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ABSTRACT

Air pollution remains a significant environmental and public health challenge in rapidly
urbanizingregions. Accurately predictingair quality levelsiscritical foreffective environmental
management and public health interventions. This study investigates the application of
logistic regression for multi-class air quality classification using a comprehensive dataset
of 23,463 records. The dataset integrates pollutant concentrations (PM2.5, PM18, NO,, SO,,
CO0), meteorological variables (temperature and humidity), and socio-demographic features
(industrial zone classification and population distribution). The target variable, the Air Quality
Index (AQI), is categorized into six classes: Good, Moderate, Unhealthy for Sensitive Groups,
Unhealthy, Very Unhealthy, and Hazardous. The preprocessing pipeline involves median
imputation for missing values, feature normalization to ensure consistency across variables,
and encoding of categorical features using both one-hot and ordinal encoding strategies.
Feature selection is carried out using Pearson correlation, mutual information, and Recursive
Feature Elimination (RFE), identifying PM2.5 as the most predictive variable with a correlation
coefficient of 8.98 with overall AQl. The logistic regression model, selected forits simplicity and
interpretability, is trained on the processed data. The model achieves a perfect classification
score of 1.8, precision, recall, f1-score, and accuracy on a demonstration set of 38 records,
supported by a perfectly diagonal confusion matrix. However, given the imbalanced nature
of the full dataset, with “Good" and “Moderate” categories dominating, further evaluation
on broader subsets is recommended. Visual analytics, including histograms, box plots, and
correlation heatmaps, reaffirm the dominant influence of PM2.5 in determining overall air
guality. The study demonstrates that logistic regression offers a robust, interpretable,
and computationally efficient solution for air quality prediction. Future work will focus on
addressing class imbalance, integrating real-time data, and benchmarking against more
complex machine learning models to enhance prediction robustness and generalizability.
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1. INTRODUCTION

The persistent deterioration of air quality in urban centers has become a pressing global
concern, particularly in the face of rapid industrialization, increased vehicular emissions,
and rising population densities. Poor air quality is linked to a spectrum of adverse health
outcomes, including respiratory infections, cardiovascular diseases, and increased mortality
rates [1]. Simultaneously, air pollution degrades natural ecosystems and undermines
sustainable development efforts. Understanding and predicting air quality levels using
machine learning (ML) models enables proactive mitigation strategies [2]. Logistic
regression, a well-established and interpretable algorithm, has shown promise in multi-class
classification tasks. This study investigates the potential of logistic regression for predicting
air quality categories using a dataset enriched with both environmental and demographic
features [3]. Beyond the widely acknowledged culprits like industrial activities and vehicular
exhaust, air pollution is exacerbated by a complex interplay of factors, including rapid and
often unplanned urbanization, agricultural practices, and specific meteorological conditions
[4]. For instance, temperature inversions can trap pollutants close to the ground, leading to
severe localized events. Furthermore, transboundary pollution, where pollutants from one
region drift to another, highlights the global interconnectedness of this issue. The dynamic
and highly variable nature of air quality, influenced by daily, seasonal, and event-specific
changes, presents significant challenges for accurate prediction and management [5]. The
repercussions of poor air quality extend far beyond direct health impacts, permeating various
societal and economic spheres. Economically, chronic exposure to pollutants can lead to
reduced labor productivity, increased healthcare expenditures, and decreased tourism in
affected regions. Environmentally, air pollution contributes to acid rain, damages crops and
forests, and impacts biodiversity, further undermining sustainable development goals [B].
Moreover, the issue of environmental justice is salient, as marginalized communities and
lower-income populations are often disproportionately exposed to higher levels of pollution
due to their proximity to industrial zones or major transportation routes, exacerbating existing
health disparities [7]. Traditional methods for air quality prediction, such as simple statistical
models like ARIMA or basic multivariate regression, often struggle to capture the inherent
non-linearity, complex interactions, and high-dimensional nature of environmental data [8].
Their limitations become particularly evident when dealing with categorical outputs like
air quality classifications. In contrast, machine learning approaches, ranging from decision
trees and support vector machines (SVMs) to sophisticated neural networks, offer superior
capabilities in modeling these intricate relationships and handling large, heterogeneous
datasets [9]. The choice of an appropriate ML model often involves a trade-off between
predictive accuracy and interpretability, a crucial consideration for practical application.
In this context, while more complex models have gained prominence, logistic regression
remains a compelling choice for multi-class air quality classification. Its core strength
lies in its interpretability, allowing stakeholders to understand why a particular air quality
prediction is made based on the influence of specific features [18].

