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ABSTRACT 

One of the central challenges within the domain of computer vision is object detection, 
encompassing the identification and localization of specific entities within an image. 
Introducing a pioneering approach, the YOLO (You Only Look Once) algorithm emerged 
in 2015, executing object detection within a singular neural network. This innovation 
triggered a profound transformation within object detection, ushering in remarkable 
advancements beyond the capacities of the preceding decade. Subsequently, YOLO 
underwent successive iterations, culminating in eight versions that have earned 
prominent stature among leading object identification algorithms. This recognition is 
attributed to YOLO’s integration of state-of-the-art concepts prevalent in the realm 
of computer vision research. Particularly noteworthy is the latest iteration, YOLOv8, 
which demonstrates superior performance in terms of both accuracy and speed 
when juxtaposed with YOLOv7 and YOLOv5. This study delves into the most recent 
strides in object detection as an important field of computer vision, which has been 
seamlessly assimilated into YOLOv5, YOLOv7, YOLOv8, and their antecedents. The 
introductory section, delineating the foundational importance of object detection, 
aligns seamlessly with the research’s overall narrative. The elucidation of object 
detection’s significance within diverse contexts, such as vehicle identification 
across varying scales and environments, underscores its multifaceted utility. The 
refinement process further enhances the discernment of YOLO’s progression through 
its iterations, elucidating the evolution from the pre-eminent YOLOv1 to the recent 
apex represented by YOLOv8. Notably, the text now highlights YOLOv8’s distinc- tive 
advancements in accuracy and speed over YOLOv7 and YOLOv5, lending heightened 
clarity to the incremental evolution of the algorithm. The augmentation extends 
to the exploration of YOLOv8’s amalgamation with contemporary computer vision 
concepts. These concepts’ incorporation is now underscored, demonstrating how 
YOLOv8 benefits from the strides made in computer vision research. The final passage 
captures the thrust of the research, examining the application of the developed 
object detection models within the specific context of inland waterway vessels. 
The distinct stages of detection, the addition of new classes, manual annotation, 
and the process of network training are now presented with greater precision, 
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ensuring a lucid understanding of the methodology. Moreover, the description of the 
combined model’s competence to detect all 85 classes with a measure of accuracy 
enhances the comprehensiveness of the study’s contributions.

Index Terms: Object Detection, YOLO, YOLO8, Autonomous

I.	 INTRODUCTION

BJECT detection is a well-known research topic that has been extensively studied 
in computer vision systems. Object detection objective in many fields is to 
identify the location and classify the objects that are of interest on the scene.
The analysis of detection methods involves the utilization of different techniques 
to extract features that are primarily designed for detecting vehicle objects 
at multiple scales and in various environmental conditions. In this context, the 
term “object” typically refers to entities that are either human-made or possess 
a high degree of structure (such as vehicles, buildings, ships, etc.), and which 
are distinguishable from complex background environments and landscapes. Over 
the past two decades, the improved accuracy of image interpretation in these 
applications has allowed them to fulfill the necessary requirements in real-world 
situations, which has in turn greatly advanced the development of Earth observation 
technologies and object-detection methodologies. Many computer vision fields rely 
on moving object detection as a fundamental research component. Over the last 
few decades, numerous detection methods have been suggested. Existing surveys 
have mostly concentrated on the accuracy of detection, but practical detection 
tasks were not taken into account. However, in various application tasks, the 
training modes and requirements differ significantly. Moving object detection 
serves as the initial stage in numerous computer vision processes aimed at 
identifying moving objects that are not part of a scene, known as the foreground. 
Afterward, the objects are isolated from the background through segmentation. 
Several intelligent monitoring tasks rely on moving object detection and foreground 
segments, including but not limited to target tracking, behavior analysis, traffic 
monitoring, visual surveillance, and human-machine interaction [1]–[4].

The field of computer vision is currently experiencing a widespread use of deep 
learning models, thanks to the development of Deep Convolutional Neural Networks 
(DC- NNs) and the increasing computational power of GPUs. Object detection aims 
to identify visual objects belonging to specific classes, such as TV/monitor, books, 
cats, humans, etc., and determine their location by enclosing them in bounding boxes. 
Once located, these objects are then classified into their respective categories. 
Object detection is a task that involves detecting and categorizing a diverse range 
of objects within an image. It involves identifying the location of an object in an 
image, drawing a bounding box around it, and then determining the category it 
belongs to. Object detection also emphasizes the recognition of instances belonging 
to predefined categories. The advancement of object detection can be divided 
into two distinct historical phases. The period before 2014 was dominated 
by traditional methods, whereas the era following 2014 was characterized by 
the emergence of deep learning-based methods. The architectures of these two 
phases differ in terms of accuracy, speed, and hardware resources required. When 
compared to traditional techniques, Convolutional Neural Networks (CNNs) have 
superior architecture and are significantly more expressive, which contributes to 
their improved performance [5].

In this paper, different methods of object detection will be -roughly- overviewed. 
YOLO (You Only Look Once) as a popular object detection method, will be compared 
-briefly- to other state-of-the-art object detection methods through some relevant 
studies. The rest of this paper will cover the application of detecting objects for 
inland waterway vessels through three stages and combined trained and pretrained 
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model. The first one, is to detect the objects listed in the ready trained list from the 
coco dataset that contains 80 classes and includes objects like:(person, bird, boat, 
... and etc.). The next stage of this system is to add five classes which are more 
popular in the environment of the inland vessels through their waterway path and 
start to train and validate the output of a certain set. The selected classes which 
are added at this step are as follows:

•	L Shore

•	R Shore

•	Bridge Pillar

•	Crane

•	Buoyer

After doing the steps of manual annotation and labeling, the images set will be 
divided to two sub-sets: train and validate sets. The training of the YOLO8 custom 
network is done and labels are generated accordingly. The third stage of the 
system here is responsible for combining the detected output from the ready 
pretrained YOLO8 network with the new output generated from the next level 
of the 5 classes trained network. Combined model will be able to detect all 85 
classes with a measures’ accuracy as shown on results part of this paper.

