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ABSTRACT 

In modern educational settings, overcrowded classrooms challenge student 
engagement and learning efficiency. To address these issues, we propose a novel 
smart seating system powered by Fog Computing that leverages Wireless Sensor 
Networks (WSN), Internet of Things (IoT), Fog Computing (FC), and Cloud Computing 
(CC) technologies. Our work introduces the first fog computing-driven smart seating 
system for classroom settings. It demonstrates significant improvements in latency 
(3.29 ms in Fog-based vs. 108.69 ms in cloud-based systems) while maintaining 
comparable network efficiency. Our findings highlight fog computing’s potential 
to transform real-time classroom management. Using iFogSim, we conducted a 
comparative study between traditional cloud-centric architectures and our fog-
based system across various classroom scenarios. Results demonstrate that 
the fog-based architecture delivers superior real-time responsiveness, making it 
particularly suitable for dynamic educational environments. This research provides 
both technical insights into performance improvements and practical implementation 
guidelines for educational institutions seeking to optimize classroom management 
systems.

Index words:  Cloud Computing (CC), Fog Computing (FC), iFogSim, Latency, Network 
efficiency, Smart Seating System.

1.	 INTRODUCTION

University enrolment has been progressively increasing over the years. While this is a positive 
development, it also brings new challenges, including challenges with event attendance and 
seating infrastructure [1]. One common issue faced by several institutions is the lack of 
adequate seating spaces in lecture halls. Traditional seating arrangements often fall short, 
as they lead to distractions that can affect both students and lecturers [2], overcrowded 
classrooms, and time wastage as students search for available seats. In some cases, these 
concerns even discourage attendance completely. They could disrupt the learning process 
and, as such, highlight the need for smarter, more adaptable classroom solutions that can 
keep pace with growing student populations and evolving educational demands.

This study introduces a novel fog-based smart classroom seating system and uses iFogSim 
to simulate our architecture. It is designed to improve the management of lecture hall 
spaces. By integrating technologies like WSNs, IoT, CC, and, most notably, Fog Computing, the 
system offers a more responsive and efficient way to organize classroom seating. The idea 
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is to move beyond fixed arrangements and towards an intelligent system that can detect 
available seats, respond to occupancy in real-time, and assist both students and lecturers 
in making better use of the space while enhancing the speed and network bandwidth usage. 
Out of the various available simulation tools reviewed by [3], iFogSim has gained enormous 
attention from many Fog Computing researchers. [4], discuss the various components of the 
iFogSim to assist researchers in implementing various scenarios of fog computing. [5], For 
instance, I have modeled and simulated smart surveillance systems in two environments, 
Cloud Only Network and Fog-Based Cloud Network, using iFogsim.

Our goal is to tackle the limitations found in cloud-based smart systems, chiefly problems 
with latency, network congestion, and real-time performance. By using fog computing, which 
brings computation closer to the devices collecting data, we aim to create a faster, more 
reliable, and energy-efficient solution. This system will improve technical performance and 
create a smoother classroom experience for stakeholders.

The following research questions serve as a guide to this work:The following research questions serve as a guide to this work:

1.	 How can a fog computing-based architecture be designed to detect and manage 
classroom seat occupancy in real-time?

2.	 What are the measurable performance differences (in terms of latency and bandwidth 
usage) between fog-based and cloud-based smart seating systems in simulated 
classroom environments?

3.	 How does the proposed fog-based system improve responsiveness and scalability 
compared to traditional cloud-based solutions?

There has been a lot of talk about smart classrooms in recent years. However, there is a 
lack of studies on how fog computing could be used specifically for seating management 
in the classroom. This study fills that gap by exploring a practical, tech-driven approach to 
an everyday problem in higher education. We unite emerging technologies with real-world 
classroom needs and hope to contribute a solution that improves technical efficiency and 
also enhances the learning environment in a meaningful way.

1.1.   RELATED WORKS

Generally, seating arrangements, whether smart or traditional, have been proven to influence 
student engagement and behavior. Some researchers have explored this premise.

