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ABSTRACT 

Air pollution remains a significant environmental and public health challenge in rapidly 

urbanizing regions. Accurately predicting air quality levels is critical for effective environmental 

management and public health interventions. This study investigates the application of 

logistic regression for multi-class air quality classification using a comprehensive dataset 

of 23,463 records. The dataset integrates pollutant concentrations (PM2.5, PM10, NO
2
, SO

2
, 

CO), meteorological variables (temperature and humidity), and socio-demographic features 

(industrial zone classification and population distribution). The target variable, the Air Quality 

Index (AQI), is categorized into six classes: Good, Moderate, Unhealthy for Sensitive Groups, 

Unhealthy, Very Unhealthy, and Hazardous. The preprocessing pipeline involves median 

imputation for missing values, feature normalization to ensure consistency across variables, 

and encoding of categorical features using both one-hot and ordinal encoding strategies. 

Feature selection is carried out using Pearson correlation, mutual information, and Recursive 

Feature Elimination (RFE), identifying PM2.5 as the most predictive variable with a correlation 

coefficient of 0.98 with overall AQI. The logistic regression model, selected for its simplicity and 

interpretability, is trained on the processed data. The model achieves a perfect classification 

score of 1.00, precision, recall, f1-score, and accuracy on a demonstration set of 30 records, 

supported by a perfectly diagonal confusion matrix. However, given the imbalanced nature 

of the full dataset, with “Good” and “Moderate” categories dominating, further evaluation 

on broader subsets is recommended. Visual analytics, including histograms, box plots, and 

correlation heatmaps, reaffirm the dominant influence of PM2.5 in determining overall air 

quality. The study demonstrates that logistic regression offers a robust, interpretable, 

and computationally efficient solution for air quality prediction. Future work will focus on 

addressing class imbalance, integrating real-time data, and benchmarking against more 

complex machine learning models to enhance prediction robustness and generalizability.
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1. INTRODUCTION

The persistent deterioration of air quality in urban centers has become a pressing global 
concern, particularly in the face of rapid industrialization, increased vehicular emissions, 
and rising population densities. Poor air quality is linked to a spectrum of adverse health 
outcomes, including respiratory infections, cardiovascular diseases, and increased mortality 
rates [1]. Simultaneously, air pollution degrades natural ecosystems and undermines 
sustainable development efforts. Understanding and predicting air quality levels using 
machine learning (ML) models enables proactive mitigation strategies [2]. Logistic 
regression, a well-established and interpretable algorithm, has shown promise in multi-class 
classification tasks. This study investigates the potential of logistic regression for predicting 
air quality categories using a dataset enriched with both environmental and demographic 
features [3]. Beyond the widely acknowledged culprits like industrial activities and vehicular 
exhaust, air pollution is exacerbated by a complex interplay of factors, including rapid and 
often unplanned urbanization, agricultural practices, and specific meteorological conditions 
[4]. For instance, temperature inversions can trap pollutants close to the ground, leading to 
severe localized events. Furthermore, transboundary pollution, where pollutants from one 
region drift to another, highlights the global interconnectedness of this issue. The dynamic 
and highly variable nature of air quality, influenced by daily, seasonal, and event-specific 
changes, presents significant challenges for accurate prediction and management [5]. The 
repercussions of poor air quality extend far beyond direct health impacts, permeating various 
societal and economic spheres. Economically, chronic exposure to pollutants can lead to 
reduced labor productivity, increased healthcare expenditures, and decreased tourism in 
affected regions. Environmentally, air pollution contributes to acid rain, damages crops and 
forests, and impacts biodiversity, further undermining sustainable development goals [6]. 
Moreover, the issue of environmental justice is salient, as marginalized communities and 
lower-income populations are often disproportionately exposed to higher levels of pollution 
due to their proximity to industrial zones or major transportation routes, exacerbating existing 
health disparities [7]. Traditional methods for air quality prediction, such as simple statistical 
models like ARIMA or basic multivariate regression, often struggle to capture the inherent 
non-linearity, complex interactions, and high-dimensional nature of environmental data [8]. 
Their limitations become particularly evident when dealing with categorical outputs like 
air quality classifications. In contrast, machine learning approaches, ranging from decision 
trees and support vector machines (SVMs) to sophisticated neural networks, offer superior 
capabilities in modeling these intricate relationships and handling large, heterogeneous 
datasets [9]. The choice of an appropriate ML model often involves a trade-off between 
predictive accuracy and interpretability, a crucial consideration for practical application. 
In this context, while more complex models have gained prominence, logistic regression 
remains a compelling choice for multi-class air quality classification. Its core strength 
lies in its interpretability, allowing stakeholders to understand why a particular air quality 
prediction is made based on the influence of specific features [10]. 

