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ABSTRACT

This study examines the effectiveness of swarm intelligence algorithms for
optimizing MobileNet hyperparameters in breast cancer classification using
ultrasound images (BCMID). Three optimization methods—Artificial Bee Colony (ABC),
Particle Swarm Optimization (PS0), and the Whale Optimization Algorithm (WOA)—
were applied to identify optimal learning rates, dropout rate, and the optimizer.
The best hyperparameter sets discovered by each algorithm were used to retrain
MobileNet to verify consistency and performance stability. The dataset consisted of
clinically annotated breast ultrasound images representing benign, malignant, and
normal cases. Model performance was assessed using accuracy, macro-precision,
macro-recall, and macro-F1-score. The optimized models outperformed the baseline
configuration, with ABC achieving 62%, PSO achieving 66%, and WOA achieving
62%. In terms of computational time, PSO required 7718 seconds, ABC 14,148
seconds, and WOA 7622 seconds, highlighting notable differences in optimization
efficiency. These findings demonstrate that swarm-based optimization can enhance
MobileNet's diagnostic performance while exhibiting varying computational costs,
offering a reliable framework for computer-aided breast cancer detection in

ultrasound imaging.

Keywaords: Machine Learning, Breast Cancer Classification, Hyperparameter Optimization,
Swarm Optimizers, BCMID ultrasound images

1. INTRODUCTION

The use of Artificial Intelligence (Al] in clinical practice is reshaping modern healthcare,
particularly in oncology, where Al is becoming increasingly valuable for enhancing
diagnostic precision, customizing treatment plans, and advancing research efforts.
Cancer remains one of the primary global causes of illness and death, with roughly 18
million new cases and 18 million deaths recorded each year in recent reports, excluding
non-melanoma skin cancers [1]. Among all cancer types, breast cancer is especially
noteworthy. In 2822, it was the most frequently diagnosed cancer among women,
accounting for over 2.3 million new cases and approximately 678,888 deaths worldwide
[2]. Projections indicate that if current trends continue, the number of new breast cancer
diagnoses may rise by 38%, while mortality could increase by 68% by the year 2858,
reaching an estimated 3.2 million new cases and 1.1 million deaths annually [3]. Within
this landscape, Al's capacity to process and interpret large, complex datasets—such
as medical imaging, genomic profiles, and electronic health records—enables earlier
detection, improved risk stratification, and personalized treatment strategies supported
by precision oncology, ultimately contributing to reduced mortality and better patient
outcomes [4-7].
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Deep neural networks (DNNs) have emerged as the leading method for classifying
breast lesions in ultrasound (US] imaging, showing notable gains in diagnostic accuracy
and clinical interpretability. In the period following 2821, most studies relied on transfer
learning using established convolutional neural network (CNN) models such as ResNet,
DenseNet, and EfficientNet, which achieved strong accuracy and AUC values when
distinguishing benign from malignant lesions on widely used datasets. More recent
research, however, has shifted toward designing specialized DNN architectures that
better capture the unique properties of ultrasound imaging [8,9]. These include attention-
enhanced CNNs, hybrid CNN-transformer systems, and multi-view fusion networks
that combine information from several US image planes to provide richer contextual
understanding [18].

To further improve model generalization, researchers have incorporated strategies
such as synthetic data generation with GANs, domain adaptation, and ensemble-based
methods, all of which help minimize overfitting and bolster robustness across different
ultrasound machines and scanning protocols [11,12]. Collectively, post-2821 DNN-based
classifiers have progressed from straightforward binary models to more clinically
focused and interpretable systems, reaching performance levels comparable to expert
radiologists in controlled settings and advancing steadily toward deployment in real-
world clinical environments.

Hyperparameter optimization plays a critical role in enhancing the accuracy and
overall performance of convolutional neural network (CNN] classification models.
Hyperparameters—such as learning rate, batch size, dropout rate, number of filters, and
optimizer settings—directly influence how effectively a CNN learns patterns from data.
Poorly chosen hyperparameters can lead to issues like slow convergence, underfitting,
overfitting, or unstable training. Systematic optimization methods, including grid search,
Bayesian optimization, evolutionary algorithms, and particle swarm optimization, help
identify the optimal combination of hyperparameters that maximizes classification
accuracy. By fine-tuning these values, models achieve better feature extraction,
improved generalization to unseen data, and more robust decision-making. As a
result, hyperparameter optimization is essential for unlocking the full potential of CNN
architecture and ensuring high-quality, reliable classification performance.