II.	 OBJECT DETECTION METHODS: HISTORY AND STATE OF THE ART

Object detection is a fundamental task in computer vision that involves detecting 
the presence and location of objects in an image or video. Over the years, various 
object detection methods have been developed, each with its own strengths and 
limitations. These methods will be roughly overviewed in the next part of this paper 
section, and they could be categorized as two main big groups, as [6] states:

A.	 Traditional Methods.

B.	 Deep Learning Based Methods.

A.	 TRADITIONAL METHODS

Traditional methods of object detection involve using com- puter vision techniques 
to analyze the image and extract in- formation about the objects within it. These 
methods typically involve a series of image processing steps, including feature 
extraction, object classification, and object localization. These steps are processed 
step by step as follows:

1)	 Feature extraction: The first step in traditional object detection 
involves extracting features from the image that can be used to identify 
and classify objects. Common fea- ture extraction techniques include edge 
detection, corner detection, and texture analysis.

2)	 Object classification: Once features have been extracted, the next 
step is to classify them into different categories. This can be done using a 
variety of machine learning algorithms, such as support vector machines 
(SVMs) or decision trees.

3)	 Object localization: The final step in traditional object detection is to 
localize the objects within the image. This typically involves identifying the 
position and size of the object relative to the image frame.

There are several traditional methods of object detection that are commonly used 
in computer vision research and ap- plications, as shown in figure 1. These methods 
are including:
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1)	 Feature-based methods:

•	 SIFT (Scale-Invariant Feature Transform) features: SIFT features are a 
feature extraction technique that is commonly used in object detection and 
recognition. The technique involves identifying distinctive features in an image, 
such as corners and edges, and then matching those features to a database of 
known objects. SIFT detects and describes local features that are invariant to scale, 
rotation, and illumination changes. SIFT works by identifying key points in an image 
that are both stable and distinctive, and then describing the surrounding region 
of the image in a way that is invariant to rotation and scale changes. SIFT is quite 
accurate and robust to noise and illumination changes, but can be slow to compute 
and is patented, which may limit its use in some contexts [7].

•	 HOG (Histogram of Oriented Gradients) features: HOG features are a feature 
extraction technique that involves calculating the gradients of an image and then 
constructing a histogram of the gradient orientations. HOG computes a histogram 
of gradient orientations in an image to capture edge information and shape 
features. This technique has been used to successfully detect objects in a variety 
of applications, including pedestrian detection and face detection [8].

•	 SURF (Speeded Up Robust Features): SURF features are similar to SIFT 
features in that they involve identi- fying distinctive features in an image. However, 
SURF features are designed to be faster and more robust than SIFT features, making 
them well-suited to real- time object detection applications. SURF detects and 
describes local features that are invariant to scale, rotation, and affine distortion 
using a modified Hessian matrix. [9].

Fig. 1. Traditional Methods Based Object Detection Techniques.
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•	 ORB (Oriented FAST and Rotated BRIEF): a fusion of the FAST (Features 
from Accelerated Segment Test) keypoint detector and the BRIEF (Binary Robust 
Independent Elementary Features) descriptor that is faster and more robust 
than SIFT and SURF. ORB is less accurate than SIFT, but is more robust to lighting 
changes and has a lower memory footprint. ORB is also free to use and does not 
have any patent restrictions. Overall, both SIFT and ORB are effective methods 
for object detection, but they differ in their trade-offs between accuracy, speed, 
and robustness. The choice of which method to use will depend on the specific 
application and the properties of the images being analyzed [10].

Detailed overview of the ORB algorithm and its ap- proach to object detection could 
be listed as:

a)	 Feature Detection: ORB starts by detecting features within an image, such 
as corners or edges, that are likely to be distinctive and repeatable. ORB 
uses a modified version of the FAST algorithm for feature detection, which is 
designed to identify features with high-contrast edges.

b)	 Feature Description: Once features are detected, ORB then extracts a 
compact binary descriptor for each feature. The descriptors are designed to 
be robust to changes in lighting and scale, making them suitable for object 
detection across a wide range of conditions.

c)	 Feature Matching: After descriptors have been ex- tracted for each 
image, ORB then matches the descriptors between the target object and the 
scene image. This is typically done using a nearest- neighbor search, where 
each descriptor in the target object is compared to descriptors in the scene 
image to find the best match.

d)	 RANSAC-based Pose Estimation: Once feature matches have been 
identified, ORB uses a robust estimation algorithm called RANSAC (Random 
Sample Consensus) to estimate the pose (position and orientation) of the 
target object within the scene. RANSAC iteratively samples subsets of the 
feature matches and computes the pose estimate for each subset, selecting 
the estimate with the highest number of inliers (matches that agree with the 
estimated pose) as the final estimate.

e)	 Object Localization: Finally, once the object pose has been estimated, ORB 
can localize the object within the scene by drawing a bounding box around the 
object and overlaying it on the scene image.

Overall, the ORB algorithm is an effective and efficient traditional method for object 
detection, especially in scenarios where deep learning approaches may not be 
feasible due to limited data or hardware resources. However, it may not perform as 
well as state-of-the-art deep learning methods in complex and varied scenes or 
with highly similar objects [11] [12].

2)	 Template matching-based methods:

•	 Template matching: Template matching is a simple method of object 
detection that involves comparing an image to a template image of the object being 
detected. If the two images match, the object is considered to be present in the 
image. Template matching compares a template image with a larger search image 
at different locations and scales to find the best match, using meth- ods such as 
cross-correlation or normalized correlation [13].

3)	 Edge-based methods: These methods are often used for real-time applications, 
as they are computationally effi- cient and can work well in low light conditions 
[14].

•	 Canny edge detector: One of the earliest and most widely used edge 
detection algorithms which was introduced by John Canny in 1986. The Canny 
detector applies a series of filters to an image to identify edges, and then uses 
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non-maximum suppression and hysteresis thresholding to produce the final edge 
map. The algorithm has been shown to produce high-quality edge maps with low 
false positive rates. It detects sharp changes in intensity or color, which are then 
used to define the boundaries of objects [15].

•	Sobel operator

•	Prewitt operator

•	Laplacian of Gaussian (LoG) filter

The Sobel and Prewitt operators are simple gradient- based edge detectors that 
compute the gradient mag- nitude of an image and threshold it to obtain an edge 
map. The LoG filter is a more sophisticated approach that convolves an image with a 
Gaussian filter followed by the Laplacian operator to identify edges [16] [17].

4)	 Contour-based methods:

•	 Contour-based methods are a type of image processing technique that 
focus on identifying and analyzing the edges or contours in an image. These 
methods are com- monly used in computer vision, pattern recognition, and 
object detection. As [18] proposes, new algorithm for contour detection 
that combines both bottom-up and top-down approaches to achieve more 
accurate results.