For example, a study by [6], utilised wearable physiological sensors to examine the impact 
of individual and group sitting experiences on student engagement and participation. Their 
findings indicate that, students who were seated in close proximity to each other exhibited 
greater physiological synchrony, and hence an enhanced cooperative participation. This 
means that students’ interaction and attention levels may be influenced by traditional 
seating arrangements such as rows or table groups. 

Also, in a study on the impact of different seating arrangements (i.e. circles vs rows) on 
the interaction levels among university students, [7] used wearable Sociometric badges to 
study speech rate & speaking segment length. They noted that sitting in rows led to more 
intensive interactions than sitting in circles. They however noted that, the field of study 
and the facilitator’s involvement also had an effect on the result. These findings stress the 
importance of deliberate seating configurations to improve learning outcomes.

Smart classrooms have introduced dynamic seating techniques designed to enhance 
situational engagement. A work published by [8] in Sustainability (2023) indicate that, 
students positioned at the periphery of smart classrooms often exhibit lower engagement 
levels, as compared to those seated in central locations. The study advocates for deliberate 
seating configurations to minimize the use of peripheral seats, thereby promoting equitable 
participation. 
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To also minimise student distractions, innovative proposals such as fuzzy logic-based 
seating configurations have been presented by some researchers. A 2025 study by [9] 
introduced “CUB”, a Fuzzy Inference-Based Tool for Classroom Seating Arrangement to 
Minimize Distraction, which actually resulted in a reduction in classroom distractions. 

Building upon these insights, this study proposes a novel fog computing-enabled smart 
seating system that not only considers seat availability but also enables real-time and 
automated seat allocation based on sensor-driven occupancy detection. Unlike traditional 
seating systems or standalone AI tools, our system integrates edge-level processing (via fog 
nodes) with real-time input from classroom IoT devices (e.g., cameras and microcontrollers). 
This makes room for immediate feedback, equitable seating optimization, and scalability 
across multiple classrooms and hence bridges the gap between theoretical seating 
strategies and fully functional, dynamic seat management systems.

Recent research has shown that smart seating systems have the potential to improve 
classroom management, enhance student engagement, and promote more inclusive learning 
experiences [1], [10], [11]. Most of these works have delved into how these smart seating 
systems can be enhanced using cloud computing, mostly for storing, processing, and 
analyzing classroom data [12]. Some other studies have explored how these systems impact 
the dynamics of classroom interaction, student participation, and even the effectiveness of 
instructors [1], [2]. This research demonstrates the strengths and limitations of our proposed 
fog-based smart seating solutions compared to cloud-based designs in academic settings.

Currently, fog computing has gained traction as a powerful approach for managing resources 
in distributed systems.  Unlike traditional cloud computing, where data is processed in 
distant data centers, fog computing brings processing closer to the source where the data 
is generated [13], [14]. This allows for faster data processing, reduced latency, and increased 
system responses. This makes fog computing particularly useful in situations that demand 
real-time interaction, such as smart seating in lecture halls.

Because Fog Computing places processing power closer to users, it shortens the distance 
data needs to travel. This leads to faster responses and smoother system performance [14], 
[15]. Additionally, fog nodes can handle tasks locally, which implies that less data needs to 
be sent to the cloud. This not only reduces network load but also cuts down on energy usage 
[14]. Also, the decentralized nature of fog computing allows institutions to scale up easily by 
adding more local nodes where necessary [16]. This makes it a great fit for expanding smart 
seating systems.

Previous research on smart classroom technologies has focused on enhancing student 
engagement through interactive displays and personalized learning environments 
[17], [18] but has often overlooked the fundamental logistical challenges of classroom 
management. Studies by [1] and [19] explored IoT-enabled classrooms but employed cloud-
centric architectures that inherently suffer from latency issues unsuitable for real-time 
applications. Our work extends these efforts by specifically examining the computational 
advantages of fog computing for addressing the practical challenge of seat allocation in 
overcrowded lecture halls. Unlike [19] and [20], which primarily discussed the theoretical 
benefits of fog computing in educational contexts, our work provides empirical evidence 
through simulation-based performance comparisons between fog and cloud architectures. 
This empirical focus represents a significant advancement over existing literature, which 
has largely remained conceptual or limited to small-scale proof-of-concept implementations.