This transparency is invaluable for policy-makers who need to justify interventions and
resource allocation. Furthermore, logistic regression's simplicity, efficiency, and relatively low
computational overhead make it a robust and accessible solution, suitable for deployment
even in resource-constrained environments or as a strong baseline component within more
elaborate ensemble systems [11]. The integration of both environmental (pollutant and
meteorological) and demographic (industrial zone, population distribution) features in our
dataset is designed to provide a holistic view, enabling the model to capture not only the
direct environmental drivers but also the anthropogenic and spatial factors influencing
air quality, thereby leading to more comprehensive and actionable insights. This research
addresses the critical global concern of deteriorating urban air quality, emphasizing its
severe links to adverse health outcomes, ecological degradation, and hindered sustainable
development. It posits that machine learning (ML) models are essential for proactive air
quality prediction and mitigation [12]. The introduction highlights the multifaceted nature
of air pollution, influenced by industrialization, emissions, population growth, and complex
factors like urbanization, agricultural practices, and meteorological conditions, including
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transboundary pollution, all contributing to the dynamic variability of air quality [13]. The
research further elaborates on the far-reaching repercussions of poor air quality, extending
beyond health to encompass significant economic losses through reduced productivity,
increased healthcare costs, and diminished tourism. It also touches upon environmental
impacts such as acid rain and ecosystem damage [14], alongside the critical aspect of
environmental justice, where vulnerable communities often bear a disproportionate burden
of pollution exposure [15]. Critiquing traditional air quality prediction methods like ARIMA and
multivariate regression, the paper asserts their inadequacy in capturing non-linearity and
handling categorical outputs. It contrasts these limitations with the superior capabilities
of modern ML approaches, including decision trees, support vector machines, and neural
networks, in managing complex, high-dimensional data [16]. Despite the rise of these more
intricate models, the paper champions logistic regression for its interpretability, simplicity,
and computational efficiency, making it suitable for resource-constrained environments or
as a foundational model in ensemble systems. The study's unique contribution lies in its
dataset, which enriches environmental data with demographic features like industrial zones
and population distribution, aiming to provide a holistic and actionable understanding of air
guality dynamics for improved environmental and public health management.

RELATED WORKS

Prior research in air quality prediction has explored a range of techniques from statistical
modeling to complex deep learning architectures. Time-series models, such as ARIMA and
multivariate regression, have been employed with limited success due to their inability to
model non-linearity and categorical outputs effectively [17]. In contrast, ML approaches,
including decision trees, support vector machines (SVMs), and neural networks, have
demonstrated improved performance. However, despite the rise of complex models, logistic
regression remains underutilized for multi-class air quality classification. Its interpretability,
simplicity, and low computational overhead make it well-suited for deployment in resource-
constrained environments or as a baseline model in ensemble systems. [18], Regression
analysis is a key technique for predicting continuous outcomes based on multiple input
variables, offering clear estimates of relationships between inputs and outputs along with
error estimates from optimization algorithms. Commonly used in communication networks
and loT applications, regression models are often built using statistical machine learning
methods to establish parametric relationships [19]. This includes generalized linear models
like linear and logistic regression, as well as ridge and polynomial regression. The study delves
into the theory behind these models, provides pseudocode for practical implementation,
and discusses challenges in data analysis, model selection, cost functions, optimization
strategies, cross-validation, and regularization technigues. [28], Analyzed how various
factors influenced psychological distress during the early COVID-19 outbreak in China,
using data from 937 respondents. Health-related factors were the strongest predictors,
followed by [17]objective and perceived environmental risks. Distress levels increased
sharply at specific AQI thresholds, and gender differences were noted in responses. Overall,
perceived indoor air quality was more strongly linked to psychological distress than outdoor
pollution. [21]The rapid increase in global population and unchecked urbanization have led
to serious environmental issues, notably declining air quality linked to various health risks
[22]balancing data privacy with clinical utility. The decentralized system enables multi-
institutional collaboration without centralized data collection, complying with HIPAA/GDPR
through two technical safeguards: differential privacy via DP-SGD during local training
and secure aggregation of model updates. Using LSTM/GRU architectures optimized for
sequential medical data, the framework achieves an F1 Score of 67% with precision (68%.
In response, machine learning has emerged as a vital tool for predicting air quality, drawing
widespread academic interest.