5)	 Region-based methods:

•	 Selective search: generates a large set of region pro- posals in an image 
based on color, texture, and size similarity, which can then be classified as object 
or background regions. This algorithm involves identify- ing and localizing objects 
within an image by dividing the image into regions and analyzing each region for 
the presence of an object. These methods are com- monly used in computer vision 
applications such as object recognition and tracking [11].

6)	 Scale-invariant methods:

•	 SIFT, SURF, ORB: as described above. Scale-invariant methods are a type of 
object detection technique that aim to identify objects at different scales 
within an image. These methods are commonly used in computer vision 
applications such as object recognition, tracking, and surveillance [19].

7)	 Scale-space methods: refer to techniques that analyze images at different 
scales to detect objects of varying sizes. These methods are based on the principle 
that objects in images can appear at different scales due to their size, distance 
from the camera, and other factors. By analyzing images at multiple scales, scale-
space methods can detect objects regardless of their size or location in the image. 
One popular scale-space approach is:

•	 The Laplacian of Gaussian (LoG) operator, which involves convolving the image 
with a Gaussian filter at different scales and then applying the Laplacian 
operator to the filtered image. The resulting image highlights regions with high 
intensity variations at different scales, which can be used to detect objects 
of different sizes [20].

8)	 Correlation-based methods: Correlation-based methods are a type of object 
detection technique that involve computing the correlation between an image and 
a tem-plate to identify objects. Correlation-based methods for object detection 
describe several variations of methods, including:

•	 Normalized cross-correlation (NCC): a method for comparing two images by 
computing their correlation coefficients at each pixel location to find the best 
match.
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•	 Mean Squared Error (MSE) correlation

•	 Phase-only correlation (POC)

These methods are commonly used in computer vi- sion applications such as face 
recognition, tracking, and surveillance. correlation-based methods can be extended 
to handle variations in lighting, pose, and occlusion [21].

9)	 Frequency domain-based methods:

•	 Fourier-Mellin transform: a technique for matching objects in an image by 
analyzing their frequency content and phase relationships. Frequency domain- 
based methods are a type of object detection technique that analyze the frequency 
content of an image to identify objects. These methods are commonly used in 
computer vision applications such as image processing, texture analysis, and pattern 
recognition. Frequency- based method for object detection that uses a bank of 
Gabor filters to analyze the frequency content of an image. The method is able to 
detect objects at different scales and orientations by analyzing the responses of the 
Gabor filters across the image. the effectiveness of this method on several object 
detection shows that it is able to achieve high accuracy with low computational 
complexity [22].

10)	 Color-based methods: Color-based methods are a type of object detection 
technique that use color information to identify objects in an image. These methods 
are commonly used in computer vision applications such as traffic monitoring, 
object tracking, and image retrieval.

•	 Color histograms: Represent the distribution of color values in an image 
using a histogram, which can be used to identify objects with specific color 
character- istics.

•	 Color Moments: are a type of feature extraction method commonly used in color-
based object recognition and image retrieval. Color moments are statistical 
descrip- tors that capture the statistical properties of color distributions in an 
image. There are several types of color moments, including:

–	 The first-order moments (mean)

–	 Second-order moments (variance)

–	 higher-order moments (skewness, kurtosis, etc.) These moments are 
computed separately for each color channel (e.g., red, green, blue) and can 
be combined into a feature vector to represent the color distribution of 
an image.Color moments are popular because they are simple to compute, 
invariant to translation and scal- ing, and can capture higher-order statistical 
properties of the color distribution. However, they can be sensitive to noise 
and may not capture spatial information about the object [23].

•	 Color Coherence Vectors: are a type of feature extrac- tion method used in 
color-based object recognition and image retrieval. Color coherence vectors capture 
the spatial coherence of color distributions in an image by measuring the degree to 
which neighboring pixels have similar color values.

To compute color coherence vectors, an image is first segmented into regions or 
objects, and the color distribution of each region is represented as a color histogram. 
Next, the spatial coherence of the color distribution is measured by computing the 
similarity between adjacent pixels or regions. This similarity measure can be based 
on various metrics, such as:

–	 Euclidean distance

–	 Mahalanobis distance
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–	 correlation coefficient

The result of the computation is a set of vectors that represent the spatial coherence 
of the color distribution in each region. These vectors are called color coher- ence 
vectors and can be used as features for object recognition or image retrieval.

Color coherence vectors are effective in capturing the spatial coherence of 
color distributions and can handle variations in lighting, shadows, and object pose. 
However, they can be sensitive to image noise and may not capture global color 
information [24].

11)	 Texture-based methods: refer to techniques that utilize the texture or 
patterns in an image to detect objects. These methods are based on the principle 
that objects in images often have distinctive textures or patterns that can be used 
to identify them. Texture-based methods are typically used in scenarios where 
the objects of interest have similar colors or shapes to the background, making it 
difficult to detect them using traditional color or shape- based methods.

One popular texture-based approach is:

•	 The Local Binary Pattern (LBP) operator: which in- volves comparing the 
intensity values of pixels in an image with their neighboring pixels and encoding the 
results as binary patterns. The resulting patterns can be used to detect texture 
variations in the image and identify objects with distinctive textures. that works 
by computing a binary pattern for each pixel in an image based on the values of its 
surrounding pixels. The Local Binary Pattern (LBP) operator binary patterns are then 
used to describe the texture of the image. LBP can be used for object detection by 
comparing the texture of the object to the texture of the background. [25].

12)	 Motion-based methods: refer to the techniques that utilize the motion of 
objects to identify and track them in video sequences. These methods are typically 
used in scenarios where objects are moving in a dynamic environment and traditional 
static object detection techniques may not be sufficient.

One popular motion-based approach is:

•	 Optical flow: which computes the displacement of pixels between 
consecutive frames in a video sequence. Optical flow can be used to track objects 
by detecting the regions where the flow vectors are consistent over time. Another 
approach is background subtraction, which involves subtracting a background 
image from each frame in the video sequence to highlight moving objects [26].

In conclusion, traditional methods for object detection have their own strengths 
and weaknesses, and the choice of method depends on the specific application and 
the nature of the objects to be detected.

While deep learning-based methods have achieved state- of-the-art performance in 
many areas, traditional methods are still useful in situations where data or hardware 
resources are limited. Table I: shows the comparison of grouped traditional methods 
of object detection into different categories and lists their pros and cons.

