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ABSTRACT

In modern educational settings, overcrowded classrooms challenge student
engagement and learning efficiency. To address these issues, we propose a novel
smart seating system powered by Fog Computing that leverages Wireless Sensor
Networks (WSN]), Internet of Things (loT), Fog Computing (FC), and Cloud Computing
(CC) technologies. Our work introduces the first fog computing-driven smart seating
system for classroom settings. It demonstrates significant improvements in latency
(3.29 ms in Fog-based vs. 188.69 ms in cloud-based systems] while maintaining
comparable network efficiency. Our findings highlight fog computing's potential
to transform real-time classroom management. Using iFogSim, we conducted a
comparative study between traditional cloud-centric architectures and our fog-
based system across various classroom scenarios. Results demonstrate that
the fog-based architecture delivers superior real-time responsiveness, making it
particularly suitable for dynamic educational environments. This research provides
bothtechnicalinsightsinto performance improvements and practicalimplementation
guidelines for educational institutions seeking to optimize classroom management
systems.

Index words: Cloud Computing (CC), Fog Computing (FC], iFogSim, Latency, Network
efficiency, Smart Seating System.

1. INTRODUCTION

University enrolment has been progressively increasing over the years. While thisis a positive
development, it also brings new challenges, including challenges with event attendance and
seating infrastructure [1]. One common issue faced by several institutions is the lack of
adequate seating spaces in lecture halls. Traditional seating arrangements often fall short,
as they lead to distractions that can affect both students and lecturers [2], overcrowded
classrooms, and time wastage as students search for available seats. In some cases, these
concerns even discourage attendance completely. They could disrupt the learning process
and, as such, highlight the need for smarter, more adaptable classroom solutions that can
keep pace with growing student populations and evolving educational demands.

This study introduces a novel fog-based smart classroom seating system and uses iFogSim
to simulate our architecture. It is designed to improve the management of lecture hall
spaces. By integrating technologies like WSNs, IoT, CC, and, most notably, Fog Computing, the
system offers a more responsive and efficient way to organize classroom seating. The idea
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is to move beyond fixed arrangements and towards an intelligent system that can detect
available seats, respond to occupancy in real-time, and assist both students and lecturers
in making better use of the space while enhancing the speed and network bandwidth usage.
Out of the various available simulation tools reviewed by [3], iIFogSim has gained enormous
attention from many Fog Computing researchers. [4], discuss the various components of the
iFogSim to assist researchers in implementing various scenarios of fog computing. [5], For
instance, | have modeled and simulated smart surveillance systems in two environments,
Cloud Only Network and Fog-Based Cloud Network, using iFogsim.

Our goal is to tackle the limitations found in cloud-based smart systems, chiefly problems
with latency, network congestion, and real-time performance. By using fog computing, which
brings computation closer to the devices collecting data, we aim to create a faster, more
reliable, and energy-efficient solution. This system will improve technical performance and
create a smoother classroom experience for stakeholders.

The following research questions serve as a guide to this work:

1. How can a fog computing-based architecture be designed to detect and manage
classroom seat occupancy in real-time?

2. What are the measurable performance differences (in terms of latency and bandwidth
usage) between fog-based and cloud-based smart seating systems in simulated
classroom environments?

3. How does the proposed fog-based system improve responsiveness and scalability
compared to traditional cloud-based solutions?

There has been a lot of talk about smart classrooms in recent years. However, there is a
lack of studies on how fog computing could be used specifically for seating management
in the classroom. This study fills that gap by exploring a practical, tech-driven approach to
an everyday problem in higher education. We unite emerging technologies with real-world
classroom needs and hope to contribute a solution that improves technical efficiency and
also enhances the learning environment in a meaningful way.

Generally, seating arrangements, whether smart or traditional, have been proven to influence
student engagement and behavior. Some researchers have explored this premise.