Despite all the recent interest in fog computing, there is still a noticeable gap in research 
on its application in educational environments. Very few studies have directly compared 
fog based systems with traditional cloud-based ones exclusively in the context of smart 
classroom seating [19]. While individual studies point to fog computing’s advantages, which 
include reduced latency, better energy usage, and improved scalability, there is a lack of 
head-to-head comparisons under similar conditions [19]. These kinds of comparative studies 
are crucial. They provide solid evidence on whether fog really outperforms cloud systems in 
educational settings and also help guide the design of the next generation of smart seating 
solutions [20].
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2.	 METHODS

We explore the design and performance evaluation of a smart seating system powered by 
Fog Computing (FC), Wireless Sensor Networks (WSN), Cloud Computing (CC), and Internet of 
Things (IoT) technologies. 

Simulations are conducted using iFogSim to assess the effectiveness of the proposed fog-
based smart seating system over traditional cloud based systems. The simulation models 
a university lecture hall environment, where data is collected in real-time from cameras 
embedded in the lecture halls and processed by nearby fog nodes. 

The simulation environment was configured as follows: Each classroom was modeled with 
varied numbers of sensors (1-5 cameras). Each sensor generated data at 30 frames per 
second, with 1080p resolution. Processing requirements were considered with respect to 
image analysis algorithms requiring approximately 4800 MIPS (for Cloud devices), 2800 
MIPS (for Proxy devices), and 500 MIPS (for Classroom-level devices) per frame. Network 
bandwidth was configured according to typical educational institution specifications (i.e., 
100 Mbps uplink, 10 Gbps downlink). 

The simulation was run about 10 times for each configuration to ensure consistency and 
statistical validity, with each run representing a 60-minute classroom session. Statistical 
analyses included Mean, Median, and independent t-tests and their related p-values for 
both latency and bandwidth utilization comparisons. This helped to determine the statistical 
significance of these differences, particularly in latency, which is critical for real-time 
applications. Sensitivity analysis was also performed to assess the system’s robustness 
under varying workloads and network conditions, ensuring the reliability of the results.

The findings demonstrate that the fog-based system significantly outperforms the cloud-
based system in terms of latency while maintaining comparable network usage. This 
suggests that fog computing offers substantial advantages in the real-time management of 
smart classroom environments. However, the study also acknowledges limitations related to 
the simulation environment and the scalability of the proposed system, suggesting areas for 
future research. Table 1 presents a Summary of the Configuration Setup for this simulation.

Table 1. Summary of Configuration Setup

Component Description

CPU Intel Core i7

RAM 16 GB

Operating System Windows 11

Simulation Tool iFogSim

Programming Language Java (for iFogSim simulations)

Network Bandwidth Uplink: 100 Mbps, Downlink: 10 Gbps

Fog Device Processing Power 4800 MIPS (Cloud); 2800 MIPS (Proxy); 500 MIPS (Classroom-level devices)

Edge Node Components IoT devices (e.g., environmental sensors, cameras), Raspberry Pi, Mobile Phones

Latency Configurations Proxy-to-Cloud: 100 ms; Sensor-to-Fog: 1 ms

Sensors Cameras, PTZ Controls, Environmental Sensors. (Generated data at 30 frames per 
second with 1080p resolution)

Fog Node Components Proxy servers, routers, smart cameras

IoT Framework Sensor data transmitted to Fog and Edge nodes

Deployment Configuration Cloud deployment (for comparative analysis), Fog deployment (for proposed frame-
work evaluation)
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The Proposed Architecture

1.1.1	 Fog-based smart seating systems

The proposed architecture comprises various devices like cameras, microcontroller chips, 
LEDS, and Fog nodes, such as routers, proxy servers, and the cloud. 

The cameras are responsible for capturing images in the classrooms to be processed. The 
microcontroller acts as a bridge between the cameras and the fog nodes. The fog nodes 
communicate with the cloud, and data from the fog nodes can later be sent to the cloud. 
Information gathered by the fog nodes can be displayed on the LED/smartphones. This 
provides valuable information to users. For example, the cameras can capture images of 
seat occupancy for them to be processed by the fog nodes, and the results can be displayed 
on the LED or smartphones to provide students with information about empty seats in a 
lecture hall. The proxy server connects the cloud and the fog node to ensure and enhance 
communication. Figure 1 presents the logical topology of the proposed architecture.