This transparency is invaluable for policy-makers who need to justify interventions and 
resource allocation. Furthermore, logistic regression’s simplicity, efficiency, and relatively low 
computational overhead make it a robust and accessible solution, suitable for deployment 
even in resource-constrained environments or as a strong baseline component within more 
elaborate ensemble systems [11]. The integration of both environmental (pollutant and 
meteorological) and demographic (industrial zone, population distribution) features in our 
dataset is designed to provide a holistic view, enabling the model to capture not only the 
direct environmental drivers but also the anthropogenic and spatial factors influencing 
air quality, thereby leading to more comprehensive and actionable insights. This research 
addresses the critical global concern of deteriorating urban air quality, emphasizing its 
severe links to adverse health outcomes, ecological degradation, and hindered sustainable 
development. It posits that machine learning (ML) models are essential for proactive air 
quality prediction and mitigation [12]. The introduction highlights the multifaceted nature 
of air pollution, influenced by industrialization, emissions, population growth, and complex 
factors like urbanization, agricultural practices, and meteorological conditions, including 
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transboundary pollution, all contributing to the dynamic variability of air quality [13]. The 
research further elaborates on the far-reaching repercussions of poor air quality, extending 
beyond health to encompass significant economic losses through reduced productivity, 
increased healthcare costs, and diminished tourism. It also touches upon environmental 
impacts such as acid rain and ecosystem damage [14], alongside the critical aspect of 
environmental justice, where vulnerable communities often bear a disproportionate burden 
of pollution exposure [15]. Critiquing traditional air quality prediction methods like ARIMA and 
multivariate regression, the paper asserts their inadequacy in capturing non-linearity and 
handling categorical outputs. It contrasts these limitations with the superior capabilities 
of modern ML approaches, including decision trees, support vector machines, and neural 
networks, in managing complex, high-dimensional data [16]. Despite the rise of these more 
intricate models, the paper champions logistic regression for its interpretability, simplicity, 
and computational efficiency, making it suitable for resource-constrained environments or 
as a foundational model in ensemble systems. The study’s unique contribution lies in its 
dataset, which enriches environmental data with demographic features like industrial zones 
and population distribution, aiming to provide a holistic and actionable understanding of air 
quality dynamics for improved environmental and public health management.

RELATED WORKS

Prior research in air quality prediction has explored a range of techniques from statistical 
modeling to complex deep learning architectures. Time-series models, such as ARIMA and 
multivariate regression, have been employed with limited success due to their inability to 
model non-linearity and categorical outputs effectively [17]. In contrast, ML approaches, 
including decision trees, support vector machines (SVMs), and neural networks, have 
demonstrated improved performance. However, despite the rise of complex models, logistic 
regression remains underutilized for multi-class air quality classification. Its interpretability, 
simplicity, and low computational overhead make it well-suited for deployment in resource-
constrained environments or as a baseline model in ensemble systems. [18], Regression 
analysis is a key technique for predicting continuous outcomes based on multiple input 
variables, offering clear estimates of relationships between inputs and outputs along with 
error estimates from optimization algorithms. Commonly used in communication networks 
and IoT applications, regression models are often built using statistical machine learning 
methods to establish parametric relationships [19]. This includes generalized linear models 
like linear and logistic regression, as well as ridge and polynomial regression. The study delves 
into the theory behind these models, provides pseudocode for practical implementation, 
and discusses challenges in data analysis, model selection, cost functions, optimization 
strategies, cross-validation, and regularization techniques. [20], Analyzed how various 
factors influenced psychological distress during the early COVID-19 outbreak in China, 
using data from 937 respondents. Health-related factors were the strongest predictors, 
followed by [17]objective and perceived environmental risks. Distress levels increased 
sharply at specific AQI thresholds, and gender differences were noted in responses. Overall, 
perceived indoor air quality was more strongly linked to psychological distress than outdoor 
pollution. [21],The rapid increase in global population and unchecked urbanization have led 
to serious environmental issues, notably declining air quality linked to various health risks 
[22]balancing data privacy with clinical utility. The decentralized system enables multi-
institutional collaboration without centralized data collection, complying with HIPAA/GDPR 
through two technical safeguards: differential privacy via DP-SGD during local training 
and secure aggregation of model updates. Using LSTM/GRU architectures optimized for 
sequential medical data, the framework achieves an F1 Score of 67% with precision (60%. 
In response, machine learning has emerged as a vital tool for predicting air quality, drawing 
widespread academic interest. 