For example, a study by [B], utilised wearable physiological sensors to examine the impact
of individual and group sitting experiences on student engagement and participation. Their
findings indicate that, students who were seated in close proximity to each other exhibited
greater physiological synchrony, and hence an enhanced cooperative participation. This
means that students’ interaction and attention levels may be influenced by traditional
seating arrangements such as rows or table groups.

Also, in a study on the impact of different seating arrangements (i.e. circles vs rows]) on
the interaction levels among university students, [7] used wearable Sociometric badges to
study speech rate & speaking segment length. They noted that sitting in rows led to more
intensive interactions than sitting in circles. They however noted that, the field of study
and the facilitator's involvement also had an effect on the result. These findings stress the
importance of deliberate seating configurations to improve learning outcomes.

Smart classrooms have introduced dynamic seating techniques designed to enhance
situational engagement. A work published by [8] in Sustainability (2823) indicate that,
students positioned at the periphery of smart classrooms often exhibit lower engagement
levels, as compared to those seated in central locations. The study advocates for deliberate
seating configurations to minimize the use of peripheral seats, thereby promoting equitable
participation.
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To also minimise student distractions, innovative proposals such as fuzzy logic-based
seating configurations have been presented by some researchers. A 2825 study by [9]
introduced "CUB", a Fuzzy Inference-Based Tool for Classroom Seating Arrangement to
Minimize Distraction, which actually resulted in a reduction in classroom distractions.

Building upon these insights, this study proposes a novel fog computing-enabled smart
seating system that not only considers seat availability but also enables real-time and
automated seat allocation based on sensor-driven occupancy detection. Unlike traditional
seating systems or standalone Al tools, our system integrates edge-level processing (via fog
nodes]) with real-time input from classroom IoT devices (e.g., cameras and microcontrollers).
This makes room for immediate feedback, equitable seating optimization, and scalability
across multiple classrooms and hence bridges the gap between theoretical seating
strategies and fully functional, dynamic seat management systems.

Recent research has shown that smart seating systems have the potential to improve
classroom management, enhance student engagement, and promote more inclusive learning
experiences [1], [18], [11]. Most of these works have delved into how these smart seating
systems can be enhanced using cloud computing, mostly for storing, processing, and
analyzing classroom data [12]. Some other studies have explored how these systems impact
the dynamics of classroom interaction, student participation, and even the effectiveness of
instructors [1], [2]. This research demonstrates the strengths and limitations of our proposed
fog-based smart seating solutions compared to cloud-based designs in academic settings.

Currently, fog computing has gained traction as a powerful approach for managing resources
in distributed systems. Unlike traditional cloud computing, where data is processed in
distant data centers, fog computing brings processing closer to the source where the data
is generated [13], [14]. This allows for faster data processing, reduced latency, and increased
system responses. This makes fog computing particularly useful in situations that demand
real-time interaction, such as smart seating in lecture halls.

Because Fog Computing places processing power closer to users, it shortens the distance
data needs to travel. This leads to faster responses and smoother system performance [14],
[15]. Additionally, fog nodes can handle tasks locally, which implies that less data needs to
be sent to the cloud. This not only reduces network load but also cuts down on energy usage
[14]. Also, the decentralized nature of fog computing allows institutions to scale up easily by
adding more local nodes where necessary [16]. This makes it a great fit for expanding smart
seating systems.

Previous research on smart classroom technologies has focused on enhancing student
engagement through interactive displays and personalized learning environments
[17], [18] but has often overlooked the fundamental logistical challenges of classroom
management. Studies by [1] and [19] explored loT-enabled classrooms but employed cloud-
centric architectures that inherently suffer from latency issues unsuitable for real-time
applications. Our work extends these efforts by specifically examining the computational
advantages of fog computing for addressing the practical challenge of seat allocation in
overcrowded lecture halls. Unlike [19] and [28], which primarily discussed the theoretical
benefits of fog computing in educational contexts, our work provides empirical evidence
through simulation-based performance comparisons between fog and cloud architectures.
This empirical focus represents a significant advancement over existing literature, which
has largely remained conceptual or limited to small-scale proof-of-concept implementations.

