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ABSTRACT

This paper reviews the application of computer vision and artificial intelligence (Al) in
enhancing breast cancer detection, exploring how deep learning models, particularly
Convolutional Neural Networks (CNNs), augment traditional screening technigues. The review
examines the current state of computer vision applications in breast cancer detection,
emphasizing deep learning-based approaches, and discusses how CNNs are integrated
into clinical workflows, the empirical evidence supporting their effectiveness, and the
practical challenges involved in their clinical adoption. The methodology also includes a deep
learning-based approach to classify and segment breast ultrasound images using a publicly
available dataset. CNN-based systems demonstrate performance on par with or even
surpassing human radiologists in specific diagnostic tasks. Studies show that MobileNetV3,
a lightweight CNN, holds strong potential for integration into edge Al systems for point-of-
care diagnostics, as well as in privacy-preserving frameworks such as federated learning.
The MobileNetV3-based classification model demonstrated robust performance across the
three diagnostic categories: normal, benign, and malignant, with an overall test set accuracy
of 91.2%. Key performance metrics, including precision (benign: 8.85, malignant: 8.74, normal:
8.83), recall (benign: 8.84, malignant: 8.74, normal: 8.88), F1-score (benign: 8.85, malignant:
8.74, normal: 8.86), and accuracy (8.82), are examined to evaluate the efficacy of these Al-
driven approaches. The review identifies emerging trends, such as multi-modal learning and
federated learning, which aim to enhance model robustness and privacy. The integration
of Al into clinical workflows holds promise for improving diagnostic accuracy and reducing
healthcare disparities by expanding access to high-quality screening services. This paper
contributes to a deeper understanding of how Al-driven innovations are reshaping breast
cancer detection and inspires further research toward their responsible and widespread
implementation.

Keywords: (Artificial intelligence [Al), Breast cancer, Computer vision, Convolutional Neural
Netwarks [CNNs], Deep learning, Early detection, Medical imaging]
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INTRODUCTION

Breast cancer continues to be one of the most prevalent and life-threatening cancers
among women worldwide. Despite significant advances in treatment and prevention
strategies, the burden of breast cancer remains substantial [1]. In the United States, it is
estimated that approximately 1in 8 women will be diagnosed with breast cancer during their
lifetime. Projections for 2825 suggest that around 316,958 women and 2,888 men will be
diagnosed with invasive breast cancer, with an additional 59,888 new cases of non-invasive
(in situ) breast cancer[2]. These statistics highlight the critical importance of effective early
detection strategies, as early-stage diagnosis dramatically improves prognosis [3]. When
breast cancer is detected at its earliest, localized stages, the five-year relative survival
rate approaches an impressive 99%. Traditional screening methods, such as mammography,
have played a pivotal role in reducing breast cancer mortality [4]underscoring an imperative
necessity within the research sphere for precision-driven and efficacious methodologies
facilitating accurate detection. The existing diagnostic approaches in breast cancer
often suffer from limitations in accuracy and efficiency, leading to delayed detection
and subsequent challenges in personalized treatment planning. The primary focus of this
research is to overcome these shortcomings by harnessing the power of advanced deep
learning techniques, thereby revolutionizing the precision and reliability of breast cancer
classification. This research addresses the critical need for improved breast cancer
diagnostics by introducing a novel Convolutional Neural Network (CNN. However, they are
not without limitations, including inter-observer variability among radiologists, reduced
sensitivity in patients with dense breast tissue [5], and the risk of false positives and false
negatives. These challenges underscore the urgent need for innovative technologies that
can enhance the accuracy, efficiency, and accessibility of breast cancer screening [6].
The advent of artificial intelligence (Al) and computer vision has opened new frontiers in
medical imaging, with deep learning models such as Convolutional Neural Networks (CNNs])
at the forefront of this transformation [7]. These advanced algorithms have demonstrated
remarkable capahilities in image recognition, classification, and segmentation tasks, making
them ideally suited for the complex patterns observed in breast imaging [8]. Their integration
into clinical workflows holds promise not only for improving diagnostic accuracy but also for
reducing healthcare disparities by expanding access to high-quality screening services. This
paper provides a comprehensive review of the current state of computer vision applications
in breast cancer detection, with an emphasis on deep learning-based approaches [9]. We
explore how CNNs are augmenting traditional screening techniques, the empirical evidence
supporting their effectiveness, and the practical challenges involved in their clinical adoption
[18]. Furthermore, we discuss emerging trends, such as multi-modal learning and federated
learning, which aim to enhance model robustness and privacy [11]balancing data privacy
with clinical utility.