This paper offers a comprehensive bibliometric analysis of machine learning applications 
in air quality prediction, based on 1992–2021 publications indexed in the Web of Science. 
Utilizing S-curve and social network analyses, the study tracks the evolution of research 
output, revealing a significant surge between 2017 and 2021, during which 68.51% of all 
publications appeared. Italy, Greece, and Spain led in international collaboration impact. 
Frequent keywords include ‘air pollution’, ‘air quality’, ‘machine learning’, and ‘forecasting’, 
highlighting key research themes. The study also explores the transition from traditional 
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to machine learning methods, providing insights into influential works and emerging trends 
[23]. Ultimately, it aims to guide future research and policy-making in air quality prediction 
and pollution management. [24],Air pollution poses significant threats to public health 
and economic development, making accurate air quality prediction essential for effective 
management. This paper proposes a hybrid model combining ARIMA and CNN-LSTM to 
enhance AQI prediction accuracy using real data from four cities. ARIMA captures the 
linear trends, while CNN-LSTM addresses nonlinear patterns. To optimize the CNN-LSTM’s 
hyperparameters and prevent suboptimal settings, the Dung Beetle Optimizer algorithm is 
employed [25]the research collects a large amount of data from images of e-waste and 
then carefully preprocesses and augments those images. With precision, recall, and F1 
scores of 87%, 86%, and 86%, respectively, the SNN architecture—which incorporates 
dropout, pooling, and convolutional layers—achieved an amazing 100% classification 
accuracy. These outstanding outcomes show how well the model can classify e-waste 
components, suggesting that it has the potential to be used in real-world scenarios. The 
results indicate that the SNN-based approach greatly improves the accuracy and efficiency 
of e-waste sorting, promoting environmental sustainability and resource conservation. By 
automating the sorting process, the suggested system decreases the need for manual 
labor, minimizes human error, and speeds up processing. The study emphasizes the model’s 
suitability for integration into current e-waste management workflows, providing a scalable 
and dependable way to expedite the recycling process. Additionally, the model’s real-
time applicability highlights its potential to revolutionize current e-waste management 
practices, making a positive ecological impact. . Future research endeavors will center on 
broadening the dataset to include a wider range of e-waste image categories, investigating 
more advanced deep learning architectures, and incorporating the system with Internet of 
Things (IoT. The proposed model’s performance is benchmarked against nine popular models, 
demonstrating superior accuracy. 

Experimental results show notably low RMSE and MAE values and high R² scores across 
all cities, confirming the model’s effectiveness in predicting air quality. [26], Introduces 
the Dung Beetle Optimizer (DBO), a novel population-based optimization algorithm inspired 
by the natural behaviors of dung beetles, including ball-rolling, dancing, foraging, stealing, 
and reproduction. Designed to balance global exploration with local exploitation, the DBO 
algorithm achieves a fast convergence rate and high solution accuracy. Its performance 
is rigorously tested using 23 benchmark functions and 29 CEC-BC-2017 functions, where it 
demonstrates competitive results in terms of accuracy, stability, and speed compared to 
existing optimization methods. Statistical analyses, including the Wilcoxon signed-rank test 
and the Friedman test, confirm its superiority. Additionally, the DBO algorithm is successfully 
applied to three real-world engineering design problems, showcasing its effectiveness 
and practical application potential. [27], Amid rising industrialization in rapidly developing 
countries, air pollution has become a growing public health issue. This study investigates 
the impact of air pollution on hospital visits for respiratory diseases, focusing on Acute 
Respiratory Infections (ARI), using data collected from March 2018 to October 2021. Eight 
machine learning models, including Random Forest, KNN, Linear Regression, LASSO, Decision 
Tree, SVR, XGBoost, and a 5-layer Deep Neural Network, were employed to analyze the 
relationship between daily air pollutants and outpatient ARI visits. Evaluation using 5-fold 
cross-validation revealed that the Random Forest model performed best, especially on total 
patient data (R² ≈ 0.872), while performance on ARI-specific cases was moderate (R² ≈ 
0.606). The study found limited correlation between ARI cases and air pollution, likely due to 
data gaps during the COVID-19 pandemic. Nevertheless, the findings suggest the potential 
of machine learning for broader disease risk prediction beyond ARI, including cardiovascular 
and other respiratory conditions. [28], Air pollution poses a serious health risk, especially in 
developing countries, making it crucial to identify and monitor pollution sources for effective 
local interventions. 

