and applied during model training. First, the class labels generated by the data loader 
were converted into their corresponding integer representations. These integer labels 
were then used with the balanced mode of “compute_class_weight”, which calculates 
a weight for each class based on the inverse proportionality between class frequency 
and its representation in the dataset. In this approach, classes with fewer samples 
receive higher weights, while more frequent classes receive lower weights, ensuring 
that the model does not become biased toward the majority class. The resulting weight 
vector was subsequently transformed into a dictionary format compatible with Keras 
and passed to the model during training to promote balanced learning across classes.

Table 1: Detailed class distribution across the dataset 

Train Validation Test Total

N B M N B M N B M

Dataset 96 499 184 18 75 22 38 160 53 1145

Total 779 115 251 1145
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Figure 2: Weight adjustments of classes

3.3.    PRE-TRAINED MODEL

Researchers often utilize pre-trained models rather than training networks from 
scratch. Among the transfer learning architectures summarized in Table 2, the number 
of parameters was a key factor in our selection. MobileNetV2, with its lightweight 
design and exceptionally low parameter count, was chosen as the most suitable 
model for this study. Its compact architecture enables efficient training and reduced 
computational demands, which is particularly advantageous in the context of swarm-
based hyperparameter optimization, where the model must be repeatedly trained and 
evaluated across multiple configurations. Furthermore, MobileNetV2 is well-suited for 
datasets of moderate size, such as BCMID, while maintaining competitive performance 
in medical image classification tasks.

Table 2: Transfer Model’s parameters

Transfer Model Architecture Approximate Number of 
Parameters

MobileNetV2 ~3.5 million

MobileNetV1 ~4.2 million

EfficientNetB0 ~5.3 million

DenseNet121 ~7 million

Xception ~22.9 million

ResNet50 ~23.5 million

InceptionV3 ~23.8 million

DenseNet201 ~20 million

ResNet101 ~44.5 million

ResNet152 ~60 million

EfficientNetB7 ~66 million

VGG16 ~138 million

VGG19 ~144 million

The MobileNetV2 [22] family of models was adopted in this study due to its emphasis 
on computational efficiency, making it particularly suitable for low-resource or 
edge computing environments. The original MobileNetV2 introduced depth-wise 
separable convolutions, which significantly reduce both the number of parameters 
and computational operations while maintaining high accuracy for visual recognition 
tasks. This design makes MobileNetV2 well-suited for image classification and object 
recognition on devices with limited computational capabilities, such as smartphones 
and IoT devices. Its efficiency allows for the deployment of complex neural network 
architectures in resource-constrained settings, enabling advanced machine learning 
applications in mobile and embedded contexts.

MobileNetV2 enhances the original MobileNet architecture using inverted residuals and 
linear bottlenecks, enabling efficient feature extraction with minimal computational 
cost. Its performance is controlled by several key hyperparameters:

•	•	 Epochs:Epochs: Specifies the number of complete passes through the training dataset; 
optimizing epochs balances sufficient training for convergence with computational 
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efficiency.

•	•	 Learning rate:Learning rate:  Determines the step size at each iteration during training; a properly 
tuned learning rate ensures faster convergence and prevents divergence or 
overshooting.

•	•	 Batch size:Batch size: Specifies the number of samples processed before updating model 
weights; larger batches provide more stable gradient estimates but require more 
memory.

•	•	 Dropout rate:Dropout rate: Randomly deactivates a fraction of neurons during training to 
prevent overfitting, promoting better generalization.

•	•	 Optimizer choice:Optimizer choice: Influences how the network updates its weights; different 
optimizers (e.g., SGD, Adam, RMSprop) affect convergence speed, stability, and 
final model accuracy.

Careful tuning of these hyperparameters is crucial, particularly in medical image 
classification tasks, as it directly impacts model accuracy, training efficiency, and 
generalization while maintaining the computational efficiency that makes MobileNetV2 
suitable for moderate-resource environments.

3.4.   SWARM-BASED OPTIMIZERS 

Swarm intelligence optimization refers to a family of population-based metaheuristic 
algorithms inspired by the collective behavior of decentralized biological systems such 
as bird flocks, fish schools, ant colonies, and bee swarms [23]. These algorithms operate 
through simple interactions among agents that cooperate to explore and exploit the 
search space efficiently, without requiring gradient information or problem-specific 
assumptions. Their robustness, parallelism, and ability to avoid local minima make 
swarm-based optimizers particularly effective for complex optimization problems in 
machine learning, engineering, pattern recognition, and deep learning hyperparameter 
tuning.

3.4.1. Particle Swarm Optimization (PSO)3.4.1. Particle Swarm Optimization (PSO)

Particle Swarm Optimization, introduced by Kennedy and Eberhart [24], models the 
social behavior of flocks of birds or schools of fish. Particles navigate the search space 
by adjusting their velocity based on their own best experience and the best-performing 
member of the swarm. PSO is widely used due to its simplicity, fast convergence, and 
efficiency in continuous optimization tasks, making it a strong candidate for neural 
network hyperparameter tuning and feature selection.