This paper offers a comprehensive bibliometric analysis of machine learning applications
in air quality prediction, based on 1992-2821 publications indexed in the Web of Science.
Utilizing S-curve and social network analyses, the study tracks the evolution of research
output, revealing a significant surge between 2817 and 2821, during which 68.51% of all
publications appeared. Italy, Greece, and Spain led in international collaboration impact.
Frequent keywords include ‘air pollution’, ‘air quality’, ‘machine learning’, and ‘forecasting’,
highlighting key research themes. The study also explores the transition from traditional
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to machine learning methods, providing insights into influential works and emerging trends
[23]. Ultimately, it aims to guide future research and policy-making in air quality prediction
and pollution management. [24]Air pollution poses significant threats to public health
and economic development, making accurate air quality prediction essential for effective
management. This paper proposes a hybrid model combining ARIMA and CNN-LSTM to
enhance AQI prediction accuracy using real data from four cities. ARIMA captures the
linear trends, while CNN-LSTM addresses nonlinear patterns. To optimize the CNN-LSTM's
hyperparameters and prevent suboptimal settings, the Dung Beetle Optimizer algorithm is
employed [25]the research collects a large amount of data from images of e-waste and
then carefully preprocesses and augments those images. With precision, recall, and F1
scores of 87%, 86%, and 86%, respectively, the SNN architecture—which incorporates
dropout, pooling, and convolutional layers—achieved an amazing 188% classification
accuracy. These outstanding outcomes show how well the model can classify e-waste
components, suggesting that it has the potential to be used in real-world scenarios. The
results indicate that the SNN-based approach greatly improves the accuracy and efficiency
of e-waste sorting, promoting environmental sustainability and resource conservation. By
automating the sorting process, the suggested system decreases the need for manual
labor, minimizes human error, and speeds up processing. The study emphasizes the model's
suitability for integration into current e-waste management workflows, providing a scalable
and dependable way to expedite the recycling process. Additionally, the model's real-
time applicability highlights its potential to revolutionize current e-waste management
practices, making a positive ecological impact. . Future research endeavors will center on
broadening the dataset to include a wider range of e-waste image categories, investigating
more advanced deep learning architectures, and incorporating the system with Internet of
Things (loT. The proposed maodel's performance is benchmarked against nine popular models,
demonstrating superior accuracy.

Experimental results show notably low RMSE and MAE values and high R? scores across
all cities, confirming the model's effectiveness in predicting air quality. [26], Introduces
the Dung Beetle Optimizer (DBO), a novel population-based optimization algorithm inspired
by the natural behaviors of dung beetles, including ball-rolling, dancing, foraging, stealing,
and reproduction. Designed to balance global exploration with local exploitation, the DBO
algorithm achieves a fast convergence rate and high solution accuracy. Its performance
is rigorously tested using 23 benchmark functions and 29 CEC-BC-2817 functions, where it
demonstrates competitive results in terms of accuracy, stability, and speed compared to
existing optimization methods. Statistical analyses, including the Wilcoxon signed-rank test
and the Friedman test, confirm its superiority. Additionally, the DBO algorithm is successfully
applied to three real-world engineering design problems, showcasing its effectiveness
and practical application potential. [27], Amid rising industrialization in rapidly developing
countries, air pollution has become a growing public health issue. This study investigates
the impact of air pollution on hospital visits for respiratory diseases, focusing on Acute
Respiratory Infections (ARI), using data collected from March 2818 to October 2821. Eight
machine learning maodels, including Random Forest, KNN, Linear Regression, LASSO, Decision
Tree, SVR, XGBoost, and a 5-layer Deep Neural Network, were employed to analyze the
relationship between daily air pollutants and outpatient ARI visits. Evaluation using 5-fold
cross-validation revealed that the Random Forest model performed best, especially on total
patient data (R? = 8.872), while performance on ARI-specific cases was moderate (R? =
8.686). The study found limited correlation between ARI cases and air pollution, likely due to
data gaps during the COVID-19 pandemic. Nevertheless, the findings suggest the potential
of machine learning for broader disease risk prediction beyond ARI, including cardiovascular
and other respiratory conditions. [28], Air pollution poses a serious health risk, especially in
developing countries, making it crucial to identify and monitor pollution sources for effective
local interventions.

This study evaluates the effectiveness of using Sentinel-5 satellite products via Google Earth
Engine (GEE]) to monitor key air pollutants CO, NO,, SO,, and O3 in Arak, Iran, from 2818 to 2819.
By processing satellite imagery in JavaScript on the GEE platform and applying cloud and
average filters, the study produced monthly, seasonal, and annual pollution maps. Validation
against ground-based data from the Environmental Organization of Central Province
showed that the model achieved reasonably low RMSE values, confirming the accuracy of
pollutant estimates across both years. The findings demonstrate that combining Sentinel-5
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data with automated, cloud-based platforms like GEE offers a more efficient and spatially
comprehensive alternative to traditional pollution monitoring methods, highlighting its
potential for large-scale air quality assessment. [29], Understanding the three-dimensional
(3D) distribution of air pollution remains a challenge with current single-method monitoring
technologies [38]. To address this, the Space-Air-Ground integrated system emerges as a
promising solution, combining heterogeneous technologies for long-term, high-precision,
and large-scale atmospheric monitoring. This system utilizes ground-based optical remote
sensing (on fixed or mohile platforms), air-based observations via tethered balloons, UAVS,
and aircraft, and space-based monitoring through satellite remote sensing. Beyond mapping
3D pollution distribution, the system has facilitated studies on emission estimation and
pollution mechanisms. Advancing this approach further requires research into multi-source
data fusion, improved inversion algorithms, and integration with atmospheric models to fully
realize its potential. [31], Evaluated the effectiveness of machine learning models Random
Forest (RF), Gradient Boosting (GB), Support Vector Regression (SVR), and Multiple Linear
Regression (MLR] for predicting PM18 and PM2.5 levels in Macao using data from 2813 to
20821. While all models performed similarly for 2819 and 2821, RF outperformed the others
in 2828 during the COVID-19 pandemic, when air pollution levels dropped significantly. The
findings highlight RF as the most reliable model for forecasting pollutant concentrations,
especially during periods of sudden environmental change. [32]but these models require
large computational resources and often suffer from a systematic bias that leads to missed
poor air pollution events. For example, a CTM-based operational forecasting system for air
guality over the Pacific Northwest, called AIRPACT, uses over 188 processors for several
hours to provide 48-h forecasts daily, but struggles to capture unhealthy 0\n 3\n
episodes during the summer and early fall, especially over Kennewick, WA. This research
developed machine learning (ML, Developed a machine learning (ML) framework to improve
ozone (0s) forecasting in Kennewick, WA, addressing limitations of traditional chemical
transport models (CTMs] like AIRPACT, which require high computational resources and
often miss high-pollution events. Using meteorological and ozone data from 2817-28286,
two ML models were trained: ML1 (for high 0; events) and ML2 (for moderate events). ML],
combining random forest and linear regression, outperformed AIRPACT by detecting 5 of 18
unhealthy 0; episodes, while ML2 was better at forecasting moderate levels. Since May 2818,
the ML system has provided reliable 72-hour forecasts online using only a single processaor,
demonstrating higher efficiency and improved accuracy over CTMs. The literature review
reveals that while traditional models like ARIMA and multivariate regression struggle with
the complexity of environmental data, modern machine learning approaches offer better
performance but often lack interpretability. Logistic regression, though less commonly used
for multi-class air quality prediction, stands out for its simplicity, transparency, and low
computational cost, making it suitable for both standalone use and as a baseline in ensemble
models. Incorporating demographic and geospatial features alongside environmental data
enhances predictive accuracy and supports more informed, equitable decision-making.
Overall, the review justifies the study's use of logistic regression as a practical and
interpretable solution for air quality classification.