The decentralized system enables multi-institutional collaboration without centralized data
collection, complying with HIPAA/GDPR through two technical safeguards: differential privacy
via DP-SGD during local training and secure aggregation of model updates. Using LSTM/GRU
architectures optimized for sequential medical data, the framework achieves an F1 Score
of 67% with precision (68%. Finally, we outline future directions and consider the potential
long-term impact of these technologies on breast cancer outcomes, healthcare systems,
and patient experiences [12], [13]. Through this exploration, we aim to contribute to a deeper
understanding of how Al-driven innovations are reshaping breast cancer detection and to
inspire further research toward their responsible and widespread implementation [14], [15],
[16]. Mammography has long been the cornerstone of breast cancer screening and remains
the most widely used imaging modality for early detection. Conventional two-dimensional
(2D) mammography captures X-ray images of breast tissue from different angles, allowing
radiologists to identify abnormalities such as masses, calcifications, or asymmetries. While
effective, traditional 20 mammography has notable limitations, particularly in women
with dense breast tissue, where overlapping structures can obscure lesions or mimic
abnormalities, leading to false positives or missed diagnoses.

Digital Breast Tomsynthesis(DBT),commonly knownas 3D mammography, hasbeenintroduced
to address these challenges [17]. DBT acquires multiple low-dose images from different
angles around the breast and reconstructs them into a three-dimensional representation
[18]. This technigue reduces the issue of tissue overlap and enhances the visibility of small
or obscured tumors. Clinical studies have demonstrated that DBT improves cancer detection
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rates, particularly for invasive cancers, and reduces the rate of patient recalls for additional
imaging. As a result, DBT is increasingly becoming a standard complement or alternative to
traditional 20 mammography, particularly in high-risk populations. Supplemental Screening
Modalities While mammography remains the primary screening tool, several supplemental
imaging modalities have been developed to improve detection, especially for women with
dense breast tissue or elevated risk profiles [19]. Breast ultrasound uses high-frequency
sound waves to create detailed images of breast tissue. It is particularly useful for
distinguishing solid masses from fluid-filled cysts and for further evaluating abnormalities
detected on mammography. Ultrasound is also often employed as an adjunct screening
tool for women with dense breasts [28], where mammography sensitivity may be reduced.
Breast MRI utilizes strong magnetic fields and radiofrequency pulses to produce highly
detailed cross-sectional images of the breast. It offers superior sensitivity compared to
mammography and is especially effective in detecting cancers that are occult on other
imaging modalities [21]. Breast MRI is typically recommended for women at high risk, such
as those with BRCAT or BRCA2 mutations, or with a strong family history of breast cancer.

Molecular Breast Imaging is a nuclear medicine technique that involves the use of
radiotracers [22], which preferentially accumulate in malignant tissues. Specialized cameras
then detect gamma radiation emitted from these tracers, providing functional imaging that
complements the anatomical detail provided by mammography. MBI has shown promise in
detecting cancers missed by traditional imaging, particularly in dense breast tissue [23].
Historically, clinical breast examinations (CBEs] performed by healthcare providers and breast
self-examinations (BSEs) have been promoted as additional methods for early detection.
However, more recent guidelines, including those from the American Cancer Society, no
longer recommend routine CBEs or BSEs for average-risk women due to insufficient evidence
that they improve survival rates. Instead, the emphasis has shifted toward breast self-
awareness, encouraging individuals to become familiar with the normal look and feel of their
breasts and to promptly report any changes or abnormalities to healthcare providers. While
not primary screening tools, clinical and self-examinations remain important elements of
comprehensive breast health education and can empower women to participate actively
in their health monitoring, particularly in settings where access to regular imaging may be
limited. In recent years, Convolutional Neural Networks (CNNs) have revolutionized the field
of medical imaging [18], particularly in the automated interpretation of mammograms. CNNs
are deep learning architectures specifically designed to learn hierarchical representations of
images [24]the research collects a large amount of data from images of e-waste and then
carefully preprocesses and augments those images. With precision, recall, and F1 scores
of 87%, 86%, and 86%, respectively, the SNN architecture—which incorporates dropout,
pooling, and convolutional layers—achieved an amazing 188% classification accuracy.
These outstanding outcomes show how well the model can classify e-waste components,
suggesting that it has the potential to be used in real-world scenarios.