3.4.2. Whale Optimization Algorithm (WOA)3.4.2. Whale Optimization Algorithm (WOA)

The Whale Optimization Algorithm, developed by Mirjalili and Lewis [25], is inspired 
by the bubble-net feeding strategy of humpback whales. WOA alternates between 
encircling prey, spiral bubble-net attacks, and random exploration, allowing it to escape 
local minima while converging toward optimal solutions. Its low complexity and strong 
exploitation ability make it effective for deep learning model optimization.

3.4.3. Artificial Bee Colony (ABC)3.4.3. Artificial Bee Colony (ABC)

The Artificial Bee Colony algorithm, proposed by Karaboga [26], mimics the foraging 
behavior of honeybee swarms, dividing bees into employed, onlooker, and scout 
categories. ABC excels at balancing exploration and exploitation by dynamically 
allocating search effort based on nectar (fitness) quality. This makes it highly effective 
for feature selection, clustering, and neural network training.
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4.	 EXPERIMENTS AND RESULTS

This section covers experimental design, where MobileNetV2 is employed as the primary 
pre-trained convolutional neural network for breast ultrasound image classification. 
Due to its lightweight architecture and low computational cost, MobileNetV2 serves as 
an ideal baseline for evaluating hyperparameter optimization strategies. In this study, 
the model’s key hyperparameters are tuned using three swarm-based optimization 
algorithms—Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), 
and Artificial Bee Colony (ABC). Each optimizer searches for an optimal configuration 
that enhances MobileNetV2’s performance while maintaining computational efficiency. 

The experimental workflow is divided into two main phases. In the first phase, all selected 
swarm-based hyperparameter optimization algorithms are applied to MobileNetV2 to 
identify their optimal configurations. During this step, both the computational time 
and the best hyperparameter solution produced by each optimizer are recorded. In 
the second phase, the best hyperparameters obtained from each algorithm are used 
to retrain MobileNetV2 on the same training set (with more epochs =100), after which 
the model is evaluated using the independent test dataset. This allows for a fair 
comparison of the algorithms based on their achieved evaluation metrics as well as 
their optimization efficiency, providing a comprehensive assessment of performance 
across both accuracy and runtime.

4.1.   EXPERIMENTAL SETTINGS 

The models utilized across all experiments were built using the Keras API with a 
TensorFlow backend. For multi-class classification, the output layer used a softmax 
activation function, and training was driven by the categorical cross-entropy loss. 
To ensure full reproducibility, a fixed random seed was applied, and TensorFlow was 
configured for deterministic behavior. Experiments were carried out on an Intel® Core™ 
i7-10510U CPU @ 1.80 GHz with 16 GB of RAM. The implementation of the swarm-based 
hyperparameter optimization was facilitated by the MEALPY Python library [27], which 
provides a comprehensive suite of state-of-the-art population-based meta-heuristic 
algorithms.

                        Table 3: Hyperparameter Settings

Model Hyperparameter Fixed value Optimized Range

MobileNetV2

Epochs 3 -

Learning Rate - 0.1,0.01,0.001,0.0001

Dropout - 0.1,0.2,0.3,0.4,0.5,0.6,0.7

Batch size 32 -

Optimizer - SGD, Adam, RMSprop

PSO Iterations=5, population size=5, w=0.4, c1= c2=2.05

ABC Iterations=5, population size=5, n_ limits=25

WOA Iterations=5, population size=5

The hyperparameters for MobileNetV2 and the selected swarm optimization algorithms 
are summarized in Table 3. To ensure a fair and consistent comparison across all 
optimizers, both the number of iterations and the population size were fixed for every 
swarm-based algorithm evaluated in this study.

4.2.   EVALUATION METRICS 

To evaluate the effectiveness of the different methods in classifying breast ultrasound 
images into normal, benign, and malignant categories, several widely used performance 
metrics were employed: Accuracy, Macro Precision, Macro Recall, and Macro F1-Score. 
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These metrics offer a comprehensive assessment of classification quality, with the 
macro-averaged measures being particularly valuable for datasets with class imbalance 
(such as those commonly encountered in medical imaging) since they weigh each class 
equally regardless of its frequency.

Accuracy is the total number of correctly predicted samples (regardless of class) 
divided by the total number of samples in the dataset. For multi-class problems (like 
normal, benign, malignant), accuracy is typically computed as depicted in equation (1):

                      (1)

By first computing the Precision (equation 2) for each class individually, Macro Precision 
is calculated, then taking the average across all classes as given in equation (3).

 (2)                               

    (3)

Macro Recall is calculated by first computing Recall (also called Sensitivity) for each 
class individually, then taking the average across all classes (equations 4 and 5). 

   (4)                                

   (5)
 
The F1-Score for each class is the harmonic mean of that class’s Precision and Recall 
(equations 6 and 7).