Despite all the recent interest in fog computing, there is still a noticeable gap in research
on its application in educational environments. Very few studies have directly compared
fog based systems with traditional cloud-based ones exclusively in the context of smart
classroom seating [19]. While individual studies point to fog computing's advantages, which
include reduced latency, better energy usage, and improved scalability, there is a lack of
head-to-head comparisons under similar conditions [19]. These kinds of comparative studies
are crucial. They provide solid evidence on whether fog really outperforms cloud systems in
educational settings and also help guide the design of the next generation of smart seating
solutions [28].
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2. METHODS

We explore the design and performance evaluation of a smart seating system powered by
Fog Computing (FC), Wireless Sensar Networks (WSN), Cloud Computing (CC), and Internet of
Things (IoT] technologies.

Simulations are conducted using iFogSim to assess the effectiveness of the proposed fog-
based smart seating system over traditional cloud based systems. The simulation models
a university lecture hall environment, where data is collected in real-time from cameras
embedded in the lecture halls and processed by nearby fog nodes.

The simulation environment was configured as follows: Each classroom was modeled with
varied numbers of sensors (1-5 cameras). Each sensor generated data at 38 frames per
second, with 1888p resolution. Processing requirements were considered with respect to
image analysis algorithms requiring approximately 4888 MIPS (for Cloud devices), 2868
MIPS (for Proxy devices), and 588 MIPS (for Classroom-level devices) per frame. Network
bandwidth was configured according to typical educational institution specifications (i.e.,
188 Mbps uplink, 18 Gbps downlink).

The simulation was run about 18 times for each configuration to ensure consistency and
statistical validity, with each run representing a 68-minute classroom session. Statistical
analyses included Mean, Median, and independent t-tests and their related p-values for
both latency and bandwidth utilization comparisons. This helped to determine the statistical
significance of these differences, particularly in latency, which is critical for real-time
applications. Sensitivity analysis was also performed to assess the system's robustness
under varying workloads and network conditions, ensuring the reliability of the results.

The findings demonstrate that the fog-based system significantly outperforms the cloud-
based system in terms of latency while maintaining comparable network usage. This
suggests that fog computing offers substantial advantages in the real-time management of
smart classroom environments. However, the study also acknowledges limitations related to
the simulation environment and the scalability of the proposed system, suggesting areas for
future research. Table 1 presents a Summary of the Configuration Setup for this simulation.

Table 1. Summary of Configuration Setup

pe ptio
CPU Intel Core i7
RAM 16 GB
Operating System Windows 11
Simulation Tool iFogSim

Programming Language

Java (for iFogSim simulations)

Network Bandwidth

Uplink: 188 Mbps, Downlink: 18 Gbps

Fog Device Processing Power

4868 MIPS (Cloud); 2888 MIPS (Proxy); 588 MIPS (Classroom-level devices)

Edge Node Components

IoT devices (e.g., environmental sensors, cameras), Raspberry Pi, Mobile Phones

Latency Configurations

Proxy-to-Cloud: 188 ms; Sensor-to-Fog: 1 ms

Sensors

Cameras, PTZ Controls, Environmental Sensors. (Generated data at 38 frames per
second with 1888p resolution)

Fog Node Components

Proxy servers, routers, smart cameras

loT Framework

Sensor data transmitted to Fog and Edge nodes

Deployment Configuration

Cloud deployment (for comparative analysis), Fog deployment (for proposed frame-
work evaluation)
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Figure 1. A logical design of a fog-based smart lecture hall

In our proposed smart seating architecture, the cloud server is strategically positioned as
a centralized platform for storage and analytics. The deployed Fog nodes manage real-time
processing tasks, including seat detection and user interface updates in the classroom,
whereas the cloud facilitates long-term data archiving, historical analytics, system-wide
monitoring, and remote administrative access. Cloud servers analyze seating usage trends
over time, produce reports for institutional decision-making, and enable remote updates to
system software.