B.	 DEEP LEARNING BASED METHODS

There are many Convolutional Neural Networks architec- tures which are developed 
by the time to solve object detection problem in a good, accurate and fast way. 
These architectures could be listed as:

4)	  Region-based Convolutional Neural Networks (RCNNs): RCNNs are one of the 
earliest and most popular object detection methods [43]. They use a two-
stage approach, where the first stage proposes a set of object regions in the 
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image, and the second stage classifies each region as containing an object or 
not [52] [11]. The most famous RCNN models are Faster RCNN, RFCN and Mask 
RCNN, which have achieved state-of-the-art results on various benchmark 
datasets [52] [53].

5)	 Single-Shot Detectors (SSDs): SSDs are a one-stage ap- proach that 
simultaneously predicts the class and location of objects in an image [44]. 
Unlike RCNNs, they do not require a separate region proposal step, making 
them faster and more efficient [47]. Some of the popular SSD models are YOLO 
(You Only Look Once), RetinaNet, and EfficientDet [48]. EfficientDet is a family 
of object detection models developed by Google Research that uses efficient 
architectures and training techniques to achieve high accuracy while using 
fewer computational resources. It achieves state-of-the-art performance on 
several bench- mark datasets at 2020 [48].

6)	 Anchor-Free Detectors: Anchor-free detectors are a new class of object 
detectors that do not rely on predefined anchor boxes for object localization 
[54]. Instead, they use a set of learnable points to predict object locations and 
sizes [55]. Some examples of anchor-free detectors are CornerNet, FCOS (Fully 
Convolutional One-Stage Detector), and RepPoints [56].

7)	 Transformer-based Detectors: Transformer-based object detectors use self-
attention mechanisms to capture long- range dependencies between different 
parts of an image [50]. These models have achieved impressive results 
on various object detection benchmarks. Some popular transformer-based 
detectors are DETR (DEtection TRans- former), Deformable DETR, and Sparse 
R-CNN [51].

8)	 Hybrid Approaches: Hybrid object detectors combine multiple detection 
methods to improve detection accuracy and efficiency. For example, CenterNet 
combines the effi- ciency of SSDs with the accuracy of RCNNs [57], while 
Cascade RCNNs use multiple stages of classification to refine object detection 
results [58].

As figure 2 shows, these different types of object detection methods which are 
depending on Deep Learning Networks, could be summarized and discussed as 
follows:

1)	 Two-stage detectors: These methods include Faster R- CNN [43], R-FCN [59], 
and Mask R-CNN [60].

2)	 One-stage detectors: Examples of these methods include YOLO [44], SSD [46], 
and RetinaNet [47].

3)	 Multi-scale detectors: These methods include FPN [47], RetinaNet [47], and 
Cascade R-CNN [58].

4)	 Anchor-based detectors: Examples of these methods in- clude Faster R-CNN 
[43], RetinaNet [47], and YOLOv3 [61].

5)	 Anchor-free detectors: Examples of these methods in- clude FCOS [55], 
CornerNet [54], and CenterNet [62].

6)	 3D object detectors: These methods include PointNet [63], MV3D [64], and 
AVOD [65].

7)	 Video object detectors: Examples of these methods in- clude Tube-CNN [66], 
SlowFast [67], and SiamRPN [68].

8)	 Few-shot object detectors: Examples of these methods include Meta R-CNN 
[69], FSOD [70], and Few-Shot Object Detection via Feature Reweighting [71].
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III.	 OBJECT   DETECTION   TECHNIQUES   AND DEVELOPMENT     
TIMELINE

Object detection is an active area of research and develop- ment, with many new 
methods and techniques emerging on a regular basis. This section of the paper 
covers the development timeline of Object Detection techniques briefly to give the 
pig picture needed when studying this important and widely used field of computer 
vision. a brief overview of some of the major milestones in the development of 
object detection methods over the past few decades could be listed through the 
time lime as:

•	 1990s: The first object detection methods based on hand- crafted features, 
such as Histograms of Oriented Gra- dients (HOG) and Haar-like features, 
were introduced. These methods used traditional machine learning algo- 
rithms, such as Support Vector Machines (SVM), to detect objects in images 
[29].

•	 2000s: The use of deep neural networks for object detection began to gain 
popularity. The seminal work on this topic was the Viola-Jones algorithm, 
which used a boosted cascade of simple classifiers to achieve real- time face 
detection [72]. In the later years of the decade, methods such as Deformable 
Part Models (DPM) and Fast R-CNN: a Fast Region-based Convolutional Network 
were introduced, which combined deep neural networks with traditional 
machine learning techniques to improve accuracy and speed [73] [42].

TABLE I
HISTORY  OF  SOME  FAMOUS  TRADITIONAL  OBJECT  DETECTION  METHODS  WITH  

PROS  AND  CONS

Method Year Pros Cons Refer-
ences

Feature-based 
methods

2001

1999

Robust to occlusion. 
Can detect objects 
in cluttered 
environments.

Can detect objects 
of vari- ous sizes 
and orientations. Can 
handle occlusion and 
cluttered scenes.

Sensitive to noise. 
Com- putationally 
expensive.

Sensitive to 
image noise and 
illumination changes. 
C o m p u t a t i o n a l 
complexity is high.

[27]

[28]

Color-based 
methods

1999 Can detect objects 
based on color 
information.

Limited to objects 
with distinctive 
colors. Sensi- tive 
to changes in illumi- 
nation.

[29]

Region-based 
methods

1998 Can detect objects 
of vari- ous sizes and 
shapes. Can handle 
occlusion and clut- 
tered scenes.

C o m p u t a t i o n a l l y 
expensive.		 Sensitive 
to	 image	noise	a n d 
illumination changes.

[30]

Scale-invariant 
methods

1998 Can detect objects 
at dif- ferent scales.

Sensitive   to    
image noise and 
illumination changes. 
C o m p u t a t i o n a l l y 
expensive.

[31]
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Contour-based 
methods

1995

1994

Can detect 
objects with well-
defined contours. 
C o m p u t a t i o n a l ly 
efficient.

Can handle objects 
with smooth 
boundaries. Can 
handle occlusion and 
clut- tered scenes.

Sensitive to noise. 
Can fail to detect 
objects with poorly 
defined contours.

Sensitive to noise 
and poor edge 
detection in cluttered 
scenes. Compu- 
tationally expensive.

[32]

[33]

Scale-space 
method

1987 Can detect objects 
at dif- ferent scales.

C o m p u t a t i o n a l l y 
expensive.

[34]

Template 
match-
ing-based 
methods

2000

1983

Simple and easy to 
imple- ment. Can 
detect objects 
in cluttered 
environments.

Simple and efficient. 
Can detect objects 
in cluttered scenes.