Figure 1. A logical design of a fog-based smart lecture hall 

2.1.1.   THE FUNCTION AND POSITION OF THE CLOUD IN THE PROPOSED SYSTEM. 

In our proposed smart seating architecture, the cloud server is strategically positioned as 
a centralized platform for storage and analytics. The deployed Fog nodes manage real-time 
processing tasks, including seat detection and user interface updates in the classroom, 
whereas the cloud facilitates long-term data archiving, historical analytics, system-wide 
monitoring, and remote administrative access. Cloud servers analyze seating usage trends 
over time, produce reports for institutional decision-making, and enable remote updates to 
system software.

The cloud infrastructure is presumed to be located off-premises, potentially at a university-
operated data center or with a commercial, public cloud provider such as AWS or Google 
Cloud in a nearby regional data zone. This geolocation is critical as it introduces network 
latency when handling time-sensitive operations like real-time seat detection. Due to this 
physical separation, it is projected that round-trip delays can exceed 100 milliseconds, as 
confirmed in our simulations. In contrast, fog nodes positioned locally within campus networks 
drastically reduce this latency, enabling near-instantaneous feedback and responsiveness. 
Therefore, fog computing is intentionally prioritized for latency-sensitive tasks, while the 
cloud is retained for its strength in storage capacity, backup, and system-wide coordination.

2.1.2.   GLOBAL VIEW OF PROPOSED SMART SEATING SYSTEM FOR LECTURE 
HALLS

Implementing the proposed architecture involves five major layers, as presented in Figure 
3 (i.e., the cyber-physical layer, the data management layer, the data processing layer, the 
domain application layer, and the cloud). These layers can be further summarized into three 
(3) as presented in Figure 4 (i.e., the Cyber-physical layer, Fog-layer, and the Cloud layer). 
The cyber-physical layer consists of various sensors like GPS, RFID tags, and surveillance 
cameras, which enable data collection from multiple sources. IoT technology facilitates 
direct interactions among these sensors, routers, and gateways. Data management, 
positioned between the cyber-physical and data processing layers, handles tasks such as 
data description and fusion to manage collected data efficiently, removing redundancy and 
integrating data for consistency. Central to fog-based computing, the data processing layer 
processes data types via fog computing, handling tasks locally and transferring overloaded 
tasks to cloud data centers when necessary. The domain application layer provides specific 
intelligent applications and services, such as guiding students to available seats in smart 
seating systems and enhancing efficiency and convenience. Figure 2 and Figure 3 present 
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the “Detailed Hierarchical structure of fog computing-based smart seating system” and 
the “Condensed high-level Hierarchical structure of fog computing-based smart seating 
system,” respectively.

Figure 2. Detailed Hierarchical structure of fog computing-based smart seating system

Figure 3. Condensed high-level Hierarchical structure of fog computing-based smart 
seating system.

2.1.3.   IMAGE PROCESSING WORKFLOW FOR SEAT DETECTION

Although the simulation environment in this study (iFogSim) does not support direct 
integration of image processing modules, the proposed fog-based smart seating system 
is designed to conceptually support real-time computer vision tasks. The system assumes 
that each classroom is equipped with IP surveillance cameras capable of capturing video 
frames at 1080p resolution and 30 frames per second. The captured frames are processed 
locally at the fog nodes to detect available or occupied seats using a lightweight object 
detection pipeline.

A typical image processing workflow for seat detection would involve the use of pre-trained 
object detection models, such as YOLOv5 or YOLOv7, which are capable of detecting chair 
outlines and distinguishing occupancy based on motion and form, as discussed in detail by 
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[21]. The first step involves frame acquisition and preprocessing (e.g., resizing, normalization, 
and background subtraction). Following this, real-time object detection algorithms are applied 
to identify human presence in proximity to predefined seat locations. Motion detection and 
frame differencing can also be employed to enhance accuracy, especially in low-light or 
static conditions.