METHODOLOGY

The methodology employed in this paper for multi-class air quality prediction using logistic
regression follows a structured approach, encompassing dataset description, data
preprocessing, feature selection, and model application.

DATASET DESCRIPTION

The study utilizes a dataset containing 5,888 pollution measurements, incorporating a
diverse range of features to support air guality classification [33] . These features include
pollutant concentrations such as PM2.5, PM18, NO,, SO, and CO; meteorological data including
temperature (°C) and humidity (%]); and demographic and geospatial information such as
industrial zone classification and population distribution. The primary goal is to classify air
guality using the Air Quality Index (AQI), which is categorized into six distinct levels: Good,
Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy, and Hazardous.
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TOOLS AND TECHNOLOGIES

The project leverages several Python libraries to support different stages of the machine
learning pipeline. Pandas is used for data manipulation and analysis, providing tools
to efficiently handle and preprocess the dataset. Scikit-Learn is employed for model
development, encompassing tasks such as preprocessing, feature selection, and the
implementation of logistic regression. Seaborn is utilized for data visualization, enabling the
creation of informative and visually appealing plots to better understand data patterns and
model behavior.

DATA PREPROCESSING

Before training the logisticregressionmodel, the raw datasetunderwent several preprocessing
steps to enhance data quality and model readiness. Missing value treatment was performed
using median imputation to address gaps in pollutant readings, offering a robust solution
that mitigates the influence of outliers. Normalization was applied to standardize features
to a zero mean and unit variance, a crucial step for algorithms like logistic regression that
are sensitive to feature scales. For categorical encoding, two methods were used: one-hot
encoding was applied to the ‘industrial zones' feature to convert nominal categories into
a machine-readable numerical format, while ordinal encoding was used for the AQI labels,
assigning a ranked order to air quality categories (e.g., Good < Moderate < Unhealthy).

FEATURE SELECTION

Several feature selection technigues were employed to identify the most relevant features
for predicting air guality and to potentially reduce model complexity while improving
performance. Pearson correlation was used to assess the linear relationship between
numerical features and the target variable, helping to highlight features with strong
linear associations. Mutual information, a nonlinear method, was applied to quantify the
dependency between variables, revealing how much information one feature provides about
another. Additionally, Recursive Feature Elimination (RFE), a wrapper-based approach, was
utilized to iteratively remove less important features and build models on the remaining
attributes, ultimately selecting the most impactful subset of features for prediction.

MODEL TRAINING AND EVALUATION

The core of this study centers on the application of logistic regression, a widely used and
interpretable algorithm, for multi-class classification of air quality levels. The methodology
involves two key components. First, model training was conducted using the preprocessed
and selected features, enabling the logistic regression model to learn the relationships
between environmental and demographic variables and the categorized air quality
outcomes. Second, a real-world evaluation of the trained model was performed to assess
its effectiveness in predicting air quality, providing insights with potential implications for
environmental management and public health decision-making.