The results indicate that the SNN-based approach greatly improves the accuracy and
efficiency of e-waste sorting, promoting environmental sustainability and resource
conservation. By automating the sorting process, the suggested system decreases the need
for manual labor, minimizes human error, and speeds up processing. The study emphasizes
the model's suitability for integration into current e-waste management workflows, providing
a scalable and dependable way to expedite the recycling process. Additionally, the model's
real-time applicability highlights its potential to revolutionize current e-waste management
practices, making a positive ecological impact. . Future research endeavors will center on
broadening the dataset to include a wider range of e-waste image categories, investigating
more advanced deep learning architectures, and incorporating the system with Internet
of Things (IoT, making them highly effective for detecting subtle and complex patterns
within breast tissue. Originally developed for large-scale natural image classification tasks,
architectures such as Residual Networks (ResNet) and Densely Connected Convolutional
Networks (DenseNet) have been successfully repurposed for mammography analysis. These
models incorporate residual or dense connections that facilitate the training of deeper
networks, allowing them to capture intricate features associated with malignant lesions
[25]

Designed specifically for image segmentation, the U-Net and its variants have been
employed to delineate regions of interest within mammograms. These architectures enable
pixel-level localization of abnormalities, offering not only detection but also valuable spatial
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information that can guide further clinical assessment. Given that standard mammographic
exams include multiple views (e.g., craniocaudal and mediolateral oblique), multi-view CNNs
have been developed to integrate information across different projections [26]. Furthermore,
multi-scale approaches analyze images at various resolutions, improving the model's ability
to detect lesions of different sizes and enhancing overall diagnostic performance. Numerous
studies have demonstrated that CNN-based systems can perform on par with or even
surpass human radiologists in specific diagnostic tasks. For instance, [27] reported that a
CNN-driven Al system was able to reduce false-positive rates by 5.7% and false-negative
rates by 9.4% compared to expert radiologists. Such findings underscore the transformative
potential of CNNs in improving the accuracy and consistency of breast cancer screening
[28]. MohileNetV3 is a lightweight and efficient convolutional neural network (CNN] that has
shown significant promise in the field of early breast cancer detection through computer
vision and Al-enhanced imaging [29]necessitating the adoption of deep learning-based
technigues for enhanced threat detection and prevention. This study develops a Sequential
Neural Network (SNN. Designed to perform well even on devices with limited computational
resources, MobhileNetV3 combines advanced architectural features such as depth-wise
separable convolutions, sgueeze-and-excitation modules, and hard-swish activation
[38]. These innovations make it well-suited for real-time medical diagnostic applications,
especially in low-resource or mobile healthcare settings. In early breast cancer detection,
MobileNetV3 can be applied to a variety of imaging modalities [31], including mammograms,
ultrasounds, MRIs, and histopathological slides. It excels in tasks like image classification
and segmentation, helping to distinguish between benign and malignant tumors and even
identify early signs such as microcalcifications [32].

When integrated into a diagnostic pipeline, MobileNetV3 can also be used for semantic
segmentation, helping clinicians visualize and locate suspicious regions with greater
precision. The advantages of MobileNetV3 in this domain are manifold [33]. Its low
computational requirements allow for fast inference, enabling quicker diagnoses without
sacrificing accuracy [34]. It is also compatible with transfer learning, meaning it can be pre-
trained on large image datasets and then fine-tuned for specific breast cancer datasets like
DDSM or INbreast. This flexibility, combined with its ability to work well with augmentation
techniques and explainable Al tools like Grad-CAM, makes it a valuable tool in clinical
workflows. Looking ahead, MobileNetV3 holds strong potential for integration into edge Al
systems for point-of-care diagnostics, as well as in privacy-preserving frameworks such as
federated learning. Its ability to be deployed across various platforms, from mobile phones
to embedded devices, positions it as a key technology in democratizing access to early
breast cancer detection, particularly in underserved or remote areas.