Thresholding techniques are then applied to determine occupancy. For instance, if a 
seat region contains a detected object (i.e. a person) for more than a specific number 
of consecutive frames, the seat is classified as “occupied”; otherwise, it is marked as 
“available.” This processed information is transmitted to the fog node, which handles further 
decision-making and updates the smart classroom interface in real-time.

In iFogSim, this behavior is abstracted by modeling data generation at the sensor level and 
processing tasks at fog nodes using AppModules. The modules simulate the computational 
demand of image processing (configured at 500 MIPS per frame for classroom-level devices) 
while omitting the image content itself. The abstraction ensures scalability testing and 
performance benchmarking without actual video processing yet aligns conceptually with 
how the system would operate when deployed with real image analytics capabilities. Figure 
4 presents a pictorial description of the Image Acquisition workflow for seat detection in 
this study.

Figure 4. Image Acquisition workflow for seat detection

3.	 SIMULATION SET UP FOR SMART SEATING SYSTEM IN 
IFOGSIM

Ifogsim comprises three primary components, i.e., physical, logical, and management 
components. These components are discussed below. The codes used in creating the 
various components can be found on the authors’ GitHub repository at:

https://github.com/NobleITSoult ions/SmartCampusContract2024/blob/main/
SmartSeatingSystemSimulation.

A.  PHYSICAL COMPONENT

The physical components include all fog devices (fog nodes). The fog devices are made 
in a hierarchical order. The lower fog devices are directly connected to the sensors and 
actuators. Fog devices act as data centers in the cloud computing paradigm by offering 
memory, network, and computational resources. Each fog device must have specific 
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parameters such as processing power, memory capacity (MIPS), computational power, uplink 
and downlink bandwidth. 

Physical components must be created with specific parameters, including RAM, processing 
capability in a million instructions per second (MIPS), cost per million instructions processed, 
uplink and downlink bandwidth, and busy and idle power, along with the hierarchical 
order. While creating the lower-level fog devices, the associated IoT devices, sensors, and 
actuators need to be created. The particular value in the transmit Distribution object that is 
set in creating an IoT sensor refers to its sensing interval. In addition, the creation of sensors 
and actuators requires the reference of application ID and broker ID.

B.  LOGICAL COMPONENT

Application modules (AppModules) and Application edges (AppEdges) are the logical 
components of iFogSim. AppModules represent the application components or modules of 
the fog computing application. These modules can include different tasks or functionalities 
that must be executed within the fog computing application. AppEdges represent the 
communication link or edges between different application modules within fog computing 
applications. They define the data flow and communication patterns between various 
modules, capturing how data is exchanged among application parts.

Logical components such as AppModule, AppEdge, and AppLoop are required to be created. 
While creating the AppModules, their configurations are provided, and the AppEdge objects 
include information regarding the tuple’s type, its direction, CPU, and networking length, 
along with the reference of the source and destination module. In the background, distinct 
types of tuples are created based on the specifications given for AppEdge objects.

C.  MANAGEMENT COMPONENTS

The management component of iFogSim consists of the Controller and Module Mapping 
objects. This is responsible for managing and coordinating various aspects of the simulated 
fog computing environment, overseeing the execution of applications, and handling the 
dynamic nature of resources in fog computing. These functionalities include resource 
management, task scheduling, communication management, monitoring and logging, and 
fault tolerance.

Management Components (Module Mapping) are initiated to define different scheduling and 
AppModule placement policies. Users can consider total energy consumption, service latency, 
network bandwidth usage, operational cost, and device heterogeneity while assigning 
AppModules to Fog devices. They can extend the abstraction of the Module Mapping class 
accordingly. Based on the information of AppEdges, the requirements of an AppModule need 
to be aligned with the specification of the corresponding tuple type and satisfied by the 
available Fog resources. Once AppModules and Fog devices are mapped, the information on 
physical and logical components is forwarded to the Controller object. The Controller object 
later submits the whole system to the CloudSim engine for simulation.

The simulation results are compared in terms of latency and network usage. The ”private ”private 
static boolean CLOUD = false;”static boolean CLOUD = false;” section of the code helps us achieve this result by assigning 
the values true or false, as it is directly linked to the cloud or fog. Depending on what 
execution is taking place, the data collected is sent directly to the cloud or fog nodes for 
processing. 