The cloud infrastructure is presumed to be located off-premises, potentially at a university-
operated data center or with a commercial, public cloud provider such as AWS or Google
Cloud in a nearby regional data zone. This geolocation is critical as it introduces network
latency when handling time-sensitive operations like real-time seat detection. Due to this
physical separation, it is projected that round-trip delays can exceed 188 milliseconds, as
confirmed in our simulations. In contrast, fog nodes positioned locally within campus networks
drastically reduce this latency, enabling near-instantaneous feedback and responsiveness.
Therefore, fog computing is intentionally prioritized for latency-sensitive tasks, while the
cloud is retained for its strength in storage capacity, backup, and system-wide coordination.

Implementing the proposed architecture involves five major layers, as presented in Figure
3 (i.e., the cyber-physical layer, the data management layer, the data processing layer, the
domain application layer, and the cloud). These layers can be further summarized into three
(3) as presented in Figure 4 (i.e., the Cyber-physical layer, Fog-layer, and the Cloud layer).
The cyber-physical layer consists of various sensors like GPS, RFID tags, and surveillance
cameras, which enable data collection from multiple sources. IoT technology facilitates
direct interactions among these sensors, routers, and gateways. Data management,
positioned between the cyber-physical and data processing layers, handles tasks such as
data description and fusion to manage collected data efficiently, removing redundancy and
integrating data for consistency. Central to fog-based computing, the data processing layer
processes data types via fog computing, handling tasks locally and transferring overloaded
tasks to cloud data centers when necessary. The domain application layer provides specific
intelligent applications and services, such as guiding students to available seats in smart
seating systems and enhancing efficiency and convenience. Figure 2 and Figure 3 present
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the "Detailed Hierarchical structure of fog computing-based smart seating system” and
the “Condensed high-level Hierarchical structure of fog computing-based smart seating
system,” respectively.

Domain Application Layer
(Intelligent Applications and Services)

i)

Data Processing Layer
(Fog Computing, Task Processing)

)

Data Management Layer
(Data Description, Data Fusion)

L

Cyber-Physical Layer
(Sensors: GPS, RFID, Cameras)
(loT: Interactions among sensors)

Cloud Servers

Cyber-Physical Layer

Figure 2. Detailed Hierarchical structure of fog computing-based smart seating system
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Figure 3. Condensed high-level Hierarchical structure of fog computing-based smart
seating system.

Although the simulation environment in this study (iFogSim) does not support direct
integration of image processing modules, the proposed fog-based smart seating system
is designed to conceptually support real-time computer vision tasks. The system assumes
that each classroom is equipped with IP surveillance cameras capable of capturing video
frames at 1888p resolution and 38 frames per second. The captured frames are processed
locally at the fog nodes to detect available or occupied seats using a lightweight object
detection pipeline.

A typical image processing workflow for seat detection would involve the use of pre-trained

object detection models, such as YOLOv5 or YOLOv7, which are capable of detecting chair
outlines and distinguishing occupancy based on motion and form, as discussed in detail by
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[21]. The first step involves frame acquisition and preprocessing (e.g., resizing, normalization,
and background subtraction). Following this, real-time object detection algorithms are applied
to identify human presence in proximity to predefined seat locations. Motion detection and
frame differencing can also be employed to enhance accuracy, especially in low-light or
static conditions.

Thresholding techniques are then applied to determine occupancy. For instance, if a
seat region contains a detected object (i.e. a person) for more than a specific number
of consecutive frames, the seat is classified as “occupied”; otherwise, it is marked as
“available.” This processed information is transmitted to the fog node, which handles further
decision-making and updates the smart classroom interface in real-time.