Sensitive to changes 
in lighting and 
viewpoint. Limited 
to detecting ob- 
jects with a similar 
ap- pearance to the 
template image.

Limited to specific 
objects and can’t 
handle varia- tions 
in scale and orienta- 
tion.

[35]

[36]

Texture-based 
methods

1983 Can detect objects 
based on texture 
information.

Limited to objects 
with distinctive 
textures. Sensi- tive 
to changes in illumi- 
nation.

[37]

Motion-based 
methods

1980 Can detect moving 
objects in video 
sequences.

Limited to moving 
ob- jects. Sensitive 
to camera motion.

[38]

Correla-
tion-based 
methods

1980 Can detect objects 
in clut- tered scenes.

Sensitive to image 
noise and illumination 
changes. Limited to 
specific ob- jects.

[39]

Edge-based 
methods

1986

1979

Can detect 
objects with well-
defined edges. 
Com- putationally 
efficient.

Can detect 
objects with sharp 
boundaries. Compu- 
tationally efficient.

Sensitive to noise. 
Can fail to detect 
objects with poorly 
defined edges.

Sensitive to noise 
and poor edge 
detection in cluttered 
scenes.

[40]

[40]

Frequency 
domain-based 
methods

1987 Can detect objects 
based on their 
frequency con- tent 
and handle occlu- 
sion and cluttered 
environ- ments. Can 
handle noisy images 
and detect periodic 
patterns objects.

C o m p u t a t i o n a l l y 
expensive.		
Sensitive to changes 
in lighting and 
viewpoint. Limited 
to specific objects. 
Can’t handle	n o n -
periodic patterns.

[41]
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Fig. 2. Deep Learning Based Object Detection Methods.

•	 2010s: This decade saw the rise of two-stage object de- tection methods, 
such as Faster R-CNN: Region Proposal Networks (RPN) and Mask R-CNN, which 
separated ob- ject proposal generation from object classification. Faster R-CNN: 
Region Proposal Networks (RPN) are used to generate region proposals, and a 
Fast R-CNN network is used for object detection. These methods achieved state-
of-the-art performance on benchmark datasets such as COCO and Pascal VOC 
[43]. Mask R-CNN: adds a branch to Faster R-CNN for predicting object masks 
in addition to bounding boxes and class labels [60]. In the later years of the 
decade, single-stage methods such as YOLO (You Only Look Once) and SSD 
(Single Shot Detector) were introduced, which achieved real-time performance 
by directly predicting object bounding boxes and class labels in a single pass of 
the network. [44] [46].

•	 2020s: In recent years, the focus of object detection research has shifted 
towards improving efficiency and robustness. Methods such as EfficientDet 
(starting by EfficientDet-D0 through EfficientDet-D7 models) [74] and DETR 
(DEtection TRansformer) have achieved state- of-the-art performance on 
benchmark datasets while re- ducing the computational cost and improving the 
gen- eralization ability of the models. Additionally, there has been increasing 
interest in using self-supervised and un- supervised learning methods for object 
detection, as these approaches can leverage large amounts of unlabeled data 
to improve performance. In this decade, many algorithms have been introduced 
to be a normal result for the tedious and continues work to achieve better and 
better performance, For example:
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–	 YOLOv4: an improvement over YOLOv3, achieving high accuracy with faster 
inference time [75].

–	 YOLOv5: is a family of object detection models de- veloped by Ultralytics that 
builds on the success of the previous YOLO models. YOLOv5 uses a novel 
neural network architecture and training techniques to achieve state-of-the-
art performance on several bench- mark datasets [45].

–	 SpineNet: a family of object detectors that use a new architecture to achieve 
high accuracy with efficient computation and memory usage. It is developed 
by Facebook AI Research that uses a novel neural network architecture to 
achieve high accuracy while using fewer computational resources. It achieves 
state-of-the-art performance at 2020 on several benchmark datasets [49].

–	 DETR(Detection Transformer): is a novel object detec- tion architecture that 
uses a transformer-based neural network to perform object detection. It 
achieves state- of-the-art performance at 2020 on several benchmark 
datasets while using a simple and unified approach [50].

–	 Deformable DETR: is an extension of the DETR architecture in 2021 that uses 
deformable convolutional layers to perform feature extraction. It achieves 
state- of-the-art performance on several benchmark datasets while improving 
the detection of small objects [51].

–	 Detectron2: is a popular open-source object detec- tion framework developed 
by Facebook AI Research (FAIR). It builds on the success of the original De- 
tectron framework and offers a modular and flexible platform for developing 
and training state-of-the-art object detection models at 2020. Detectron2 
supports a wide range of model architectures and can be easily customized 
for different tasks and it provides a user- friendly interface and extensive 
documentation. On the other hand, it requires significant computational 
resources for training and inference and it may have a steeper learning 
curve for users unfamiliar with the PyTorch framework [76] [77].

–	 Sparse R-CNN: is an object detection method that uses a sparse convolutional 
neural network to perform feature extraction. It achieves state-of-the-
art perfor- mance on several benchmark datasets at 2021 while using 
fewer computational resources compared to other methods. It achieves 
high accuracy with fewer compu- tational resources and can be fine-tuned 
for specific tasks. Furthermore, it is highly modular and it can be easily 
customized for different tasks. On the other hand, it may require specialized 
hardware to achieve real-time performance and it can be sensitive to the 
choice of hyperparameters [78].

TABLE II
HISTORY  OF  SOME  FAMOUS  DEEP  LEARNING-BASED  OBJECT  DETECTION METHODS  

WITH  PROS  AND  CONS

Method Year Pros Cons Refer-
ences

R-CNN (Re-
gion-based Con-
volutional Neural 
Networks)

2014 Good detection ac-
curacy, high recall, 
good for com- plex 
images.

Slow training 
and testing, re-
quires selective 
search for re-
gion proposals, 
not real-time.

[11]
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Fast R-CNN 2015 Faster than R-CNN, 
end- to-end training, 
good de- tection ac-
curacy.

Still requires re-
gion pro- posals, 
not real-time.

[42]

Faster R-CNN 2015 Faster than R-CNN 
and Fast R-CNN, 
end-to-end training, 
good detection ac-
curacy.

Still requires re-
gion pro- posals, 
not real-time.

[43]

YOLO (You Only 
Look Once)

2016 Real-time, good 
detection accura-
cy, and end-to-end 
training.

Can miss small 
objects, and less 
accurate than 
other methods 
on complex im-
ages.