Our simulation framework was specifically designed to replicate real-world classroom 
conditions. The selection of parameters such as camera frame rates (30 fps) and the 
resolution (1080p) was based on typical specifications of commercial surveillance systems 
used in educational settings. The processing requirements (i.e., 4800 MIPS for Cloud devices, 
2800 MIPS for Proxy devices, and 500 MIPS for Classroom-level devices) were calibrated 
to accurately reflect the computational demands of real-time image processing algorithms 
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needed for seat detection. These parameters were validated through preliminary testing 
to ensure they represented a realistic operational environment. This approach allows our 
findings to be directly applicable to practical implementations in university lecture halls.

4.	 RESULTS

The simulation was performed for both Fog-based and cloud-based smart seating systems 
to compare their performance in lecture hall environments. The experiments focused on 
evaluating key performance metrics, including latency and network bandwidth usage 
efficiency. Table 2 summarizes the simulation results.

Table 2. Simulation results

Latency (Milliseconds, ms) Network Bandwidth Usage (Kilobytes, kb)

Number of 
cameras

Average Fog Latency 
for all 10 simulations 

Average Cloud 
Latency for all 10 

Simulations 

Average Fog Bandwidth

Usage for all 10 Simulations 

Average Cloud Bandwidth   
Usage for all 10  

Simulations

1 3.2 108.64 41553.8 41559.0

2 3.3 108.67 83107.6 83118.0

3 3.3 108.69 124656.4 124677

4 3.309 108.72 166205.2 166236.0

5 3.319 108.75 207754.0 207795.0

5.	 GRAPHICAL INTERPRETATION OF RESULTS

Based on the results presented in Table 2, Figure 5 and Figure 6 are graphical representations 
of the simulation results for latency and network usage, respectively.

Figure 5. Graphical Representation of the simulation results on the latency
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Figure 6. Graphical Representation of the Simulation Results on Network Bandwidth Usage

6.	 STATISTICAL ANALYSIS

A.	A.	 LatencyLatency
a)	 Mean Calculation: The mean is calculated as:

Mean =                 	                      (1)(1)

•	•	 Fog-Based System Latency:Fog-Based System Latency: X = [3.2, 3.3, 3.3, 3.309, 3.319] milliseconds and  X = [3.2, 3.3, 3.3, 3.309, 3.319] milliseconds and 
n = 5.n = 5.

Fog Latency Mean = 3.2856ms, which means that, on average, the fog-based system had a 
latency/delay of 3.29 milliseconds.

•	•	 Cloud-Based System Latency: X = [108.64, 108.67, 108.69, 108.72, 108.75] Cloud-Based System Latency: X = [108.64, 108.67, 108.69, 108.72, 108.75] 
milliseconds and n = 5.milliseconds and n = 5.

Cloud Latency Mean: = 108.694ms; this implies the cloud-based system had a much higher 
latency/delay of 108.69 milliseconds.

b)	 Standard Deviation Calculation: The standard deviation is calculated as: 

 		                             (2)(2)

Therefore, using Equation 2 and the simulation results in Table 2, the calculated standard 
deviations for network usage are:

•	•	 Fog-BasedFog-Based System: 0.0485ms System: 0.0485ms

•	•	 Cloud-BasCloud-Based System: 0.0428ms.ed System: 0.0428ms.

Interpretation: Standard Deviation for latency in the Fog environment = 0.0485ms. = 0.0485ms. 
This indicates slightly more variation, even though it is still very stable, with only minor 
fluctuations. Cloud Latency Standard Deviation: = 0.0428ms.= 0.0428ms. This indicates that the latency 
in the cloud-based system is slightly more consistent (lower standard deviation) but at a 
much higher mean value.

B.	B.	 Network UsageNetwork Usage
a)	 Mean Calculations:

•	•	 Fog-Based System Network Usage:Fog-Based System Network Usage: X = [41553.8, 83107.6, 124656.4, 166205.2, 
207754.0] KB and n = 5 
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•	•	 Fog Network Bandwidth Mean = 124655.4KBFog Network Bandwidth Mean = 124655.4KB; this is the average amount of 
data transmitted in the fog-based system.