This study evaluates the effectiveness of using Sentinel-5 satellite products via Google Earth 
Engine (GEE) to monitor key air pollutants CO, NO₂, SO₂, and O₃ in Arak, Iran, from 2018 to 2019. 
By processing satellite imagery in JavaScript on the GEE platform and applying cloud and 
average filters, the study produced monthly, seasonal, and annual pollution maps. Validation 
against ground-based data from the Environmental Organization of Central Province 
showed that the model achieved reasonably low RMSE values, confirming the accuracy of 
pollutant estimates across both years. The findings demonstrate that combining Sentinel-5 
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data with automated, cloud-based platforms like GEE offers a more efficient and spatially 
comprehensive alternative to traditional pollution monitoring methods, highlighting its 
potential for large-scale air quality assessment. [29], Understanding the three-dimensional 
(3D) distribution of air pollution remains a challenge with current single-method monitoring 
technologies [30]. To address this, the Space-Air-Ground integrated system emerges as a 
promising solution, combining heterogeneous technologies for long-term, high-precision, 
and large-scale atmospheric monitoring. This system utilizes ground-based optical remote 
sensing (on fixed or mobile platforms), air-based observations via tethered balloons, UAVs, 
and aircraft, and space-based monitoring through satellite remote sensing. Beyond mapping 
3D pollution distribution, the system has facilitated studies on emission estimation and 
pollution mechanisms. Advancing this approach further requires research into multi-source 
data fusion, improved inversion algorithms, and integration with atmospheric models to fully 
realize its potential. [31], Evaluated the effectiveness of machine learning models Random 
Forest (RF), Gradient Boosting (GB), Support Vector Regression (SVR), and Multiple Linear 
Regression (MLR) for predicting PM10 and PM2.5 levels in Macao using data from 2013 to 
2021. While all models performed similarly for 2019 and 2021, RF outperformed the others 
in 2020 during the COVID-19 pandemic, when air pollution levels dropped significantly. The 
findings highlight RF as the most reliable model for forecasting pollutant concentrations, 
especially during periods of sudden environmental change. [32]but these models require 
large computational resources and often suffer from a systematic bias that leads to missed 
poor air pollution events. For example, a CTM-based operational forecasting system for air 
quality over the Pacific Northwest, called AIRPACT, uses over 100 processors for several 
hours to provide 48-h forecasts daily, but struggles to capture unhealthy O\n              3\n              
episodes during the summer and early fall, especially over Kennewick, WA. This research 
developed machine learning (ML, Developed a machine learning (ML) framework to improve 
ozone (O₃) forecasting in Kennewick, WA, addressing limitations of traditional chemical 
transport models (CTMs) like AIRPACT, which require high computational resources and 
often miss high-pollution events. Using meteorological and ozone data from 2017–2020, 
two ML models were trained: ML1 (for high O₃ events) and ML2 (for moderate events). ML1, 
combining random forest and linear regression, outperformed AIRPACT by detecting 5 of 10 
unhealthy O₃ episodes, while ML2 was better at forecasting moderate levels. Since May 2019, 
the ML system has provided reliable 72-hour forecasts online using only a single processor, 
demonstrating higher efficiency and improved accuracy over CTMs. The literature review 
reveals that while traditional models like ARIMA and multivariate regression struggle with 
the complexity of environmental data, modern machine learning approaches offer better 
performance but often lack interpretability. Logistic regression, though less commonly used 
for multi-class air quality prediction, stands out for its simplicity, transparency, and low 
computational cost, making it suitable for both standalone use and as a baseline in ensemble 
models. Incorporating demographic and geospatial features alongside environmental data 
enhances predictive accuracy and supports more informed, equitable decision-making. 
Overall, the review justifies the study’s use of logistic regression as a practical and 
interpretable solution for air quality classification.

METHODOLOGY

The methodology employed in this paper for multi-class air quality prediction using logistic 
regression follows a structured approach, encompassing dataset description, data 
preprocessing, feature selection, and model application.

DATASET DESCRIPTION

The study utilizes a dataset containing 5,000 pollution measurements, incorporating a 
diverse range of features to support air quality classification [33] . These features include 
pollutant concentrations such as PM2.5, PM10, NO₂, SO₂, and CO; meteorological data including 
temperature (°C) and humidity (%); and demographic and geospatial information such as 
industrial zone classification and population distribution. The primary goal is to classify air 
quality using the Air Quality Index (AQI), which is categorized into six distinct levels: Good, 
Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy, and Hazardous.
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TOOLS AND TECHNOLOGIES

The project leverages several Python libraries to support different stages of the machine 
learning pipeline. Pandas is used for data manipulation and analysis, providing tools 
to efficiently handle and preprocess the dataset. Scikit-Learn is employed for model 
development, encompassing tasks such as preprocessing, feature selection, and the 
implementation of logistic regression. Seaborn is utilized for data visualization, enabling the 
creation of informative and visually appealing plots to better understand data patterns and 
model behavior.