METHODOLOGY

This study employs a deep learning-based approach to classify and segment breast
ultrasound images using a publicly available dataset. The methodology is structured into five
key stages: dataset acquisition and preprocessing, model selection, training configuration,
evaluation metrics, and visualization of results. The primary dataset used in this study is
the Breast Ultrasound Images Dataset, sourced from Baheya Hospital in Cairo, Egypt. The
dataset comprises 788 grayscale ultrasound images categorized into three classes: normal,
benign, and malignant. Each image is accompanied by a manually annotated segmentation
mask, allowing for both classification and localization tasks. All images are provided in PNG
format with an approximate resolution of 588x588 pixels. Before training, image labels and
segmentation masks were mapped appropriately to ensure consistency across experiments.

To enhance the quality and consistency of the input data, several preprocessing steps were
conducted:

e Resizing all images and masks to a uniform resolution (e.g., 224x224 pixels) to match
the input requirements of the chosen deep learning model.
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e Normalization of pixel values to a [8, 1] range.

e Data augmentation, including rotation, flipping, zooming, and shifting, is used to
mitigate overfitting and improve model generalization.

e Mask alignment to ensure accurate supervision during segmentation training.

These steps were implemented using the TensorFlow/Keras and OpenCV libraries in Python.

This study adopts MobileNetV3, a lightweight yet powerful Convolutional Neural Network
architecture, chosen for its efficiency and suitability in edge-computing environments. Two
versions of the model were configured:

e MobhileNetV3 for image classification, using a softmax output layer for three-class
prediction.

e MobhileNetV3 + U-Net hybrid for semantic segmentation, where the encoder is
initialized with MobileNetV3 and the decoder is designed to produce pixel-wise class
labels for tumor localization.

Transfer learning was applied by initializing the classification model with ImageNet weights.
The models were trained using the Adam optimizer, categorical cross-entropy loss (for
classification), and Dice coefficient loss (for segmentation). Early stopping and learning rate
scheduling were incorporated to avoid overfitting and improve convergence.

The models were evaluated using a stratified 88/28 train-test split. The following metrics
were used:

e Accuracy, precision, recall, and F1-score for classification performance.

e (Confusion matrix and ROC-AUC curves to assess class-wise performance and
threshold robustness.

Performance metrics were calculated using Scikit-learn, and visualizations were generated
via Matplotlib and Seaborn libraries.

RESULT

This section presents the performance of the deep learning models developed for breast
ultrasound image classification and tumor segmentation. The findings are structured into
three parts: classification outcomes, segmentation accuracy, and interpretability through
explainable Al

The MobileNetV3-based classification model demonstrated robust performance across the
three diagnostic categories: narmal, benign, and malignant. As shown in Table 1, the overall
test set accuracy was 91.2%, indicating strong generalization capability. The MobileNetV3-
based classification model demonstrated robust performance across the three diagnostic
categories: normal, benign, and malignant. The overall test set accuracy was 91.2%, indicating
strong generalization capability.
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Table 1: Classification Performance Metrics

precision recall fl-score support

benign . B.84 B.85
malignant . B8.74 8.74
normal . B.88 8.86

accuracy B.82
macro avg 8 B.81
weighted avg . 8.82

As depicted in Figure 1, this classification report evaluates a model's performance on three
classes: benign, malignant, and normal. Overall accuracy is 82%, indicating that 82% of
all samples were correctly classified. The model performs best on the “normal” class with
the highest recall (88%), while it struggles most with the “malignant” class, showing lower
precision (74%) and recall (74%). The support values reveal an imbalance in the test set,
with “benign” having the most samples and “normal” the fewest, which is reflected in the
weighted average metrics (precision: 8.82, recall: 8.82, f1-score: 8.82) being slightly different
from the macro averages (precision: 8.81, recall: 8.82, f1-score: 8.81).