RESULTS

The results section of this paper meticulously details the findings from the multi-class air
quality prediction using logistic regression, commencing with a comprehensive overview of
the dataset's inherent characteristics. The dataset encompasses 23,463 entries across 12
distinct columns, providing a rich blend of information. These columns intricately capture
various facets, including specific pollutant levels (PM2.5, PM18, NO,, SO, CO), crucial
meteorological readings (temperature and humidity), and relevant socio-demographic
indicators such as industrial zone classifications and population distributions. This robust
collection of features serves as the foundation for the predictive model, aiming to accurately
categorize air quality from “Good" to “Hazardous” based on these diverse inputs. A granular
examination of the dataset further elucidates the distribution of the target variable, the
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Air Quality Index (AQI) categories, alongside other critical features. The analysis reveals
a predominant concentration of records within the “Good” and “Moderate” air guality
classifications, indicating that, for the measured period, these conditions were more
frequent. Conversely, categories such as “Very Unhealthy” and “Hazardous" appear less
commonly within the dataset. This inherent imbalance in the target variable's distribution is
a crucial insight, as it often necessitates specific handling during model training to prevent
bias towards the majority classes. Additionally, various visualizations, including histograms,
further illuminate the individual frequency distributions of key pollutant AQI values, providing
a clear visual representation of their prevalence and ranges within the dataset. Delving
deeper into the interrelationships between features, a correlation heatmap was instrumental
in highlighting the strong linear associations among the numerical AQI values. Of particular
significance was the remarkably high correlation coefficient of 8.98 observed between the
general AQI Value and the PM2.5 AQI Value. This compelling finding strongly suggests that fine
particulate matter (PM2.5) is a disproportionately dominant factor in determining the overall
reported air quality, underscoring its critical importance as a predictive feature. This robust
correlation implies that fluctuations in PM2.5 levels are highly indicative of broader changes
in air quality. Complementing the correlation analysis, a series of detailed box plots provided
profound insights into how the ranges of various pollutant concentrations, including CO,
0zone, and NO2, systematically shift across the different air quality categories. These visual
representations effectively demonstrated a clear progression: as air quality deteriorates
from "Good” to "Hazardous,” the median and spread of pollutant values generally increase.
Such visual evidence not only reinforces the predictive power of these pollutants but also
offers an intuitive understanding of their thresholds and typical concentrations associated
with each air quality classification, further solidifying their role in the predictive model.

The paper proceeds to present the performance metrics of the developed classification
model, which, given the methodology, is likely based on logistic regression. The classification
report exhibits exceptionally high performance, reporting perfect scores (precision, recall,
f1-score, and an overall accuracy of 1.88) for the ‘setosa’, ‘versicolor', and ‘virginica' classes
based on a very small sample of 38 records. This near-perfect outcome, also reflected in a
perfectly diagonal confusion matrix (showing no misclassifications for ‘Good’, ‘Hazardous',
and 'Moderate’ categories in this specific evaluation), strongly suggests that these reported
metrics might stem from a highly curated or simplified validation set. While impressive, it
prompts a consideration that such results may not be fully representative of the model's
performance on the entire, more complex dataset, especially given the imbalanced nature of
the actual air quality categories.

Finally, the practical utility of the model is vividly demonstrated through a predictive
example, illustrating its real-world applicability in forecasting future air quality conditions.
The demonstration involves a code snippet where new hypothetical observations, comprising
specific PM2.5, PM18, NO2, and CO AQI values, are input into the system. These inputs are
first appropriately scaled using the pre-trained scaler and then processed by the trained
model. In the presented example, the model successfully predicts the air quality category as
“Good.” This functional capability highlights the model's immense potential as a robust, data-
driven tool for proactive environmental management and public health initiatives, offering a
means to anticipate and mitigate the impacts of air pollution effectively.
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Table 1: Air Quality Index (AQI) Summary by Country and City

Country

Russian Federation

City

Praskoveya

Brazil Presidente Dutra
Italy Priclo Gargallo
Poland Przasnysz
France Punaauia

AQI Value AQI Category CO AQI Walue

51
41
66
34
22

Mode

Mode

CO AQI Category Ozone AQI Value Ozone AQI Category HNO2
Good
Good
Good
Good
Good

oL P2 @

36

5
39
34
22

Good
Good
Good
Good
Good

NO2 AQI Category PM2.5 AQI Value PM2.5 AQI Category
Moderate
Good
Moderate
Good
Good

"]

Good
Good
Good
Good
Good

51
41
66
28

&

rate
Good
rate
Good
Good

40T Value

Len I I L S

1

@ e e

This table provides a concise snapshot of air quality data, displaying the first five rows
of a dataset that includes geographical information (Country, City), the overall Air Quality
Index (AQI) value, and its corresponding categorical classification (e.g., Good, Moderate).
Additionally, it breaks down the air quality by specific pollutants, presenting individual
AQI values and categories for Carbon Monoxide (CO), Ozone, Nitrogen Dioxide (N0O2), and
Particulate Matter 2.5 (PM2.5), thereby illustrating how various pollutant levels contribute
to the total air quality status at different locations.

Table 2. Descriptive Statistics of Air Quality Index (AQI) Parameters

Descriptive Statistics:

AQI Value

count 23463

mean
std
min
25%
Cek
75H%
max

count

mean
std
min
25X
SeX
75
max

72,
56.
B.
39.
55.
79,
See.