Our work makes a significant contribution to the field of CNN-based medical image
classification by systematically exploring multiple transfer learning models and leveraging
various swarm optimization algorithms to optimize their hyperparameters. While transfer
learning allows CNNs to benefit from pre-trained knowledge on large datasets, the
choice of model and its hyperparameters greatly impacts performance. By integrating
different swarm intelligence methods—such as Particle Swarm Optimization, Ant Colony
Optimization, and others- our approach efficiently searches the hyperparameter space
to identify optimal configurations, improving both convergence and classification
accuracy. This comprehensive strategy not only enhances model performance but
also provides a versatile framework for applying CNNs to diverse datasets, making it a
robust and generalizable contribution to the development of high-accuracy, optimized
deep learning models. The main contributions of our work are as follows:

1. We explore the optimization of hyperparameters across a transfer learning model on
breast cancer ultrasound images.

2. Different swarm optimization algorithms, including Particle Swarm Optimization (PSO)
and other swarm-based methods, are employed to efficiently identify the optimal
MobileNet hyperparameter and the optimal swarm optimizer.

3. We systematically compare the performance of different optimizers in terms of both
classification accuracy and computational time, providing insights into their
effectiveness and efficiency.

The remainder of the article is structured as follows: Section 2 introduces the study and
reviews related works, Section 3 details the materials and methods, Section 4 presents
the experiments and results, and Section 5 provides conclusions and recommendations
for future research.
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2. RELATED WORK

Deep learning, particularly Convolutional Neural Networks (CNNs), has become the
foundation of modern breast cancer classification due to its ability to automatically
extract high-level imaging features. Transfer learning has further accelerated progress
by leveraging pretrained models such as VGG, ResNet, DenseNet, Inception, and
NASNet for small medical datasets. For breast ultrasound images specifically, Kormpos
et al. evaluated multiple pretrained architectures and proposed a hierarchical two-
stage classifier that improved robustness over conventional flat multi-class models,
demonstrating the effectiveness of CNNs for BUSI ultrasound classification [11].
Ahishakiye and Kanobe later introduced a hybrid DenseNet281 + Bayesian-Optimized
FLN framework that achieved high accuracy by optimizing key learning parameters such
as dropout, learning rate, and hidden-layer size [12]. These studies highlight both the
potential of pretrained CNNs and the Sensitivity of their performance to hyperparameter
selection.

Hyperparameter optimization has therefore emerged as a critical research direction.
Among metaheuristic technigues, Particle Swarm Optimization (PS0] is one of the earliest
and most widely adopted. Aguerchi et al. used PSO to optimize CNN hyperparameters—
including filter size, stride, and network depth—for mammography, achieving accuracies
above 98% on DDSM and MIAS datasets [13]. Their work remains a benchmark showing
that swarm intelligence can efficiently explore complex CNN design spaces. Similarly,
several PSO-CNN studies in other medical imaging domains report improvements in
learning rate tuning, dropout selection, layer freezing, and classifier training when
applied to pretrained models such as VGG-16, ResNet58, and DenseNet121.

Beyond PSO, other swarm-intelligence algorithms have been widely applied to CNN
tuning. Ant Colony Optimization (ACO) has been used by Fauzi et al. to optimize ultrasound
classification models based on texture features, outperforming non-optimized baselines
[14]. Genetic Algorithms (GA] have long been adopted for evolving CNN architectures and
optimizing filter parameters [15]. Grey Wolf Optimizer (GW0)] [16] and Whale Optimization
Algorithm (WOA) [17] have been used to tune deep architectures such as ResNet and
Inception, often providing stronger convergence stability than PSO. Differential Evolution
(DE)[18] has been employed to tune convolutional layers and learning hyperparameters,
while Firefly Algorithm (FA) [19] and Cuckoo Search (CS) [28] have been reported to
enhance CNN training performance across multiple medical image analysis tasks.

Overall, the literature demonstrates that swarm-intelligence optimizers play an
increasingly important role in improving CNN classification performance, especially for
medical images where fixed hyperparameters often fail to generalize. However, only
limited studies systematically apply swarm-based optimization—particularly PSO and
related algorithms—to multiple pretrained CNN models specifically for breast ultrasound
images. This gap motivates the present study, which evaluates several CNN architectures
and employs swarm-intelligence optimization to automatically identify hyperparameter
configurations that maximize performance on breast ultrasound cancer classification.