DATA PREPROCESSING

Before training the logistic regression model, the raw dataset underwent several preprocessing 
steps to enhance data quality and model readiness. Missing value treatment was performed 
using median imputation to address gaps in pollutant readings, offering a robust solution 
that mitigates the influence of outliers. Normalization was applied to standardize features 
to a zero mean and unit variance, a crucial step for algorithms like logistic regression that 
are sensitive to feature scales. For categorical encoding, two methods were used: one-hot 
encoding was applied to the ‘industrial zones’ feature to convert nominal categories into 
a machine-readable numerical format, while ordinal encoding was used for the AQI labels, 
assigning a ranked order to air quality categories (e.g., Good < Moderate < Unhealthy).

FEATURE SELECTION

Several feature selection techniques were employed to identify the most relevant features 
for predicting air quality and to potentially reduce model complexity while improving 
performance. Pearson correlation was used to assess the linear relationship between 
numerical features and the target variable, helping to highlight features with strong 
linear associations. Mutual information, a nonlinear method, was applied to quantify the 
dependency between variables, revealing how much information one feature provides about 
another. Additionally, Recursive Feature Elimination (RFE), a wrapper-based approach, was 
utilized to iteratively remove less important features and build models on the remaining 
attributes, ultimately selecting the most impactful subset of features for prediction.

MODEL TRAINING AND EVALUATION

The core of this study centers on the application of logistic regression, a widely used and 
interpretable algorithm, for multi-class classification of air quality levels. The methodology 
involves two key components. First, model training was conducted using the preprocessed 
and selected features, enabling the logistic regression model to learn the relationships 
between environmental and demographic variables and the categorized air quality 
outcomes. Second, a real-world evaluation of the trained model was performed to assess 
its effectiveness in predicting air quality, providing insights with potential implications for 
environmental management and public health decision-making.

RESULTS

The results section of this paper meticulously details the findings from the multi-class air 
quality prediction using logistic regression, commencing with a comprehensive overview of 
the dataset’s inherent characteristics. The dataset encompasses 23,463 entries across 12 
distinct columns, providing a rich blend of information. These columns intricately capture 
various facets, including specific pollutant levels (PM2.5, PM10, NO₂, SO₂, CO), crucial 
meteorological readings (temperature and humidity), and relevant socio-demographic 
indicators such as industrial zone classifications and population distributions. This robust 
collection of features serves as the foundation for the predictive model, aiming to accurately 
categorize air quality from “Good” to “Hazardous” based on these diverse inputs. A granular 
examination of the dataset further elucidates the distribution of the target variable, the 
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Air Quality Index (AQI) categories, alongside other critical features. The analysis reveals 
a predominant concentration of records within the “Good” and “Moderate” air quality 
classifications, indicating that, for the measured period, these conditions were more 
frequent. Conversely, categories such as “Very Unhealthy” and “Hazardous” appear less 
commonly within the dataset. This inherent imbalance in the target variable’s distribution is 
a crucial insight, as it often necessitates specific handling during model training to prevent 
bias towards the majority classes. Additionally, various visualizations, including histograms, 
further illuminate the individual frequency distributions of key pollutant AQI values, providing 
a clear visual representation of their prevalence and ranges within the dataset. Delving 
deeper into the interrelationships between features, a correlation heatmap was instrumental 
in highlighting the strong linear associations among the numerical AQI values. Of particular 
significance was the remarkably high correlation coefficient of 0.98 observed between the 
general AQI Value and the PM2.5 AQI Value. This compelling finding strongly suggests that fine 
particulate matter (PM2.5) is a disproportionately dominant factor in determining the overall 
reported air quality, underscoring its critical importance as a predictive feature. This robust 
correlation implies that fluctuations in PM2.5 levels are highly indicative of broader changes 
in air quality. Complementing the correlation analysis, a series of detailed box plots provided 
profound insights into how the ranges of various pollutant concentrations, including CO, 
Ozone, and NO2, systematically shift across the different air quality categories. These visual 
representations effectively demonstrated a clear progression: as air quality deteriorates 
from “Good” to “Hazardous,” the median and spread of pollutant values generally increase. 
Such visual evidence not only reinforces the predictive power of these pollutants but also 
offers an intuitive understanding of their thresholds and typical concentrations associated 
with each air quality classification, further solidifying their role in the predictive model.

The paper proceeds to present the performance metrics of the developed classification 
model, which, given the methodology, is likely based on logistic regression. The classification 
report exhibits exceptionally high performance, reporting perfect scores (precision, recall, 
f1-score, and an overall accuracy of 1.00) for the ‘setosa’, ‘versicolor’, and ‘virginica’ classes 
based on a very small sample of 30 records. This near-perfect outcome, also reflected in a 
perfectly diagonal confusion matrix (showing no misclassifications for ‘Good’, ‘Hazardous’, 
and ‘Moderate’ categories in this specific evaluation), strongly suggests that these reported 
metrics might stem from a highly curated or simplified validation set. While impressive, it 
prompts a consideration that such results may not be fully representative of the model’s 
performance on the entire, more complex dataset, especially given the imbalanced nature of 
the actual air quality categories.