[44]

YOLOv5 2020 Achieves high ac-
curacy with faster 
inference time com-
pared to previous 
YOLO models. Has 
a lightweight ar-
chitecture that re-
quires fewer compu-
tational resources. 
Can be fine-tuned 
for specific tasks.

May not be as 
accurate as 
some other 
methods. May 
require special-
ized hard- ware 
to achieve re-
al-time perfor-
mance.

[45]

SSD (Single Shot 
MultiBox Detector)

2016 Real-time, good 
detection accura-
cy,and end-to-end 
training.

Can miss small 
objects, less 
accurate than 
other methods 
on complex im- 
ages.

[46]

RetinaNet 2017 Good detection ac-
curacy for small ob-
jects, less prone to 
false negatives.

Can miss large 
objects, slower 
than some other 
methods.

[47]

EfficientDet 2020 Achieves high ac-
curacy with less 
computational re-
sources. Has a good 
balance between 
accuracy and effi-
ciency. Can be fine-
tuned for specific 
tasks.

May require spe-
cialized hard-
ware to achieve 
real- time per-
formance. Can 
be sensitive to 
hyperparame- 
ters and initial-
ization.

[48]

SpineNet 2020 Achieves high ac-
curacy with less 
computational re-
sources. Has a good 
balance between 
accuracy and ef-
ficiency. Is highly 
modular and can be 
eas- ily customized 
for differ- ent tasks.

May require spe-
cialized hard-
ware to achieve 
real- time per-
formance. Can 
be sensitive to 
hyperparame- 
ters and initial-
ization.

[49]

DETR (DEtection 
TRansformer)

2020 No need for region 
pro- posals, end-to-
end train- ing, good 
accuracy for small 
objects, efficient.

Less accurate 
for large ob- 
jects, slower 
than some other 
methods.

[50]
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Deformable DETR 2021 Achieves high ac-
curacy with im-
proved detection of 
small objects. Can 
de- tect objects of 
different sizes and 
shapes. Is highly 
modular and can be 
eas- ily customized 
for differ- ent tasks.

May require 
more com- puta-
tional resources 
com- pared to 
other methods. 
Can be sensitive 
to the choice of 
hyperparame- 
ters.

[51]

DETR (DEtection 
TRansformer)

2020 No need for region 
pro- posals, end-to-
end train- ing, good 
accuracy for small 
objects, efficient.

Less accurate 
for large ob- 
jects, slower 
than some other 
methods.

[50]

In summary, there has been significant progress and im- provement in object 
detection over the past few years. The state-of-the-art in object detection has 
been rapidly advancing in recent years, with new methods continually emerging 
that achieve better accuracy, efficiency, and robustness. Overall, these neural 
network-based methods of object detection repre- sent significant advancements 
in the field and offer a range of pros and cons depending on the specific application 
and use case, As shown in Table II.

Furthermore, there is an ongoing process of discovery and innovation in the field 
of object detection, with researchers and developers constantly exploring new 
approaches and tech- niques. Through these techniques:

•	 Accuracy: The ability of an object detection system to correctly identify 
objects in an image or video is extremely increased.

•	 Efficiency: The speed and computational resources re- quired to perform 
object detection

•	 Robustness: The ability of an object detection system to perform well under 
various conditions, such as changes in lighting, camera angle, or object 
orientation.

The ability of an object detection system to correctly identify objects in an image 
or video is extremely increased, and new methods and techniques are being 
developed that are able to achieve these goals more effectively than previous 
approaches. In addition, a number of benchmark datasets have been instrumental 
in advancing the field of object detection. These include the Caltech [79], KITTI [80], 
ImageNet [81], PASCAL VOC [82], MS COCO [83], and Open Images V5 [84] datasets. 
Recently, a new drone-based dataset was introduced as part of the ECCV VisDrone 
2018 contest [85]. This dataset is comprised of a significant amount of images and 
videos captured from a drone platform [86].

IV.	 YOLO (YOU ONLY LOOK ONCE) OBJECT DETECTION 
ALGORITHM: HISTORY AND STATE OF THE ART

YOLO (You Only Look Once) is a popular object detection algorithm that has undergone 
several iterations since its initial release. Furthermore, it is concluded from the 
previous section with its subsections and from [74], that the primary single- stage 
detection networks are:

•	 Single Shot multiBox Detector (SSD) [87].

•	 EfficientDet [88].

•	 You Only Look Once (YOLO) series of networks [89]. Although SSD has 
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good detection accuracy, it lacks sufficient low-level feature convolution layers, 
resulting in inadequate feature extraction, which makes it less sensitive to small 
target detection. EfficientDet-D0 through EfficientDet-D7 models can achieve higher 
accuracy, but this comes at performane weakness factors such that the cost of 
higher memory con- sumption and slower inference. In [90], YOLOv5 was used for 
some object detection applications (palm tree detection) using UAV images and 
was quantitatively compared with main- stream networks such as YOLOv3, YOLOv4, 
and SSD300, with YOLOv5 demonstrating the best accuracy. The YOLOv5 network 
adjusts the perceptual field size and enhances the feature extraction ability, 
indicating its potential for detection in regions with high canopy coverage [74]. Here 
are the key differences between each version:

1)	 YOLOv1: This was the first version of YOLO released in 2015. It used a single 
deep neural network to perform both object classification and localization in 
a single stage. It achieved competitive accuracy and speed on the PASCAL 
VOC 2007 detection dataset. However, it suffered from low recall due to the 
“grid cell” structure, which made it difficult to detect small objects [44].

2)	 YOLOv2: Released in 2016, YOLOv2 addressed some of the limitations of the 
original version. It introduced anchor boxes, which improved the detection 
of small objects, and a multi-scale feature extraction network, which 
improved performance on objects of different sizes. It also incorporated 
batch normalization and residual con- nections for improved training and 
performance. further- more, it addressed the shortcomings of the first version. 
It achieved a very good results on multiple detection datasets and improved 
the accuracy and speed of the algorithm [91].

3)	 YOLOv3: The third version of YOLO further improved the algorithm by 
introducing various enhancements such as multi-scale prediction, feature 
pyramid networks, and improved training techniques. It achieved state-of-
the-art results on multiple detection benchmarks and improved the accuracy, 
speed, and robustness of the algorithm. YOLOv3 is released in 2018, YOLOv3 
introduced several improvements over YOLOv2. It increased the number of 
anchor boxes, improved the feature extraction network, and introduced skip 
connections to help detect small objects. It also introduced the concept 
of “darknet-53,” a more complex feature extraction network that improved 
detection accuracy [61].