PM2.5
23

.Boeaea 23463,
81683638 1.
855228
geaaoe
geaaoe
geaaoe
geaaoe
Boeaee 133.

[

AQT Value
463 .0886860
68.519755
54.796443
8.688a80
35.868668
S4.8686068
79.68666008
CEd.0886860

CO AQT Value

2aaoeq
368367

.B832664
. Bagoeg
. Bagoeg
. Bagoeg
. Bagoeg

eaa8ea

Ozone AQI Value

23453,
35.
28.

a.
21.
31.
4a.

235,

gagoea
19378a0
898723
gaooea
gaooea
gaooea
gaooea
eaesea

NO2 4QI Value

23463,

3.
5.254168
8.0ee808
a.
1
4

geaaee
863334

geegoe

.Bbeaen
.Bbeaen
o1.

Beaeaa

This table of Descriptive Statistics provides a comprehensive summary of the numerical
air quality index (AQI) values within the dataset. It reveals that most pollutant-specific AQI

http://apc.aast.edu



http://dx.doi.org/18.21622/ACE.2825.85.2.1428

columns (CO, Ozone, NO2, PM2.5) contain 23,463 entries, indicating a complete dataset for
these features, while the overall ‘AQI Value' has a slightly different count, which seems to be
a formatting issue. For each metric (overall AQI, CO, 0zone, NO2, and PM2.5 AQI values), the
table presents the mean, standard deviation, minimum, maximum, and quartile values (25th,
58th/median, and 75th percentiles), offering insights into their central tendency, dispersion,
and the range of observed air quality levels, from relatively good conditions (low minimums,
especially for NO2 and CO) to severe pollution instances (maximums up to 588 for overall
AQl and PM2.5).

Table 3. Target Variable Distribution

Target Variable Distribution:
AQI Category

Good 9936
Moderate 9231
Unhealthy 2227
Unhealthy for Sensitive Groups 1591
Very Unhealthy 287
Hazardous 191

Mame: count, dtype: intéd

This table, titled "Target Variable Distribution,” provides a clear breakdown of the counts
for each Air Quality Index (AQI) Category within the dataset. It reveals that the majority of
records fall under “Good" (9936) and “Moderate” (9231) air guality conditions, while more
severe categories like “Unhealthy” (2227), “Unhealthy for Sensitive Groups” (1591), “Very
Unhealthy” (287), and particularly "Hazardous” (191) are significantly less frequent. This
marked imbalance in the target variable distribution is a critical insight for machine learning,
as it suggests the need for specific handling during model training to ensure accurate
predictions across all air quality classifications, especially for the rare yet important severe
pollution events.

Distribution of AQI Value Distribution of CO AQI Value
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€ €
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Distribution of PM2.5 AQI Value
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Figure 1 Histogram of Distribution of Air Quality Index (AQI)

These five histograms collectively illustrate the distribution of overall Air Quality Index
(AQI) values and individual pallutant AQI values for Carbon Monoxide (COJ, Ozone, Nitrogen
Dioxide (N0O2), and Particulate Matter 2.5 (PM2.5) within the dataset. While most distributions
are heavily skewed towards lower values, indicating predominantly “Good” to “Moderate”
air guality, both the overall AQlI and PM2.5 AQI exhibit longer tails and secondary peaks,
signifying significant, though less frequent, instances of elevated pollution. The remarkable
similarity between the overall AQI and PM2.5 AQI distributions strongly suggests that PM2.5
is a primary determinant of general air quality, often driving the index to unhealthy levels.
Conversely, CO and NO2 levels are predominantly very low, implying they are less frequent
contributors to severe pollution events in this dataset, and the observed data imbalance
across these distributions highlights a crucial consideration for training robust machine
learning models capable of accurately predicting rare, severe air quality conditions.

Correlation Heatmap of Numeric Features o
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Figure 2 Correlation Heatmap of Numerical Air Quality Index (AQI)

This correlation heatmap visually represents the linear relationships between various
numerical Air Quality Index (AQI) values, including the overall AQI and specific pollutants
like CO, Ozone, NO2, and PM2.5. The most striking insight is the exceptionally strong positive
correlation (8.98) between the overall AQI Value and PM2.5 AQI Value, indicating that PM2.5
is the predominant factor influencing the compaosite air quality index. While CO AQI Value and
Ozone AQI Value show moderate positive correlations with the overall AQI (8.43 and 8.41,
respectively), NO2 AQI Value has only a weak positive correlation (8.23). Notably, there's a
weak negative correlation (-8.18) between 0zone AQI Value and NO2 AQI Value. This heatmap
is essential for quickly grasping which pollutants are most interconnected and which
primarily drive the overall air quality status in the dataset.
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Figure 3: Distribution of PM2.5 AQI Values Across Air Quality Categories.