In iFogSim, this behavior is abstracted by modeling data generation at the sensor level and
processing tasks at fog nodes using AppModules. The modules simulate the computational
demand of image processing (configured at 588 MIPS per frame for classroom-level devices)
while omitting the image content itself. The abstraction ensures scalability testing and
performance benchmarking without actual video processing yet aligns conceptually with
how the system would operate when deployed with real image analytics capabilities. Figure
4 presents a pictorial description of the Image Acquisition workflow for seat detection in
this study.

Image Processing Workfow for Seat Detection

Frame Acquisition Real-Time
P and Preprocesssing Object Detection

Surveillance Camera

A4

* Resizing
* Normalizat-ion %
» Background -
Subtraction H
J/ eeoe

Motion Detection Fog Node
and Frame Decision-making
Differencing

Video Frames Thresholdng \L—\L
I E ed | | Available

Figure 4. Image Acquisition workflow for seat detection

3. SIMULATION SET UP FOR SMART SEATING SYSTEM IN
IFOGSIM

Ifogsim comprises three primary components, i.e., physical, logical, and management
components. These components are discussed below. The codes used in creating the
various components can be found on the authors' GitHub repository at:

https://github.com/NoblelTSoultions/SmartCampusContract2824/blob/main/
SmartSeatingSystemSimulation.

The physical components include all fog devices (fog nodes). The fog devices are made
in a hierarchical order. The lower fog devices are directly connected to the sensors and
actuators. Fog devices act as data centers in the cloud computing paradigm by offering
memory, network, and computational resources. Each fog device must have specific
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parameters such as processing power, memory capacity (MIPS), computational power, uplink
and downlink bandwidth.

Physical components must be created with specific parameters, including RAM, processing
capability in a million instructions per second (MIPS), cost per million instructions processed,
uplink and downlink bandwidth, and busy and idle power, along with the hierarchical
order. While creating the lower-level fog devices, the associated IoT devices, sensors, and
actuators need to be created. The particular value in the transmit Distribution object that is
setin creating an loT sensor refers to its sensing interval. In addition, the creation of sensors
and actuators requires the reference of application ID and broker ID.

Application modules (AppModules) and Application edges (AppEdges) are the logical
components of iFogSim. AppModules represent the application components or modules of
the fog computing application. These modules can include different tasks or functionalities
that must be executed within the fog computing application. AppEdges represent the
communication link or edges between different application modules within fog computing
applications. They define the data flow and communication patterns between various
modules, capturing how data is exchanged among application parts.

Logical components such as AppModule, AppEdge, and AppLoop are required to be created.
While creating the AppModules, their configurations are provided, and the AppEdge objects
include information regarding the tuple's type, its direction, CPU, and networking length,
along with the reference of the source and destination module. In the background, distinct
types of tuples are created based on the specifications given for AppEdge objects.

The management component of iFogSim consists of the Controller and Module Mapping
objects. This is responsible for managing and coordinating various aspects of the simulated
fog computing environment, overseeing the execution of applications, and handling the
dynamic nature of resources in fog computing. These functionalities include resource
management, task scheduling, communication management, monitoring and logging, and
fault tolerance.

Management Components (Module Mapping] are initiated to define different scheduling and
AppModule placement policies. Users can consider total energy consumption, service latency,
network bandwidth usage, operational cost, and device heterogeneity while assigning
AppModules to Fog devices. They can extend the abstraction of the Module Mapping class
accordingly. Based on the information of AppEdges, the requirements of an AppModule need
to be aligned with the specification of the corresponding tuple type and satisfied by the
available Fog resources. Once AppModules and Fog devices are mapped, the information on
physical and logical components is forwarded to the Controller object. The Controller object
later submits the whole system to the CloudSim engine for simulation.

The simulation results are compared in terms of latency and network usage. The "private
static boolean CLOUD = false;” section of the code helps us achieve this result by assigning
the values true or false, as it is directly linked to the cloud or fog. Depending on what
execution is taking place, the data collected is sent directly to the cloud or fog nodes for
processing.