4)	 YOLOv4: Released in 2020, It introduced a number of new features, including 
the “CSPDarknet-53” archi- tecture, which improved feature extraction and 
training efficiency. It also introduced the “Mish” activation func- tion, which 
outperforms traditional activation functions like ReLU. YOLOv4 also introduced 
a variety of train- ing techniques, including self-adversarial training, Drop- 
Block regularization, and improved data augmentation. The fourth version 
of YOLO introduced a number of enhancements such as a CSPDarknet53 
backbone, spatial attention, and dynamic anchor assignment, among others. 
It achieved fabulous results on multiple detection bench- marks and improved 
the accuracy, speed, and efficiency of the algorithm at 2020, as mentioned 
in [75].

5)	 YOLOv5: Released in 2020, YOLOv5 is an independent project by Ultralytics that 
is based on the YOLOv4 architecture. It introduced a number of improvements, 
including a redesigned backbone network, a “Swish” activation function, and 
improved anchor box placement. It also incorporated a new training pipeline 
that made it easier to train on custom datasets [92].

6)	 YOLO Nano: Released in 2020, YOLO Nano is a lightweight version of YOLO 
designed for resource-constrained devices. It achieves real-time performance 
on mobile devices with limited computing power by using a simplified 
architecture and fewer layers. It was presented at the 2020 ACM/SIGDA 
International Symposium on Field-Programmable Gate Arrays [93].
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7)	 YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x: Ultralytics has released several versions 
of YOLOv5 with varying levels of computational complexity. These versions 
have different backbone architectures and feature extraction networks, 
allowing users to choose the version that best suits their needs based on the 
available hardware re- sources. The fifth version of YOLO introduced a number 
of significant improvements such as a new architecture, self-attention, and 
a novel anchor-free object detection method. It achieved state-of-the-art 
results on multiple detection benchmarks and improved the accuracy, speed, 
and simplicity of the algorithm [92] [94] [95] [96] [97].

8)	 YOLOv6: YOLOv6 is verified to bring more improve- ments to the YOLO 
architecture. The sixth version of YOLO introduced various improvements 
such as custom architecture search, scaled-YOLOv4, and ensemble of models. 
It achieved results on multiple detection bench- marks and improved the 
accuracy, speed, and efficiency of the algorithm [98].

9)	 YOLOv7: The seventh version of YOLO introduced a trainable bag-of-freebies 
(BoF) module that can be added to any object detection architecture to 
improve its per- formance. It achieved state-of-the-art results on multiple 
detection benchmarks and improved the accuracy, speed, and efficiency of 
the algorithm [99].

10)	 YOLOv8: The eighth and most recent version of YOLO introduced various 
improvements such as deformable convolutional networks, Scaled-YOLOv5, 
and ensemble of models with different input resolutions. It achieved state-of-
the-art results on multiple detection benchmarks and improved the accuracy, 
speed, and efficiency of the algorithm. The YOLOv8 network is utilized for 
address- ing classification, object detection, and image segmen- tation 
challenges. These various approaches enable the identification of objects in 
images or videos through distinct means. In addition to providing the object 
type and probability, the neural network for object detection also outputs the 
coordinates of the object on the image, including its x and y position, width, 
and height. This information is demonstrated in the second image. More- over, 
object detection neural networks have the capability to identify multiple 
objects in an image and determine their respective bounding boxes [100].

Furthermore, it is noted that some of the versions mentioned above are not officially 
released by the original authors of YOLO and might have some variations or 
differences in their implementation.

V.	 YOLO 5,7, AND 8 DETECTION RUN COMPARISON FOR 
OBJECT DETECTION PROCESS OF VEHICLES AND INLAND 
VESSELS SCENCES

The YOLO model is currently the most widely used real- time object detector due 
to its lightweight network architecture, effective feature fusion methods, and 
more accurate de- tection results. Among the YOLO algorithm variants, YOLOv5 and 
YOLOv7 have gained significant acceptance in current usage.

YOLOv5 utilizes deep learning technology to achieve real- time and efficient object 
detection tasks. It improves upon YOLOv4 by enhancing the model structure, 
training strategy, and overall performance. YOLOv5 adopts the CSP (Cross- Stage 
Partial) network structure, which effectively reduces redundant calculations and 
enhances computational efficiency. However, YOLOv5 still has room for improvement 
in detect- ing small objects and dense object scenarios, as well as in handling 
complex situations like occlusion and pose changes. YOLOv7 introduces a novel 
training strategy, at that time (2022), called Trainable Bag of Freebies (TBoF) 
to enhance the performance of real-time object detectors. TBoF incor- porates 
various trainable tricks, including data augmentation and MixUp, which significantly 
improve the accuracy and generalization ability of object detection. However, 
YOLOv7 is constrained by training data, model structure, and hy- perparameters, 
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leading to performance degradation in some cases. Additionally, the proposed 
method requires more com- putational resources and training time to achieve 
optimal performance [101]. Figure V, shows the YOLO Publications Timeline before 
YOLOv8.

In this section, a comprehensive evaluation is conducted on selected versions of 
the YOLO platform applied to a specific selected dataset sample of images. A subset 
of representative images is carefully chosen to determine the most effective YOLO 
versions for efficient object detection. The selection criteria consider the diversity 
of scenes, encompassing chal- lenging scenarios where objects may be combined 
or difficult to detect. The dataset is thoughtfully balanced, featuring wa- terway 
scenes for inland vessels, street traffic views capturing vehicles, pedestrians, 
birds, horses, and traffic lights, among others.

The results of the runs reveal distinct identification out- comes for each 
object in all selected versions of YOLO. A total of thirty-three (33) images, as 
illustrated in Figure V, are carefully curated, comprising 25 images related to 
inland vessels scenes and 8 particularly challenging images representing street 
traffic views with multiple objects. The subsequent part of this section delves into 
the detailed analysis of the object detection results, highlighting the capabilities of 
each selected YOLO version in various challenging conditions.

The selected dataset images, as shown in figure V, are selected as:

•	 25 images for inland vessels related images.

•	 8 (tricky) images are selected for the other (street traffic views for 
vehicle, pedestrians, one for a bird, one for a horse, traffic lights, and 
etc.)

The rest part of this section will cover the different output and shows the ability 
of each version of the selected ones to detect object in a various set of different 
conditions.