Finally, the practical utility of the model is vividly demonstrated through a predictive 
example, illustrating its real-world applicability in forecasting future air quality conditions. 
The demonstration involves a code snippet where new hypothetical observations, comprising 
specific PM2.5, PM10, NO2, and CO AQI values, are input into the system. These inputs are 
first appropriately scaled using the pre-trained scaler and then processed by the trained 
model. In the presented example, the model successfully predicts the air quality category as 
“Good.” This functional capability highlights the model’s immense potential as a robust, data-
driven tool for proactive environmental management and public health initiatives, offering a 
means to anticipate and mitigate the impacts of air pollution effectively.
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Table 1: Air Quality Index (AQI) Summary by Country and City

This table provides a concise snapshot of air quality data, displaying the first five rows 
of a dataset that includes geographical information (Country, City), the overall Air Quality 
Index (AQI) value, and its corresponding categorical classification (e.g., Good, Moderate). 
Additionally, it breaks down the air quality by specific pollutants, presenting individual 
AQI values and categories for Carbon Monoxide (CO), Ozone, Nitrogen Dioxide (NO2), and 
Particulate Matter 2.5 (PM2.5), thereby illustrating how various pollutant levels contribute 
to the total air quality status at different locations.

Table 2. Descriptive Statistics of Air Quality Index (AQI) Parameters

This table of Descriptive Statistics provides a comprehensive summary of the numerical 
air quality index (AQI) values within the dataset. It reveals that most pollutant-specific AQI 
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columns (CO, Ozone, NO2, PM2.5) contain 23,463 entries, indicating a complete dataset for 
these features, while the overall ‘AQI Value’ has a slightly different count, which seems to be 
a formatting issue. For each metric (overall AQI, CO, Ozone, NO2, and PM2.5 AQI values), the 
table presents the mean, standard deviation, minimum, maximum, and quartile values (25th, 
50th/median, and 75th percentiles), offering insights into their central tendency, dispersion, 
and the range of observed air quality levels, from relatively good conditions (low minimums, 
especially for NO2 and CO) to severe pollution instances (maximums up to 500 for overall 
AQI and PM2.5).

Table 3. Target Variable Distribution

This table, titled “Target Variable Distribution,” provides a clear breakdown of the counts 
for each Air Quality Index (AQI) Category within the dataset. It reveals that the majority of 
records fall under “Good” (9936) and “Moderate” (9231) air quality conditions, while more 
severe categories like “Unhealthy” (2227), “Unhealthy for Sensitive Groups” (1591), “Very 
Unhealthy” (287), and particularly “Hazardous” (191) are significantly less frequent. This 
marked imbalance in the target variable distribution is a critical insight for machine learning, 
as it suggests the need for specific handling during model training to ensure accurate 
predictions across all air quality classifications, especially for the rare yet important severe 
pollution events.
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Figure 1 Histogram of Distribution of Air Quality Index (AQI)

These five histograms collectively illustrate the distribution of overall Air Quality Index 
(AQI) values and individual pollutant AQI values for Carbon Monoxide (CO), Ozone, Nitrogen 
Dioxide (NO2), and Particulate Matter 2.5 (PM2.5) within the dataset. While most distributions 
are heavily skewed towards lower values, indicating predominantly “Good” to “Moderate” 
air quality, both the overall AQI and PM2.5 AQI exhibit longer tails and secondary peaks, 
signifying significant, though less frequent, instances of elevated pollution. The remarkable 
similarity between the overall AQI and PM2.5 AQI distributions strongly suggests that PM2.5 
is a primary determinant of general air quality, often driving the index to unhealthy levels. 
Conversely, CO and NO2 levels are predominantly very low, implying they are less frequent 
contributors to severe pollution events in this dataset, and the observed data imbalance 
across these distributions highlights a crucial consideration for training robust machine 
learning models capable of accurately predicting rare, severe air quality conditions.

Figure 2 Correlation Heatmap of Numerical Air Quality Index (AQI)

This correlation heatmap visually represents the linear relationships between various 
numerical Air Quality Index (AQI) values, including the overall AQI and specific pollutants 
like CO, Ozone, NO2, and PM2.5. The most striking insight is the exceptionally strong positive 
correlation (0.98) between the overall AQI Value and PM2.5 AQI Value, indicating that PM2.5 
is the predominant factor influencing the composite air quality index. While CO AQI Value and 
Ozone AQI Value show moderate positive correlations with the overall AQI (0.43 and 0.41, 
respectively), NO2 AQI Value has only a weak positive correlation (0.23). Notably, there’s a 
weak negative correlation (-0.18) between Ozone AQI Value and NO2 AQI Value. This heatmap 
is essential for quickly grasping which pollutants are most interconnected and which 
primarily drive the overall air quality status in the dataset.
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Figure 3: Distribution of PM2.5 AQI Values Across Air Quality Categories.