Our simulation framework was specifically designed to replicate real-world classroom
conditions. The selection of parameters such as camera frame rates (38 fps) and the
resolution (1888p) was based on typical specifications of commercial surveillance systems
used in educational settings. The processing requirements (i.e., 4888 MIPS for Cloud devices,
2868 MIPS for Proxy devices, and 588 MIPS for Classroom-level devices] were calibrated
to accurately reflect the computational demands of real-time image processing algorithms
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needed for seat detection. These parameters were validated through preliminary testing
to ensure they represented a realistic operational environment. This approach allows our
findings to be directly applicable to practical implementations in university lecture halls.

4. RESULTS

The simulation was performed for both Fog-based and cloud-based smart seating systems
to compare their performance in lecture hall environments. The experiments focused on
evaluating key performance metrics, including latency and network bandwidth usage
efficiency. Table 2 summarizes the simulation results.

Table 2. Simulation results

Latency (Milliseconds, ms) Network Bandwidth Usage (Kilobytes, kb])
Number of | Average Fog Latency Average Cloud Average Fog Bandwidth Average Cloud Bandwidth
cameras for all 18 simulations | Latency for all 18 . . Usage for all 18
: . Usage for all 18 Simulations . .
Simulations Simulations
1 3.2 188.64 41553.8 41559.8
2 3.3 188.67 83187.6 83118.8
3 3.3 188.69 124656.4 124677
4 3.389 188.72 166265.2 166236.8
5 3.319 188.75 287754.8 287795.8

6. GRAPHICAL INTERPRETATION OF RESULTS

Based on the results presented in Table 2, Figure 5 and Figure B are graphical representations
of the simulation results for latency and network usage, respectively.

SIMULATION RESULTS FOR THE LATENCY

m Latency in Fog
108.64
108.67 108.69

2 Cameras

m Latency in Cloud

108.72

-
(=]
=]

108.75

5]
3 8

53
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Milliseconds, M5

o
o ©
w
w
l:
b=}

19
1 Camera

3 Cameras
4 Cameras
5 Cameras
Number of Cameras

Latency in Cloud

Latency in Fog

Figure 5. Graphical Representation of the simulation results on the latency
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SIMULATION RESULT FOR BANDWIDTH USAGE
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Figure B. Graphical Representation of the Simulation Results on Network Bandwidth Usage

6. STATISTICAL ANALYSIS

A. Latency
a) Mean Calculation: The mean is calculated as:
Mean = Mean =% (1]

n

e Fog-Based System Latency: X =[3.2, 3.3, 3.3, 3.389, 3.319] milliseconds and
n=5.

Fog Latency Mean = 3.2856ms, which means that, on average, the fog-based system had a
latency/delay of 3.29 milliseconds.

e Cloud-Based System Latency: X = [188.64, 188.67, 188.69, 188.72, 188.75]
milliseconds and n = 5.

Cloud Latency Mean: = 188.694ms; this implies the cloud-based system had a much higher
latency/delay of 188.69 milliseconds.

b) Standard Deviation Calculation: The standard deviation is calculated as:

VY (X—-Mean)? 2)

n—1
Therefore, using Equation 2 and the simulation results in Table 2, the calculated standard
deviations for network usage are:

e Fog-Based System: 8.8485ms
e Cloud-Based System: B8.8428ms.

Interpretation: Standard Deviation for latency in the Fog environment = B8.8485ms.
This indicates slightly more variation, even though it is still very stable, with only minor
fluctuations. Cloud Latency Standard Deviation: = B.8428ms. This indicates that the latency
in the cloud-based system is slightly more consistent (lower standard deviation) but at a
much higher mean value.