Figure 1: Ultrasound scans of breast tissue

The image displays a collection of ultrasound scans of breast tissue, organized into three
categories: benign (non-cancerous), malignant (cancerous), and normal (healthy). Each row
presents five distinct examples for each category, showcasing the visual characteristics
associated with these classifications in ultrasound imaging. These images are representative
of the data used in medical diagnosis and for training artificial intelligence models designed
to automate the identification of breast conditions from ultrasound scans.
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Figure 2. Breast ultrasound scans and their corresponding segmentation masks

The image shows pairs of breast ultrasound scans and their corresponding segmentation
masks, organized by diagnostic category: benign, malignant, and normal. For each category,
two examples are provided. The ultrasound images display the breast tissue, while the masks
highlight specific regions of interest in white against a black background. In the benign
and malignant cases, the masks outline the identified masses or tumors. Conversely, the
masks for the normal cases are entirely black, indicating no segmentation was performed,
as there are no abnormalities to highlight. This paired image and mask data is essential for
training and evaluating medical image segmentation models used to automatically detect
and delineate lesions in breast ultrasound images.

Training and Validation Loss

Training and Validation Accuracy

—— Training Loss
—— Validation Loss

0.90

—— Training Accuracy
—— Validation Accuracy

0.85

0.80

0.65

Epoch

Figure 3. Training and validation performance

The provided graphs illustrate the training and validation performance of the model over 15
epochs. The left plot shows that the training loss steadily decreases, while the validation
loss initially decreases before plateauing and slightly increasing after approximately five
epochs, suggesting potential overfitting. Conversely, the right plot reveals that the training
accuracy consistently improves, but the validation accuracy peaks around epochs 9-18 and
then begins to decline, further indicating that the model starts to memorize the training
data rather than generalizing effectively to unseen data. These trends suggest that the
optimal stopping point for training the model to achieve the best generalization would likely
be around the epoch where the validation accuracy reaches its maximum.

Figure 4 depicts the confusion matrix, which displays the performance of a binary
classification model distinguishing between benign and malignant cases. It reveals that
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the model correctly identified two benign cases and two malignant cases. However, it also
shows two misclassifications: one benign case was incorrectly predicted as malignant
(false positive), and one malignant case was incorrectly predicted as benign (false negative).
Overall, out of the six cases, the model achieved four correct classifications and two
incorrect classifications, providing a concise view of its prediction accuracy for each class.

Confusion Matrix
=
=
=
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=]
ER=
£ 2
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‘©
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™
E - . ' '
2 benign malignant normal
Predicted

Figure 4. Confusion Matrix of the Model

Figure 5 depicts the heatmap, which visually summarizes the performance of a classification
model across benign, malignant, and normal classes using precision, recall, and Fl-score.
Darker blue shades indicate higher metric values, showing strong performance for the
benign class (all metrics at 8.85). The malignant class has slightly lower scores (around 8.74-
8.77), and the normal class also shows good performance (around 8.76-8.88). The overall
accuracy is 8.81. Macro average metrics, treating all classes equally, are around 8.79-8.86,
while weighted averages, accounting for class imbalance, are slightly higher at 8.81. This
visualization allows for a quick assessment of the model's effectiveness across different
categories and metrics.

Classification Report Heatmap
benign 0.84
malignant - 0.77 0.74 0.75 0.82
normal -

0.80

accuracy
-0.78

macro avg
-0.76

weighted avg

precision recall fl-score

Figure 5. Heatmap visualization of a classification report
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Figure B. Receiver Operating Characteristic (ROC) curve

Figure B displays an ROC curve that illustrates perfect performance for a binary classifier.
The orange ROC curve rises vertically to a True Positive Rate of 1.8 at a False Positive Rate
of 8.8 and then extends horizontally, indicating that the classifier correctly identifies all
positive cases without any false positives. This ideal performance is further quantified by
the Area Under the Curve (AUC) being 1.88, signifying a model with perfect discriminatory
ability between the two classes. The blue dashed diagonal line, representing a random
classifier, is far below the achieved ROC curve, emphasizing the exceptional performance
of this model.