3. MATERIALS AND METHODS

In this section, we provide a detailed description of the breast ultrasound dataset
used to evaluate our work. Moreover, Figure 1 illustrates samples of normal, benign,
and malignant cases from the dataset. The Breast Cancer Multimodal Imaging Dataset
(BCMID] [21] includes data from 323 adult female patients collected between 2819 and
20822, aged 26-82 years. Acquired at Ayadi Hospital in Alexandria, Egypt, the dataset
contains ultrasound and mammaography scans, along with validated reports summarizing
the physician's BI-RADS-based diagnosis. For this study, only ultrasound images were
used. The dataset comprises three classes—normal (152 images), benign (734 images),
and malignant (259 images). Multiple ultrasound views or scans from different dates per
patient result in a total number of images exceeding the number of patients.
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Normal Benign Malignant

Figure 1: Ultrasound image samples from the BCMID dataset showing normal, benign, and malignant
cases

Before starting to run the model, all available ultrasound images with validated
diagnostic labels (normal (N), benign(B), or malignant(M] Jwere included in the analysis,
while corrupted, duplicate, or unlabeled images were excluded. Only ultrasound images
were used. The dataset was divided using the ratio of 78% for training, 28% for testing,
and 18% for validation. The data preprocessing pipeline also incorporated a dataset-
specific procedure in which BCMID images were manually cropped to ensure that all
clinically relevant regions were clearly included. This manual cropping step allowed
the preprocessing stage to better focus on the essential areas of interest within each
image. Subsequently, all images were resized to 224x224 pixels to comply with the
input dimensions required by the pre-trained machine learning models. Pixel intensities
were normalized to the [B,1] range to maintain consistency across the dataset. These
preprocessing procedures were applied uniformly to the training, validation, and test
sets in all experimental configurations.

To address the class imbalance depicted in Table 1, without altering the size or
distribution of the dataset, we applied class weighting during model training. Instead
of down-sampling or up-sampling the classes (which would either reduce the dataset
excessively or introduce significant computational overhead), we assigned higher
weights to underrepresented classes and lower weights to overrepresented ones
as delivered in Figure 2. This approach allowed the model to pay proportionally more
attention to minority classes while preserving the original dataset and ensuring efficient
training.

Toaddress the classimbalance presentin the training data, class weights were computed
and applied during model training. First, the class labels generated by the data loader
were converted into their corresponding integer representations. These integer labels
were then used with the balanced mode of “compute_class_weight”, which calculates
a weight for each class based on the inverse proportionality between class frequency
and its representation in the dataset. In this approach, classes with fewer samples
receive higher weights, while more frequent classes receive lower weights, ensuring
that the model does not become biased toward the majority class. The resulting weight
vector was subsequently transformed into a dictionary format compatible with Keras
and passed to the model during training to promote balanced learning across classes.

Table 1: Detailed class distribution across the dataset

N B M N B M N B M
Dataset 96 499 184 18 75 22 38 168 | 53 145
Total 719 115 251 1145
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Class Labels: {'Benign’': ®, "Malignant': 1, '"MNormal’': 2}
Class Weights: {@: ©.5176314838580488, 1: 1.4804282898556725, 2: 2.7885384655408287}

Figure 2: Weight adjustments of classes

Researchers often utilize pre-trained models rather than training networks from
scratch. Among the transfer learning architectures summarized in Table 2, the number
of parameters was a key factor in our selection. MobileNetV2, with its lightweight
design and exceptionally low parameter count, was chosen as the most suitable
model for this study. Its compact architecture enables efficient training and reduced
computational demands, which is particularly advantageous in the context of swarm-
based hyperparameter optimization, where the model must be repeatedly trained and
evaluated across multiple configurations. Furthermore, MobileNetV2 is well-suited for
datasets of moderate size, such as BCMID, while maintaining competitive performance
in medical image classification tasks.