B. Network Usage
a) Mean Calculations:

o Fog-Based System Network Usage: X =[41553.8, 83187.6, 124656.4, 166285.2,
287754.8]KBand n=5
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o Fog Network Bandwidth Mean = 124655.4KB; this is the average amount of
data transmitted in the fog-based system.

e Cloud-Based System Network Usage: X = [41559.8, 83118.8, 124677.8,
166236.8, 287795.8]KBand n=5

Cloud Network Bandwidth Mean =124677.8 KB; this is the average amount of data transmitted
in the cloud-based system.

b) Standard Deviation Calculation:

Therefore, using Equation 2 and the simulation results in Table 2, the calculated standard
deviations for network usage are:

e Fog-Based System: 65,696.88 KB
e Cloud-Based System: 65,718.55 KB

Interpretation: Neither system maintains a stable network usage. The demand increases
with time or workload. However, the difference in variation between fog and cloud is minimal,
which suggests that both scale similarly in network load.

C. Independent Samples T-Test

The T-test is used to compare the means of two independent groups to see if there is a
statistically significant difference between them.

The formula for the t-statistic in an independent samples t-test is:

(3)

_Mean,—Mean,

t
sp2_ sD3
_+_

ni nz

Where:

e Meanand Mean, are the means of the two groups.
e 8D, and SD, are the standard deviations of the two groups.
e n and n, are the sample sizes of the two groups.

3.2856—-108.694
Latency T-Test= 0.04852 0.04282
5 5

T-Statistic: t=-3645.86t. This value indicates how far the difference between the two
means is from zero, measured in standard error units. As observed here, a very large
(absolute) t-value typically indicates a significant difference between the groups.
124655.4—-124677.0
Network Bandwidth Usage T-Test = 6569602 6571052
5 5

T-Statistic: t = -8.88852t. This small t-value suggests that the difference between the
means of the two groups (fog-based and cloud-based systems] is minimal. This is, however,
subject to increase as the number of |oT devices increases.

1. DISCUSSION

The results indicate that the fog-based system consistently maintains latency below
3.5ms across all tested camera configurations. The cloud-based system, however, exhibits
latencies that exceed 188ms. Statistical analysis confirms this difference is highly significant
(t=3645.86, p<6.8881). Notably, as the number of cameras increased from 1to 5, the latency
difference between cloud and fog architectures remained consistently noteworthy. This
points out fog architecture’s scalability advantage. Both architectures showed similar
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network bandwidth usage in absolute terms. However, fog architecture demonstrated
superior efficiency in terms of advantages in processing distribution. This is because
the computational load was distributed across edge devices rather than concentrated in
centralized cloud resources.

Our findings align with theoretical expectations regarding latency reduction in fog computing
architectures, as recorded by [13]. Our approach demonstrates particular advantages in
bandwidth utilization compared to cloud-based approaches presented by [3], which reported
higher bandwidth consumption. However, speed slightly reduces as the camera count
increases. This is a result of the increasing amount of real-time videos that are processed
in smart environments.

Following the results the following differences between fog-based and cloud-based
deployments presented in table 3 can be highlighted around these metrics to support future
research warks.

Table 3. Edge-based systems vs. Traditional cloud-based systems

0g/Edge-Based : aditional Cloud-Based :
Latency Reduced Potentially Higher
Mobility Explicit Mobility Limited Mobility
Architecture Decentralized Centralized
Local Awareness Yes Limited
Geographic Distribution Yes Limited
Scalability High Scalable
Availability High High

Service Access

Edge/Handheld Devices

Limited to Internet Access

Remote Work

Enables Remote Work

Limited Remote Work

Real-time Processing

Better Support for Real-time Processing

May Require High Bandwidth

Analytics

Better Support for Real-time Analytics

Analytics May be Centralized

Classroom Management

Enhances Efficiency

May Require Additional Resources

Access to Resources

Easier and More Convenient

Dependent on Internet Connection

The implementation of our proposed camera-based smart seating system in educational
environments raises important privacy and ethical considerations that must be addressed
proactively. Our proposed system relies on camera feeds to detect seat occupancy, which
introduces several privacy challenges:

First, there is the question of student consent and awareness. Educational institutions
implementing such systems should develop clear policies requiring informed consent
from students, with transparent disclosure about what data is being collected, how it is
processed, and where it is stored. It should also clarify that the system is designed for seat
detection rather than individual identification.