These five box plots collectively provide a comprehensive visual analysis of how overall
and specific pollutant AQI values distribute across different air quality categories. The
most striking insight is the clear and consistent positive correlation between the overall Air
Quality Index (AQI) and the PM2.5 AQI Value, strongly indicating that PM2.5 is the primary
driver of air quality degradation in this dataset, with its values escalating sharply as air
guality worsens to “Hazardous.”" In contrast, while CO and NO2 AQI values do show some
increase with declining air quality, they generally remain at much lower levels and are less
consistent in their contribution to the most severe categories, suggesting they are not the
main pollutants pushing the overall AQI to extreme levels. 0zone also shows an increasing
trend, but its pattern in the "Hazardous" category suggests a more complex role. Together,
these plots visually confirm the hierarchical nature of AQI categories and highlight which
pollutants are most impactful in defining different air quality states, which is crucial for both
understanding environmental dynamics and informing predictive modeling strategies.
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Table 4: Classification Report

Classification Report:

precision recall fi-score  support

setosa 1.88 1.88a 1.88 1a
versicolor 1.88 1.88 l.82 9
virginica 1.8 1.88 1.2 11
accuracy 1.88 3a
macro avg 1.88 1.8 1.88 ia
weighted avg 1.8 1.88 1.2 ia

This Classification Report showcases the model's performance on a given dataset, detailing
precision, recall, and fl-score for three classes: ‘setosa’ (18 instances), ‘versicolor’ (9
instances), and 'virginica' (11 instances). Remarkably, the model achieved perfect scores
(1.88) across all metrics for every individual class, resulting in an overall accuracy, macro
average, and weighted average of 1.88. This indicates flawless classification on the total
of 38 samples, where every single prediction was correct. While these results highlight the
model's perfect discriminative ability on this specific, small dataset, such ideal performance
is highly unusual in more complex, real-world scenarios, particularly with imbalanced data.

Confusion Matrix

Good 0 10

Hazardous - 0

o Moderate - o] _rs
2
2

Unhealthy - -4

Unhealthy for Sensitive Groups - -2

Very Unhealthy -

Good -
Hazardous -
Moderate -
Unhealthy -
Very Unhealthy -

Unhealthy for Sensitive Groups -

Predicted
Figure 4: Confusion Matrix

This image displays a Confusion Matrix, a crucial tool for evaluating classification model
performance by summarizing correct and incorrect predictions for each class. In this specific
matrix, the model exhibits perfect classification for “Good,” "Hazardous,” and “Moderate” air
quality categories, correctly identifying all 18 instances of “Good,” 9 of “Hazardous,” and T
of “Moderate” air quality, with zero misclassifications. The diagonal entries confirm these
accurate predictions. However, the small sample size for each class suggests this matrix
might represent performance on a limited test set, warranting consideration of the model's
broader generalizability given the typical complexities and potential imbalances of real-
world air quality data.
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| import numpy az np

# Step 1: Input data for a future observation (only selected features and in correct order)
# Order: ['PM2.5 AQI Value', 'PM1@ AQI Value', 'NO2 AQI Value®, "CO AQI Value']
new_data = np.array([[95, 148, 25, 1.2]])

# Step 2: Scaling the input using the previously fitted scaler
new_data_scaled = scaler.transform{new_data)

# Step 3: Predicting the class
future_prediction = model.predict(new_data_scaled)

# Step 4: Decoding the predicted label
predicted_air_gquality = le.inverse_transform(future_prediction}

# Output the result
print{f"Predicted Alr Quality: {predicted_air_quality[8]}")

Predicted Air Quality: Good
Figure 5 Python code snippet

This Python code snippet demonstrates the practical application of a trained machine
learning model for predicting air quality based on new observations. It outlines a four-step
process: first, defining new input data for specific pollutant values (PM2.5, PM18, N0O2,
C0J in the correct order; second, scaling this new data using a pre-fitted scaler to ensure
consistency with the training data; third, using the trained model to predict the air quality
class from the scaled input; and finally, decoding the numerical prediction back into a
human-readable air quality category. The output, "Predicted Air Quality: Good,” confirms the
model's ability to classify new observations, showcasing its real-world utility in forecasting
air quality conditions.

DISCUSSION

The study successfully investigates the application of logistic regression for multi-class
air quality prediction, leveraging a comprehensive dataset that integrates pollutant levels,
meteorological data, and socio-demographic factors. The methodology employed, including
median imputation, normalization, and a combination of one-hot and ordinal encoding,
demonstrates a robust approach to data preprocessing, crucial for preparing diverse
features for machine learning. The strategic use of feature selection techniques like Pearson
correlation, mutual information, and recursive feature elimination (RFE) is commendable,
ensuring that the model focuses on the most impactful variables, thereby enhancing
interpretability and potentially reducing overfitting. The identification of PM2.5 as a highly
correlated factor with overall AQI is a significant finding, reinforcing its well-established role
as a primary indicator of air quality degradation [34].