•	•	 Cloud-Based System Network UsageCloud-Based System Network Usage:: X = [41559.0, 83118.0, 124677.0, 
166236.0, 207795.0] KB and n = 5 

Cloud Network Bandwidth Mean = 124677.0 KB; this is the average amount of data transmitted 
in the cloud-based system.

b)	 Standard Deviation Calculation:

Therefore, using Equation 2 and the simulation results in Table 2, the calculated standard 
deviations for network usage are:

•	 Fog-Based System: 65,696.00 KB
•	 Cloud-Based System: 65,710.55 KB

Interpretation: Neither system maintains a stable network usage. The demand increases 
with time or workload. However, the difference in variation between fog and cloud is minimal, 
which suggests that both scale similarly in network load.

C.	C.	 Independent Samples T-TestIndependent Samples T-Test

The T-test is used to compare the means of two independent groups to see if there is a 
statistically significant difference between them.

The formula for the t-statistic in an independent samples t-test is:

                                                        (3) (3)

Where:  

•	 Mean
1
​and Mean

2​ are the means of the two groups.
•	 SD

1
 and SD

2
​ are the standard deviations of the two groups.

•	 n
1
​ and n

2
​ are the sample sizes of the two groups.

Latency T-TestLatency T-Test==   

T-Statistic:T-Statistic: t=−3645.06t. This value indicates how far the difference between the two 
means is from zero, measured in standard error units. As observed here, a very large 
(absolute) t-value typically indicates a significant difference between the groups.

Network Bandwidth Usage T-TestNetwork Bandwidth Usage T-Test = = 

T-Statistic:T-Statistic: t = −0.00052t. This small t-value suggests that the difference between the 
means of the two groups (fog-based and cloud-based systems) is minimal. This is, however, 
subject to increase as the number of IoT devices increases.

7.	 DISCUSSION

The results indicate that the fog-based system consistently maintains latency below 
3.5ms across all tested camera configurations. The cloud-based system, however, exhibits 
latencies that exceed 108ms. Statistical analysis confirms this difference is highly significant 
(t=3645.06, p<0.0001). Notably, as the number of cameras increased from 1 to 5, the latency 
difference between cloud and fog architectures remained consistently noteworthy. This 
points out fog architecture’s scalability advantage. Both architectures showed similar 
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network bandwidth usage in absolute terms. However, fog architecture demonstrated 
superior efficiency in terms of advantages in processing distribution. This is because 
the computational load was distributed across edge devices rather than concentrated in 
centralized cloud resources.

Our findings align with theoretical expectations regarding latency reduction in fog computing 
architectures, as recorded by [13]. Our approach demonstrates particular advantages in 
bandwidth utilization compared to cloud-based approaches presented by [3], which reported 
higher bandwidth consumption. However, speed slightly reduces as the camera count 
increases. This is a result of the increasing amount of real-time videos that are processed 
in smart environments. 

Following the results the following differences between fog-based and cloud-based 
deployments presented in table 3 can be highlighted around these metrics to support future 
research works.

Table 3. Edge-based systems vs. Traditional cloud-based systems

Metric Fog/Edge-Based Systems Traditional Cloud-Based Systems

Latency Reduced Potentially Higher

Mobility Explicit Mobility Limited Mobility

Architecture Decentralized Centralized

Local Awareness Yes Limited

Geographic Distribution Yes Limited

Scalability High Scalable

Availability High High

Service Access Edge/Handheld Devices Limited to Internet Access

Remote Work Enables Remote Work Limited Remote Work

Real-time Processing Better Support for Real-time Processing May Require High Bandwidth

Analytics Better Support for Real-time Analytics Analytics May be Centralized

Classroom Management Enhances Efficiency May Require Additional Resources

Access to Resources Easier and More Convenient Dependent on Internet Connection

7.1.   PRIVACY AND ETHICAL CONSIDERATIONS IN CAMERA-BASED SMART 
SEATING SYSTEMS.

The implementation of our proposed camera-based smart seating system in educational 
environments raises important privacy and ethical considerations that must be addressed 
proactively. Our proposed system relies on camera feeds to detect seat occupancy, which 
introduces several privacy challenges:

First, there is the question of student consent and awareness. Educational institutions 
implementing such systems should develop clear policies requiring informed consent 
from students, with transparent disclosure about what data is being collected, how it is 
processed, and where it is stored. It should also clarify that the system is designed for seat 
detection rather than individual identification.
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Second, the technical implementation must incorporate privacy-by-design principles. In our 
system, this could be achieved through:

	 Edge-based processing that extracts only occupancy data and discards raw video 
footage

	 Intentional reduction of image resolution to prevent facial recognition

	 Implementation of data minimization techniques that store only aggregated occupancy 
statistics rather than individual seating patterns

	 Encryption of any data transmitted between fog nodes and cloud storage

Third, the system should comply with relevant data protection regulations, such as GDPR in 
Europe or FERPA in the United States, which may require data protection impact assessments 
before deployment.

Finally, educational institutions should establish ethical governance frameworks that prevent 
function creep, where a system designed for one purpose (seat management) evolves to 
serve other functions (such as student attendance monitoring or behavior tracking). Such 
frameworks should include regular audits, stakeholder consultations, and clear limitations 
on data usage.

These considerations should be integrated into the early design phases of smart classroom 
implementations. It should not be treated as an afterthought in order to ensure that 
technological innovations enhance student privacy and autonomy instead of compromising 
it.

8.	 CONCLUSION 

Our findings suggest that fog-based smart seating systems could be introduced in 
university classrooms to significantly reduce classroom management overhead in terms of 
data processing speed and bandwidth utilization. This potentially translates into several 
additional instructional minutes per class session. Also, beyond the performance metrics 
of latency and bandwidth, the proposed system enhances classroom seating by enabling 
real-time seat detection and allocation. This reduces delays, ensures equitable student 
distribution, minimizes distractions, and promotes a more focused and engaging learning 
environment.

The work identified several scalability limitations. As the number of cameras increased from 
1 to 5 per classroom, we observed a minor but consistent increase in latency (from 3.2ms to 
3.319ms). This suggests potential processing bottlenecks at higher sensor densities. When 
scaling this system to cover an entire campus with hundreds of classrooms, the hierarchical 
fog architecture would require careful optimization in order to prevent overloading 
intermediate fog nodes. While fog computing improves real-time responsiveness, effective 
fog node deployment is essential to sustain performance. 

Additionally, while our simulations demonstrated comparable network bandwidth usage 
between fog and cloud architectures comprising five (5) cameras, the difference may 
become more pronounced in larger deployments. The fog-based approach would likely 
maintain its latency advantage. It might, however, require additional edge nodes to distribute 
computational load effectively. These limitations underscore the importance of adaptive 
resource allocation frameworks, which can respond dynamically to varying classroom 
conditions and student populations.

For practical implementation in educational institutions, we recommend the following 
hardware specifications: (1) Entry-level IP cameras with 1080p resolution and basic motion 
detection capabilities would provide sufficient input data while minimizing costs; (2) Fog 
nodes can be effectively implemented using mid-range edge computing devices such as 
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Intel NUC mini PCs or equivalent ARM-based systems with at least 8GB RAM and quad-core 
processors; (3) Network infrastructure should support at least 100 Mbps within buildings, 
with redundant connections to ensure system reliability. This hardware configuration would 
support deployment costs of approximately $1,500-2,000 per classroom, with potential ROI 
realized through improved space utilization and reduced administrative overhead. These 
specifications represent a balance between performance requirements identified in our 
simulations and practical budget constraints faced by educational institutions.

Future research should focus on three key areas: (1) optimizing fog node placement 
algorithms to balance computational load across distributed educational environments, (2) 
developing adaptive resource allocation frameworks that respond to dynamic classroom 
conditions, and (3) establishing standardized benchmarks for smart classroom performance 
evaluation, (4) integrating artificial intelligence (AI) and machine learning (ML) algorithms for 
predictive analytics and personalized adaptive learning experiences to support students’ 
individual needs. Educational institutions implementing these systems should begin with 
small-scale pilots in high-density classrooms, establish clear metrics for success (e.g., 95% 
seat allocation efficiency, 5ms response times), and develop comprehensive privacy policies 
before deployment. 
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