                                         (6)                               

   (7)

4.3.   RESULTS AND DISCUSSION

The first phase focuses on evaluating the performance of the selected three swarm-
based hyperparameter optimization algorithms when applied to MobileNetV2. Each 
optimizer is tasked with searching for the most effective hyperparameter configuration 
using the original training dataset. Throughout this optimization process, both the 
computational time required by each algorithm and the best hyperparameter set it 
identifies are documented in Table 4. This phase establishes a clear basis for comparing 
the optimizers in terms of their search efficiency and the quality of the solutions they 
produce.

Table 4: Hyperparameter values and inference time 

Optimizer 

Hyperparameter values

Time (sec)
Learning Rate Dropout Optimizer

PSO 0.001 0.1 Adam 7710

ABC 0.01 0.1 SGD 14148

WOA 0.01 0.1 SGD 7622

The second phase involves retraining MobileNetV2 using the optimal hyperparameters 
obtained from each swarm-based optimization algorithm depicted in Table 4. Using the 
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same training dataset as in the first phase, the model is trained again, but an extended 
number of epochs (100) is used to ensure a more stable and representative evaluation 
of each hyperparameter configuration. After training, the resulting models are assessed 
on an independent test dataset. This phase enables a direct and fair comparison of 
the algorithms based on their final classification performance, allowing both their 
optimization effectiveness and practical impact on model accuracy to be fully evaluated. 
The performance measures of each model are delivered in Table 5.

Table 5: Model evaluations  

Optimizer 

Evaluation Measures

Accuracy Macro Precision Macro Recall Macro F1-Score

PSO 66% 58% 51% 54%

ABC 62% 53% 49% 50%

WOA 62% 53% 49% 50%

The combined analysis of computational time (Table 4 ) and evaluation metrics reveals 
clear differences in efficiency (Table 5) and effectiveness among the three swarm 
optimization algorithms. PSO delivered the best overall classification performance, 
achieving the highest accuracy (66%) and leading macro precision, recall, and F1-score. 
Notably, this superior performance was obtained with a moderate training time of 7710 
seconds, making PSO both effective and computationally reasonable.

ABC, despite requiring the longest optimization time at 14,148 seconds—almost double 
that of PSO—did not translate its extended search into improved performance. Its 
accuracy (62%) and macro metrics remained lower, matching those of WOA. WOA, in 
contrast, achieved the same evaluation scores as ABC but required only 7622 seconds, 
demonstrating far greater computational efficiency.

Overall, PSO offers the best balance between accuracy and time cost, while WOA provides 
the most efficient runtime among the algorithms, yielding mid-level performance. ABC 
appears to be the least efficient, with high computation time but no corresponding gain 
in model quality.

5.	 CONCLUSION AND FUTURE WORK

The work investigated the use of swarm intelligence algorithms such as ABC, PSO, and 
WOA for hyperparameter optimization of MobileNet in breast cancer ultrasound image 
(BCMID) classification. The work was conducted in two phases. In the first phase, 
each algorithm was used to optimize critical hyperparameters, namely learning rate, 
dropout rate, and optimizer selection. In the second phase, MobileNet was retrained 
using optimized hyperparameters to ensure consistency and performance stability. The 
dataset was carefully managed with class weighting to address imbalance among benign, 
malignant, and normal cases. PSO achieved the highest classification performance, 
with 66% accuracy and superior macro-precision, macro-recall, and F1-score, requiring 
a moderate computational time of 7710 seconds. Both ABC and WOA achieved 62% 
accuracy, with WOA being more computationally efficient (7622 seconds) compared 
to ABC (14,148 seconds). These results demonstrate that swarm-based optimization 
can effectively enhance MobileNet’s diagnostic capability, with PSO providing the best 
balance between accuracy and computational cost.

Future research could explore a broader range of swarm intelligence algorithms beyond 
ABC, PSO, and WOA. The hyperparameter search space could be expanded to include 
additional parameters, and the parameters of the swarm algorithms themselves 
could be optimized for better convergence and efficiency. Additionally, experimenting 
with different transfer learning models beyond MobileNet may improve performance. 
Combining these approaches with advanced data augmentation and multimodal imaging 
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techniques could further enhance model generalization and diagnostic reliability. Finally, 
evaluating the optimized models in real-time clinical workflows would provide valuable 
insights into their practical applicability in breast cancer diagnosis.

The current study trains the model for only three epochs during hyperparameter 
optimization and relies on a single train/validation/test split, both of which may limit the 
reliability of the evaluation. Short training durations can prevent meaningful performance 
differences between hyperparameter configurations from emerging, while a single data 
split may introduce evaluation bias—especially with a moderately sized dataset. Future 
work should therefore increase the number of training epochs during hyperparameter 
tuning and employ more robust evaluation strategies, such as k-fold cross-validation or 
repeated hold-out splits, to ensure more reliable and statistically sound performance 
estimates.
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