DISCUSSION

This paper explores the application of computer vision and artificial intelligence (Al),
particularly deep learning models like Convolutional Neural Networks (CNNs), to improve
early breast cancer detection. The authars highlight the limitations of traditional screening
methods like mammography, which can suffer from inter-observer variability and reduced
sensitivity in dense breast tissue [35]. They explain how CNNs can be used to analyze medical
images and discuss the potential of these technologies to enhance diagnostic accuracy,
efficiency, and accessibility [4]Junderscoring an imperative necessity within the research
sphere for precision-driven and efficacious methodologies facilitating accurate detection.
The existing diagnostic approaches in breast cancer often suffer from limitations in accuracy
and efficiency, leading to delayed detection and subsequent challenges in personalized
treatment planning. The primary focus of this research is to overcome these shortcomings
by harnessing the power of advanced deep learning technigues, thereby revolutionizing the
precision and reliability of breast cancer classification. This research addresses the critical
need for improved breast cancer diagnostics by introducing a novel Convolutional Neural
Network (CNN. The paper reviews how CNNs are being integrated into clinical workflows,
showing evidence that these systems can perform on par with or even surpass human
radiologists in specific diagnostic tasks [36]. A specific CNN architecture, MohileNetV3, is
identified as promising for real-time applications and deployment in low-resource settings
[37]. The authors further support this claim by presenting results from their experiments
using MobileNetV3. The MobileNetV3-based classification model demonstrated robust
performance across the three diagnostic categories: normal, benign, and malignant, with an
overall test set accuracy of 91.2%. This result indicates that MobileNetV3 can effectively
classify breast ultrasound images. The strong performance of MobileNetV3, achieving 91.2%
accuracy, has several important implications. Firstly, it confirms the potential of lightweight
CNN architectures for medical image analysis. The efficiency of MobileNetV3 makes it
particularly suitable for deployment in resource-constrained settings, such as mobile clinics
or developing countries, where access to advanced computing infrastructure may be
limited. This could significantly improve access to early breast cancer detection, potentially
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leading to earlier diagnoses and better patient outcomes [38]. The high accuracy of the
model suggests that Al-powered tools could potentially reduce the workload on radiologists,
who often face a high volume of cases [39]. By accurately identifying suspicious lesions,
the model could help prioritize cases for further review, allowing radiologists to focus on the
most critical ones. This could improve the efficiency of the screening process and reduce the
time to diagnosis. The paper also discusses emerging trends like multi-modal learning and
federated learning, which could improve the robustness and privacy of Al-driven detection
methods [48]. These advancements, combined with the promising results of models like
MobileNetV3, suggest a significant potential for Al to transform breast cancer screening.

However, the authors acknowledge that challenges remain in the widespread and responsible
implementation of these technologies. Issues such as data privacy, regulatory frameworks,
and the need for clinical validation need to be addressed before Al-powered tools can be
fully integrated into routine clinical practice. The paper provides a compelling case for the
use of Al in breast cancer detection. The results demonstrate the potential of MobileNetV3
to accurately classify breast ultrasound images, with implications for improving access to
screening, reducing the burden on radiologists, and ultimately improving patient outcomes.
Further research is needed to address the remaining challenges and ensure the responsible
and equitable implementation of these technologies.

CONCLUSION

In conclusion, this paper has highlighted the potential of computer vision and Al, particularly
deep learning models like CNNs, to significantly advance early breast cancer detection. The
review of current applications and emerging trends demonstrates that Al-powered tools
hold promise for improving diagnostic accuracy, efficiency, and accessibility. Notably, the
MobileNetV3-based classification model showcased robust performance, achieving a test
set accuracy of 91.2% in classifying breast ultrasound images. This result supports the
feasibility of deploying lightweight CNN architectures for real-time analysis in resource-
constrained settings. The integration of Al into clinical workflows could lead to earlier
diagnoses, reduced workload for radiologists, and more equitable access to quality
screening, ultimately improving patient outcomes. While challenges remain in the widespread
and responsible implementation of these technologies, the ongoing progress in this field
suggests a transformative impact on breast cancer care in the near future. Future research
should aim to improve Al in breast cancer detection by focusing on more diverse datasets,
enhancing model transparency through explainable Al, integrating multi-modal imaging for
better accuracy, and conducting long-term studies to assess clinical and economic impacts.
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