http://apc.aast.edu



http://dx.doi.org/18.21622/ACE.2825.85.1.1335

Second, the technical implementation must incorporate privacy-by-design principles. In our
system, this could be achieved through:

" Edge-based processing that extracts only occupancy data and discards raw video
footage

= Intentional reduction of image resolution to prevent facial recognition

. Implementation of data minimization technigues that store only aggregated occupancy

statistics rather than individual seating patterns
. Encryption of any data transmitted between fog nodes and cloud storage

Third, the system should comply with relevant data protection regulations, such as GDPR in
Europe or FERPA in the United States, which may require data protection impact assessments
before deployment.

Finally, educational institutions should establish ethical governance frameworks that prevent
function creep, where a system designed for one purpose (seat management] evolves to
serve other functions (such as student attendance monitoring or behavior tracking). Such
frameworks should include regular audits, stakeholder consultations, and clear limitations
on data usage.

These considerations should be integrated into the early design phases of smart classroom
implementations. It should not be treated as an afterthought in order to ensure that
technological innovations enhance student privacy and autonomy instead of compromising
it.

8. CONCLUSION

Our findings suggest that fog-based smart seating systems could be introduced in
university classrooms to significantly reduce classroom management overhead in terms of
data processing speed and bandwidth utilization. This potentially translates into several
additional instructional minutes per class session. Also, beyond the performance metrics
of latency and bandwidth, the proposed system enhances classroom seating by enabling
real-time seat detection and allocation. This reduces delays, ensures equitable student
distribution, minimizes distractions, and promotes a more focused and engaging learning
environment.

The work identified several scalability limitations. As the number of cameras increased from
1to 5 per classroom, we observed a minor but consistent increase in latency (from 3.2ms to
3.319ms). This suggests potential processing bottlenecks at higher sensor densities. When
scaling this system to cover an entire campus with hundreds of classrooms, the hierarchical
fog architecture would require careful optimization in order to prevent overloading
intermediate fog nodes. While fog computing improves real-time responsiveness, effective
fog node deployment is essential to sustain performance.

Additionally, while our simulations demonstrated comparable network bandwidth usage
between fog and cloud architectures comprising five (5) cameras, the difference may
become more pronounced in larger deployments. The fog-based approach would likely
maintain its latency advantage. It might, however, require additional edge nodes to distribute
computational load effectively. These limitations underscore the importance of adaptive
resource allocation frameworks, which can respond dynamically to varying classroom
conditions and student populations.

For practical implementation in educational institutions, we recommend the following
hardware specifications: (1) Entry-level IP cameras with 1888p resolution and basic motion
detection capabilities would provide sufficient input data while minimizing costs; (2) Fog
nodes can be effectively implemented using mid-range edge computing devices such as
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Intel NUC mini PCs or equivalent ARM-based systems with at least 8GB RAM and quad-core
processors; (3) Network infrastructure should support at least 188 Mbps within buildings,
with redundant connections to ensure system reliability. This hardware configuration would
support deployment costs of approximately $1,588-2,888 per classroom, with potential ROI
realized through improved space utilization and reduced administrative overhead. These
specifications represent a balance between performance requirements identified in our
simulations and practical budget constraints faced by educational institutions.

Future research should focus on three key areas: (1) optimizing fog node placement
algorithms to balance computational load across distributed educational environments, (2)
developing adaptive resource allocation frameworks that respond to dynamic classroom
conditions, and (3) establishing standardized benchmarks for smart classroom performance
evaluation, (4) integrating artificial intelligence (Al) and machine learning (ML) algorithms for
predictive analytics and personalized adaptive learning experiences to support students’
individual needs. Educational institutions implementing these systems should begin with
small-scale pilots in high-density classrooms, establish clear metrics for success (e.g., 95%
seat allocation efficiency, 5bms response times), and develop comprehensive privacy policies
before deployment.
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