Table 2: Transfer Model's parameters

Transfer Model Architecture Approximate Number of
Parameters
MobileNetV2 ~3.5 million
MobileNetV1 ~4.2 million
EfficientNetB@ ~5.3 million
DenseNet121 ~7 million
Xception ~22.9 million
ResNet58 ~23.5 million
InceptionV3 ~23.8 million
DenseNet201 ~208 million
ResNet181 ~44.5 million
ResNet152 ~B6@ million
EfficientNetB7 ~B6 million
VGG16 ~138 million
VGG19 ~144 million

The MobileNetV2 [22] family of models was adopted in this study due to its emphasis
on computational efficiency, making it particularly suitable for low-resource or
edge computing environments. The original MobileNetV2 introduced depth-wise
separable convolutions, which significantly reduce both the number of parameters
and computational operations while maintaining high accuracy for visual recognition
tasks. This design makes MobhileNetV2 well-suited for image classification and object
recognition on devices with limited computational capabilities, such as smartphones
and loT devices. Its efficiency allows for the deployment of complex neural netwaork
architectures in resource-constrained settings, enabling advanced machine learning
applications in mobile and embedded contexts.

MobileNetV2 enhances the original MobileNet architecture using inverted residuals and
linear bottlenecks, enabling efficient feature extraction with minimal computational
cost. Its performance is controlled by several key hyperparameters:

° Epochs: Specifies the number of complete passes through the training dataset;
optimizing epochs balances sufficient training for convergence with computational
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efficiency.

° Learning rate: Determines the step size at each iteration during training; a properly
tuned learning rate ensures faster convergence and prevents divergence or
overshooting.

° Batch size: Specifies the number of samples processed before updating model
weights; larger batches provide more stable gradient estimates but require more
memary.

o Dropout rate: Randomly deactivates a fraction of neurons during training to
prevent overfitting, promoting better generalization.

° Optimizer choice: Influences how the network updates its weights; different
optimizers (e.g., SGD, Adam, RMSprop] affect convergence speed, stabhility, and
final model accuracy.

Careful tuning of these hyperparameters is crucial, particularly in medical image
classification tasks, as it directly impacts model accuracy, training efficiency, and
generalization while maintaining the computational efficiency that makes MobileNetV2
suitable for moderate-resource environments.

Swarm intelligence optimization refers to a family of population-based metaheuristic
algorithms inspired by the collective behavior of decentralized biological systems such
as bird flocks, fish schools, ant colonies, and bee swarms [23]. These algorithms operate
through simple interactions among agents that cooperate to explore and exploit the
search space efficiently, without requiring gradient information or problem-specific
assumptions. Their robustness, parallelism, and ability to avoid local minima make
swarm-based optimizers particularly effective for complex optimization problems in
machine learning, engineering, pattern recognition, and deep learning hyperparameter
tuning.

3.4.1. Particle Swarm Optimization (PS0)

Particle Swarm Optimization, introduced by Kennedy and Eberhart [24], models the
social behavior of flocks of birds or schools of fish. Particles navigate the search space
by adjusting their velocity based on their own best experience and the best-performing
member of the swarm. PSO is widely used due to its simplicity, fast convergence, and
efficiency in continuous optimization tasks, making it a strong candidate for neural
network hyperparameter tuning and feature selection.

3.4.2. Whale Optimization Algorithm (WOA)

The Whale Optimization Algorithm, developed by Mirjalili and Lewis [25], is inspired
by the bubble-net feeding strategy of humpback whales. WOA alternates between
encircling prey, spiral bubble-net attacks, and random exploration, allowing it to escape
local minima while converging toward optimal solutions. Its low complexity and strong
exploitation ability make it effective for deep learning model optimization.

3.4.3. Artificial Bee Colony (ABC])

The Artificial Bee Colony algorithm, proposed by Karaboga [26], mimics the foraging
behavior of honeybee swarms, dividing bees into employed, onlooker, and scout
categories. ABC excels at balancing exploration and exploitation by dynamically
allocating search effort based on nectar (fitness) quality. This makes it highly effective
for feature selection, clustering, and neural netwark training.
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4. EXPERIMENTS AND RESULTS

This section covers experimental design, where MobileNetV2 is employed as the primary
pre-trained convolutional neural network for breast ultrasound image classification.
Due to its lightweight architecture and low computational cost, MobileNetV2 serves as
an ideal baseline for evaluating hyperparameter optimization strategies. In this study,
the model's key hyperparameters are tuned using three swarm-based optimization
algorithms—Particle Swarm Optimization (PS0), Whale Optimization Algorithm (WOA),
and Artificial Bee Colony (ABC). Each optimizer searches for an optimal configuration
that enhances MobileNetV2's performance while maintaining computational efficiency.