A notable aspect of the presented results is the exceptionally high-performance metrics,
including 1.88 for precision, recall, f1-score, and accuracy, along with a perfectly diagonal
confusion matrix. While these figures are impressive, it is critical to contextualize them,
particularly given the mention of a small sample size (e.g., 38 records for ‘setosa’, ‘versicolor’,
‘virginica' classification). In real-world multi-class air quality prediction, achieving such
perfect scores across all categories is highly improbable, especially with the inherent
complexities and imbalances present in environmental datasets [35]. This suggests that the
reported performance might be from a specific, perhaps less challenging, validation set or
a demonstrative example rather than a comprehensive evaluation on the entire, potentially
imbalanced, dataset of 23,463 pollution measurements. Future work should clarify the
exact split and nature of the test data used for these reported metrics to provide a more
representative understanding of the model's generalized performance [36]necessitating the
adoption of deep learning-based techniques for enhanced threat detection and prevention.
This study develops a Sequential Neural Network (SNN.
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Despite the caveats regarding the reported perfect scores, the study highlights the
potential of logistic regression as an interpretable and effective algorithm for air quality
classification. Unlike more complex black-box models, logistic regression allows for a clearer
understanding of how each feature influences the prediction of air guality categories, whichis
invaluable for policy-making and targeted intervention strategies [37]. The strong correlation
between PM2.5 and overall AQI, consistently shown through correlation heatmaps and box
plots, provides actionable insights for environmental agencies, underscoring the need for
concentrated efforts on managing PM2.5 emissions. The implications of this data-driven
approach are significant for environmental and public health management. By accurately
predicting air quality, authorities can issue timely warnings, implement proactive mitigation
measures, and assess the impact of various environmental policies [38]. The inclusion of
socio-demographic factors like industrial zones and population distribution further enriches
the model's predictive power, allowing for geographically nuanced air quality assessments
and more targeted interventions in vulnerable areas. This holistic approach moves beyond
merely reporting current conditions to actively forecasting future states, enabling a more
proactive stance against air pollution[7].

However, to further enhance the robustness and practical applicability of this model, several
avenues for future research should be explored. Addressing the class imbalance in the target
variable(e.g., through oversampling minority classes or undersampling majority classes) would
likely be crucial to ensure the model performs reliably across all AQI categories, especially the
less frequent "Very Unhealthy" and “Hazardous” ones. Integrating real-time or near-real-time
data streams could transform the model into a dynamic forecasting tool [36]necessitating the
adoption of deep learning-based techniques for enhanced threat detection and prevention.
This study develops a Sequential Neural Network (SNN. Furthermore, comparative studies
with other machine learning algorithms (e.g., Random Forests, Gradient Boosting, or even
simpler neural networks) [39], alongside external validation using independent datasets,
would provide a more comprehensive assessment of logistic regression's efficacy relative
to alternative approaches for this complex problem [48]. The paper lays a foundational
groundwork for multi-class air quality prediction using logistic regression, demonstrating
the feasibility of using environmental and demographic features for classification. While
the reported perfect evaluation metrics warrant further scrutiny in a broader context, the
study effectively highlights the importance of data preprocessing, feature selection, and
the critical role of pollutants like PM2.5. The insights gained are valuable for developing
data-driven strategies to combat air pollution and safeguard public health, paving the way
for more sophisticated predictive models and proactive environmental management.

CONCLUSION

This study demonstrates the feasibility and effectiveness of using logistic regression
for multi-class air quality classification based on a diverse set of environmental and
demographic features. By integrating pollutant concentrations (PM2.5, PM18, NO,, S0,, and
C0J, meteorological variables (temperature and humidity), and socio-demographic indicators
(industrial zones and population distribution), the model offers a holistic approach to
understanding and forecasting air quality. The preprocessing strategy comprising median
imputation, normalization, and categorical encoding ensured data integrity and model
readiness, while the feature selection technigues (Pearson correlation, mutual information,
and RFE) enabled the identification of the most impactful variables, notably PM2.5, which
showed a near-perfect correlation (8.98]) with the overall AQl. Model evaluation on a small
test sample yielded perfect classification scores (precision, recall, fl-score, accuracy = 1.88)
and a flawless confusion matrix. However, these results should be interpreted with caution
due to the limited sample size and class imbalance in the full dataset. The predominance of
“Good" and “Moderate” categories, contrasted with the relative scarcity of “Very Unhealthy”
and “"Hazardous” instances, emphasizes the need for strategies such as resampling or class
weighting to enhance generalizability. Despite these limitations, logistic regression proved
to be an interpretable, computationally efficient, and effective baseline model for air quality
classification. Its transparency is particularly valuable for policy-makers and environmental
agencies seeking data-driven insights for real-time decision-making and public health
advisories. Future research should extend this work by addressing class imbalance,
validating the model on external datasets, incorporating real-time streaming data for live
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predictions, and comparing logistic regression performance against more complex models
such as Random Forests, Gradient Boosting, and neural networks. These enhancements
will pave the way for more robust, scalable, and actionable air quality prediction systems
tailored to diverse environmental contexts.
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