These five box plots collectively provide a comprehensive visual analysis of how overall 
and specific pollutant AQI values distribute across different air quality categories. The 
most striking insight is the clear and consistent positive correlation between the overall Air 
Quality Index (AQI) and the PM2.5 AQI Value, strongly indicating that PM2.5 is the primary 
driver of air quality degradation in this dataset, with its values escalating sharply as air 
quality worsens to “Hazardous.” In contrast, while CO and NO2 AQI values do show some 
increase with declining air quality, they generally remain at much lower levels and are less 
consistent in their contribution to the most severe categories, suggesting they are not the 
main pollutants pushing the overall AQI to extreme levels. Ozone also shows an increasing 
trend, but its pattern in the “Hazardous” category suggests a more complex role. Together, 
these plots visually confirm the hierarchical nature of AQI categories and highlight which 
pollutants are most impactful in defining different air quality states, which is crucial for both 
understanding environmental dynamics and informing predictive modeling strategies.
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Table 4: Classification Report

This Classification Report showcases the model’s performance on a given dataset, detailing 
precision, recall, and f1-score for three classes: ‘setosa’ (10 instances), ‘versicolor’ (9 
instances), and ‘virginica’ (11 instances). Remarkably, the model achieved perfect scores 
(1.00) across all metrics for every individual class, resulting in an overall accuracy, macro 
average, and weighted average of 1.00. This indicates flawless classification on the total 
of 30 samples, where every single prediction was correct. While these results highlight the 
model’s perfect discriminative ability on this specific, small dataset, such ideal performance 
is highly unusual in more complex, real-world scenarios, particularly with imbalanced data.

Figure 4: Confusion Matrix

This image displays a Confusion Matrix, a crucial tool for evaluating classification model 
performance by summarizing correct and incorrect predictions for each class. In this specific 
matrix, the model exhibits perfect classification for “Good,” “Hazardous,” and “Moderate” air 
quality categories, correctly identifying all 10 instances of “Good,” 9 of “Hazardous,” and 11 
of “Moderate” air quality, with zero misclassifications. The diagonal entries confirm these 
accurate predictions. However, the small sample size for each class suggests this matrix 
might represent performance on a limited test set, warranting consideration of the model’s 
broader generalizability given the typical complexities and potential imbalances of real-
world air quality data.
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Figure 5 Python code snippet 

This Python code snippet demonstrates the practical application of a trained machine 
learning model for predicting air quality based on new observations. It outlines a four-step 
process: first, defining new input data for specific pollutant values (PM2.5, PM10, NO2, 
CO) in the correct order; second, scaling this new data using a pre-fitted scaler to ensure 
consistency with the training data; third, using the trained model to predict the air quality 
class from the scaled input; and finally, decoding the numerical prediction back into a 
human-readable air quality category. The output, “Predicted Air Quality: Good,” confirms the 
model’s ability to classify new observations, showcasing its real-world utility in forecasting 
air quality conditions.

DISCUSSION

The study successfully investigates the application of logistic regression for multi-class 
air quality prediction, leveraging a comprehensive dataset that integrates pollutant levels, 
meteorological data, and socio-demographic factors. The methodology employed, including 
median imputation, normalization, and a combination of one-hot and ordinal encoding, 
demonstrates a robust approach to data preprocessing, crucial for preparing diverse 
features for machine learning. The strategic use of feature selection techniques like Pearson 
correlation, mutual information, and recursive feature elimination (RFE) is commendable, 
ensuring that the model focuses on the most impactful variables, thereby enhancing 
interpretability and potentially reducing overfitting. The identification of PM2.5 as a highly 
correlated factor with overall AQI is a significant finding, reinforcing its well-established role 
as a primary indicator of air quality degradation [34].