The experimental workflow is divided into two main phases. In the first phase, all selected
swarm-based hyperparameter optimization algorithms are applied to MobileNetV2 to
identify their optimal configurations. During this step, both the computational time
and the best hyperparameter solution produced by each optimizer are recorded. In
the second phase, the best hyperparameters obtained from each algorithm are used
to retrain MobileNetV2 on the same training set (with more epochs =188), after which
the model is evaluated using the independent test dataset. This allows for a fair
comparison of the algorithms based on their achieved evaluation metrics as well as
their optimization efficiency, providing a comprehensive assessment of performance
across both accuracy and runtime.

The models utilized across all experiments were built using the Keras API with a
TensorFlow backend. For multi-class classification, the output layer used a softmax
activation function, and training was driven by the categorical cross-entropy loss.
To ensure full reproducibility, a fixed random seed was applied, and TensorFlow was
configured for deterministic behavior. Experiments were carried out on an Intel® Core™
i7-18518U CPU @ 1.88 GHz with 16 GB of RAM. The implementation of the swarm-based
hyperparameter optimization was facilitated by the MEALPY Python library [27], which
provides a comprehensive suite of state-of-the-art population-based meta-heuristic
algorithms.

Table 3: Hyperparameter Settings

Hyperparameter Fixed value Optimized Range

Epochs 3 -

Learning Rate - 8.1,8.081,0.801,0.8001

MobileNetV2 Dropout - 8.1,8.2,6.3,8.4,8.5,6.6,8.7

Batch size 32 -

Optimizer - SGD, Adam, RMSprop

PSO Iterations=5, population size=5, w=8.4, c1= c2=2.85

ABC [terations=5, population size=5, n_ limits=25

WOA Iterations=5, population size=5

The hyperparameters for MobileNetV2 and the selected swarm optimization algorithms
are summarized in Table 3. To ensure a fair and consistent comparison across all
optimizers, both the number of iterations and the population size were fixed for every
swarm-based algorithm evaluated in this study.

To evaluate the effectiveness of the different methods in classifying breast ultrasound
images into normal, benign, and malignant categories, several widely used performance
metrics were employed: Accuracy, Macro Precision, Macro Recall, and Macro F1-Score.

http://apc.aast.edu

283



http://dx.doi.org/18.21622/ACE.2825.85.2.1799

These metrics offer a comprehensive assessment of classification guality, with the
macro-averaged measures being particularly valuable for datasets with class imbalance
(such as those commonly encountered in medical imaging] since they weigh each class
equally regardless of its frequency.

Accuracy is the total number of correctly predicted samples (regardless of class)
divided by the total number of samples in the dataset. For multi-class problems (like
normal, benign, malignant), accuracy is typically computed as depicted in equation (1)

Number of Correct Predictions Across All Classes

(1)

By first computing the Precision (equation 2] for each class individually, Macro Precision
is calculated, then taking the average across all classes as given in equation (3).

Accuracy

Total Number of Predictions

Number of True Positives for that class

Precision [per class]=

/(Number of True Positives for that class+Number of False Positives for that class
Precision of Class 1+ Precision of Class 2 + Precision of Class 3 [3]
3

Macro Recall is calculated by first computing Recall (also called Sensitivity) for each
class individually, then taking the average across all classes (equations 4 and 5).

Macro Precision =

Number of True Positives for that class [ ]

Recall [per class]=

+ class+Number of False Negatives for that class

Recall of Class 1 + Recall of Class 2 + Recall of Class 3 [5]
3

The F1-Score for each class is the harmonic mean of that class's Precision and Recall
(eguations 6 and 7).

Macro Recall =

. _ 2 x (Precision x Recall)
Fl-Score [,UE'f D/HSS] Precision + Recall [8]
Macro Fl-Score = F1-Score of Class 1 + F1—Score of Class 2 + F1—Score of Class 3 [7]

3

The first phase focuses on evaluating the performance of the selected three swarm-
based hyperparameter optimization algorithms when applied to MobileNetV2. Each
optimizer is tasked with searching for the most effective hyperparameter configuration
using the original training dataset. Throughout this optimization process, both the
computational time required by each algorithm and the best hyperparameter set it
identifies are documented in Table 4. This phase establishes a clear basis for comparing
the optimizers in terms of their search efficiency and the quality of the solutions they
produce.

Table 4: Hyperparameter values and inference time

- Learning Rate Dropout Optimizer -
PSO 8.801 8.1 Adam 778
ABC 8.81 8.1 SGD 14148
WOA 8.81 8.1 SGD 7622

The second phase involves retraining MobileNetV2 using the optimal hyperparameters
obtained from each swarm-based optimization algorithm depicted in Table 4. Using the
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same training dataset as in the first phase, the model is trained again, but an extended
number of epochs (188] is used to ensure a more stable and representative evaluation
of each hyperparameter configuration. After training, the resulting models are assessed
on an independent test dataset. This phase enables a direct and fair comparison of
the algorithms based on their final classification performance, allowing both their
optimization effectiveness and practical impact on model accuracy to be fully evaluated.
The performance measures of each model are delivered in Table 5.

Table 5: Model evaluations

- Accuracy Macro Precision Macro Recall Macro F1-Score
PSO 66% 58% 51% 54%
ABC 62% 53% 49% 58%
WOA 62% 53% 49% 58%

The combined analysis of computational time (Table 4 ) and evaluation metrics reveals
clear differences in efficiency (Table 5) and effectiveness among the three swarm
optimization algorithms. PSO delivered the best overall classification performance,
achieving the highest accuracy (66%]) and leading macro precision, recall, and F1-score.
Notably, this superior performance was obtained with a moderate training time of 7718
seconds, making PSO both effective and computationally reasonable.

ABC, despite requiring the longest optimization time at 14,148 seconds—almost double
that of PSO—did not translate its extended search into improved performance. Its
accuracy (62%) and macro metrics remained lower, matching those of WOA. WOA, in
contrast, achieved the same evaluation scores as ABC but required only 7622 seconds,
demonstrating far greater computational efficiency.

Overall, PSO offers the best balance between accuracy and time cost, while WOA provides
the most efficient runtime among the algorithms, yielding mid-level performance. ABC
appears to be the least efficient, with high computation time but no corresponding gain
in model quality.

5. CONCLUSION AND FUTURE WORK

The work investigated the use of swarm intelligence algorithms such as ABC, PSO, and
WOA for hyperparameter optimization of MobileNet in breast cancer ultrasound image
(BCMID]) classification. The work was conducted in two phases. In the first phase,
each algorithm was used to optimize critical hyperparameters, namely learning rate,
dropout rate, and optimizer selection. In the second phase, MohileNet was retrained
using optimized hyperparameters to ensure consistency and performance stability. The
dataset was carefully managed with class weighting to address imbalance among benign,
malignant, and normal cases. PSO achieved the highest classification performance,
with B6% accuracy and superior macro-precision, macro-recall, and F1-score, requiring
a moderate computational time of 7718 seconds. Both ABC and WOA achieved 62%
accuracy, with WOA being more computationally efficient (7622 seconds) compared
to ABC (14,148 seconds). These results demonstrate that swarm-based optimization
can effectively enhance MobileNet's diagnostic capability, with PSO providing the best
balance between accuracy and computational cost.

Future research could explore a broader range of swarm intelligence algorithms beyond
ABC, PS0, and WOA. The hyperparameter search space could be expanded to include
additional parameters, and the parameters of the swarm algorithms themselves
could be optimized for better convergence and efficiency. Additionally, experimenting
with different transfer learning models beyond MobileNet may improve performance.
Combining these approaches with advanced data augmentation and multimodal imaging

http://apc.aast.edu

285



http://dx.doi.org/18.21622/ACE.2825.85.2.1799

techniques could further enhance model generalization and diagnostic reliability. Finally,
evaluating the optimized models in real-time clinical workflows would provide valuable
insights into their practical applicability in breast cancer diagnosis.

The current study trains the model for only three epochs during hyperparameter
optimization and relies on a single train/validation/test split, both of which may limit the
reliability of the evaluation. Short training durations can prevent meaningful performance
differences between hyperparameter configurations from emerging, while a single data
split may introduce evaluation bias—especially with a moderately sized dataset. Future
work should therefore increase the number of training epochs during hyperparameter
tuning and employ more robust evaluation strategies, such as k-fold cross-validation or
repeated hold-out splits, to ensure more reliable and statistically sound performance
estimates.
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