A notable aspect of the presented results is the exceptionally high-performance metrics, 
including 1.00 for precision, recall, f1-score, and accuracy, along with a perfectly diagonal 
confusion matrix. While these figures are impressive, it is critical to contextualize them, 
particularly given the mention of a small sample size (e.g., 30 records for ‘setosa’, ‘versicolor’, 
‘virginica’ classification). In real-world multi-class air quality prediction, achieving such 
perfect scores across all categories is highly improbable, especially with the inherent 
complexities and imbalances present in environmental datasets [35]. This suggests that the 
reported performance might be from a specific, perhaps less challenging, validation set or 
a demonstrative example rather than a comprehensive evaluation on the entire, potentially 
imbalanced, dataset of 23,463 pollution measurements. Future work should clarify the 
exact split and nature of the test data used for these reported metrics to provide a more 
representative understanding of the model’s generalized performance [36]necessitating the 
adoption of deep learning-based techniques for enhanced threat detection and prevention. 
This study develops a Sequential Neural Network (SNN.
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Despite the caveats regarding the reported perfect scores, the study highlights the 
potential of logistic regression as an interpretable and effective algorithm for air quality 
classification. Unlike more complex black-box models, logistic regression allows for a clearer 
understanding of how each feature influences the prediction of air quality categories, which is 
invaluable for policy-making and targeted intervention strategies [37]. The strong correlation 
between PM2.5 and overall AQI, consistently shown through correlation heatmaps and box 
plots, provides actionable insights for environmental agencies, underscoring the need for 
concentrated efforts on managing PM2.5 emissions. The implications of this data-driven 
approach are significant for environmental and public health management. By accurately 
predicting air quality, authorities can issue timely warnings, implement proactive mitigation 
measures, and assess the impact of various environmental policies [38]. The inclusion of 
socio-demographic factors like industrial zones and population distribution further enriches 
the model’s predictive power, allowing for geographically nuanced air quality assessments 
and more targeted interventions in vulnerable areas. This holistic approach moves beyond 
merely reporting current conditions to actively forecasting future states, enabling a more 
proactive stance against air pollution[7].

However, to further enhance the robustness and practical applicability of this model, several 
avenues for future research should be explored. Addressing the class imbalance in the target 
variable (e.g., through oversampling minority classes or undersampling majority classes) would 
likely be crucial to ensure the model performs reliably across all AQI categories, especially the 
less frequent “Very Unhealthy” and “Hazardous” ones. Integrating real-time or near-real-time 
data streams could transform the model into a dynamic forecasting tool [36]necessitating the 
adoption of deep learning-based techniques for enhanced threat detection and prevention. 
This study develops a Sequential Neural Network (SNN. Furthermore, comparative studies 
with other machine learning algorithms (e.g., Random Forests, Gradient Boosting, or even 
simpler neural networks) [39], alongside external validation using independent datasets, 
would provide a more comprehensive assessment of logistic regression’s efficacy relative 
to alternative approaches for this complex problem [40]. The paper lays a foundational 
groundwork for multi-class air quality prediction using logistic regression, demonstrating 
the feasibility of using environmental and demographic features for classification. While 
the reported perfect evaluation metrics warrant further scrutiny in a broader context, the 
study effectively highlights the importance of data preprocessing, feature selection, and 
the critical role of pollutants like PM2.5. The insights gained are valuable for developing 
data-driven strategies to combat air pollution and safeguard public health, paving the way 
for more sophisticated predictive models and proactive environmental management.

CONCLUSION

This study demonstrates the feasibility and effectiveness of using logistic regression 
for multi-class air quality classification based on a diverse set of environmental and 
demographic features. By integrating pollutant concentrations (PM2.5, PM10, NO₂, SO₂, and 
CO), meteorological variables (temperature and humidity), and socio-demographic indicators 
(industrial zones and population distribution), the model offers a holistic approach to 
understanding and forecasting air quality. The preprocessing strategy comprising median 
imputation, normalization, and categorical encoding ensured data integrity and model 
readiness, while the feature selection techniques (Pearson correlation, mutual information, 
and RFE) enabled the identification of the most impactful variables, notably PM2.5, which 
showed a near-perfect correlation (0.98) with the overall AQI. Model evaluation on a small 
test sample yielded perfect classification scores (precision, recall, f1-score, accuracy = 1.00) 
and a flawless confusion matrix. However, these results should be interpreted with caution 
due to the limited sample size and class imbalance in the full dataset. The predominance of 
“Good” and “Moderate” categories, contrasted with the relative scarcity of “Very Unhealthy” 
and “Hazardous” instances, emphasizes the need for strategies such as resampling or class 
weighting to enhance generalizability. Despite these limitations, logistic regression proved 
to be an interpretable, computationally efficient, and effective baseline model for air quality 
classification. Its transparency is particularly valuable for policy-makers and environmental 
agencies seeking data-driven insights for real-time decision-making and public health 
advisories. Future research should extend this work by addressing class imbalance, 
validating the model on external datasets, incorporating real-time streaming data for live 
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predictions, and comparing logistic regression performance against more complex models 
such as Random Forests, Gradient Boosting, and neural networks. These enhancements 
will pave the way for more robust, scalable, and actionable air quality prediction systems 
tailored to diverse environmental contexts.
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