A.	 COMMON OBJECTS IN CONTEXT DATASET (COCO)

The Common Objects in Context (COCO) dataset has emerged as a significant 
milestone in the field of computer vision, specifically for object recognition and 
detection tasks [83]. With its vast collection of images and meticulously annotated 
objects, the COCO dataset provides researchers and developers with a standardized 
benchmark to evaluate and advance the performance of object detection algorithms 
[102]. By offering a diverse range of object categories and complex scenes, COCO 
has become an invaluable resource for training and testing state-of-the-art models, 
pushing the boundaries of object recognition and detection capabilities.

Object recognition and detection form the fundamental building blocks of many 
computer vision applications, includ- ing autonomous driving, surveillance systems, 
robotics, and augmented reality. The ability to accurately identify and local- ize 
objects within an image is crucial for understanding visual scenes and enabling 
intelligent decision-making. However, this task is inherently challenging due to 
variations in object appearance, scale, occlusion, and cluttered backgrounds.

The COCO dataset addresses these challenges by providing a large-scale and diverse 
collection of images spanning 80 object categories, as shown in table IV [83].

These categories encompass a wide range of everyday objects such as people, 
animals, vehicles, household items, and more. The dataset consists of over 200,000 
images from complex real-world scenes, covering a diverse set of visual contexts 
and capturing a wide variety of object instances. Each image is meticulously 
annotated with multiple objects bounding boxes, segmentations, and corresponding 
category labels, enabling fine-grained analysis and evaluation of object detection 
algorithms [83].
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The COCO dataset is a comprehensive and extensive re- source for object detection, 
segmentation, and captioning tasks. It encompasses a range of notable features, 
including [83]:

1)	 Object segmentation: The dataset provides precise de- lineation of objects 
through segmentation, allowing for pixel-level ground truth information.

2)	 Recognition in context: COCO captures objects within their surrounding 
scenes, enabling recognition in diverse visual contexts and promoting a better 
understanding of object interactions.

3)	 Super pixel stuff segmentation: The dataset includes detailed annotations for 
stuff segmentation, providing insights into the distribution and boundaries of 
regions like sky, water, and vegetation.

4)	 Scale and diversity: COCO comprises a substantial col- lection of 330,000 
images, encompassing a wide variety of scenes and object instances. This 
large-scale nature allows for robust training and evaluation of models.

5)	 Abundance of object instances: With approximately 1.5 million annotated object 
instances, the COCO dataset offers a rich variety of examples for each object 
cate- gory, facilitating comprehensive analysis and algorithm development.

6)	 Extensive object and stuff categories: The dataset covers 80 object categories, 
including people, animals, vehicles, and household items, providing a broad 
range of objects to detect and recognize. Additionally, it includes 91 stuff 
categories, capturing various contextual elements.

Fig. 3. YOLO Publications and Authors Timeline from 2015 to 2022 (Zoumana KEITA)

7)	 Caption annotations: Each image in the COCO dataset is associated with 
five captions, enabling research and development in image captioning and 
language under- standing tasks.

8)	 Key points annotations: COCO provides annotations for key points, specifically 
for approximately 250,000 peo- ple, facilitating the development and 
evaluation of pose estimation algorithms.

The combination of these features makes the COCO dataset a highly valuable 
resource for advancing research in computer vision, enabling the development 
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and evaluation of state-of- the-art models across multiple tasks, including object 
detec- tion, segmentation, captioning, and pose estimation. One of the distinguishing 
features of the COCO dataset is its emphasis on accurately localizing objects of 
interest. In addition to category labels, each annotated object is precisely delineated 
using segmentation masks, providing pixel-level ground truth information [83]. This 
level of detail allows researchers to explore advanced detection techniques that go 
beyond simple bounding box estimation, enabling more precise object local- ization 
and instance segmentation.

The availability of such a rich and comprehensive dataset has fostered significant 
advancements in object recognition and detection. Researchers and developers 
have leveraged the COCO dataset to train and benchmark state-of-the-art models, 
resulting in remarkable progress in object detection accuracy and efficiency 
[103] [104]. The dataset’s widespread adoption has fueled the development of 
sophisticated algorithms, in- cluding deep learning approaches, which have 
demonstrated exceptional performance in detecting and recognizing objects across 
a wide variety of challenging scenarios [105] [106].

Furthermore, the COCO dataset has facilitated the develop- ment of robust and 
generalizable object detection frameworks. By training models on COCO, researchers 
can leverage the dataset’s diversity to enhance the models’ ability to handle 
complex scenes, occlusion, and small object instances [105]. The evaluation metrics 
provided by COCO, such as aver- age precision (AP) and intersection over union 
(IoU), offer standardized benchmarks for comparing the performance of different 
object detection algorithms, promoting fair and objec- tive evaluations [102]. The COCO 
dataset has revolutionized the field of object recognition and detection by providing 
a comprehensive benchmark for training, testing, and evaluating algorithms. Its 
large-scale collection of images, diverse object categories, precise annotations, and 
detailed evaluation metrics have accelerated progress in the development of state-
of-the- art models. As computer vision applications continue to evolve and demand 
increasingly accurate and robust object detection capabilities, the COCO dataset 
will undoubtedly remain a vital resource in driving advancements and pushing the 
boundaries of object recognition technology [83].
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Fig. 4. Dataset samples for vehicles with various behavior patterns, including mixed 
traffic situations and inland waterway vessels
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Fig. 5. COCO Objects Examples [83]

B.	 APPLYING YOLOV5 X, L, S, AND M MODELS FOR THE SELECTED IMAGES SET.

YOLOv5 provides a range of options with four available models: s, m, l, and x. Each 
model offers distinct levels of de- tection accuracy and performance, as illustrated 
in figure V-B Although, there are more models for YOLOv5 but they are dealing with 
the images width of 1280 pixels. All considered models here to be applied is 460 
pixels in size. YOLOv5s,

YOLOv5m, YOLOv5l, and YOLOv5x is used here with the selected 33 images set to 
test the ability of the system to detect the different objects pretrained in COCO 
dataset 80 classes.

Fig. 6. YOLOv5 Four Models s, m, l, and x Accuracy and Performance (Source: https://
github.com/ultralytics/yolov5)

This subsection here aims to analyze and compare the differences between s, m, 
l, and x models of YOLOv5, employing the COCO 80 classes model. The resulting 
output provides valuable insights into the variations and characteris- tics exhibited 
by these weight models in terms of their object detection capabilities. Detecting 
of objects in thirty-three (33) images by YOLOv5 models x and l are applied. The 
utilization of YOLOv5 models x and l yields the capability to accurately detect 
objects within the sample of the 33 images. Employing YOLOv5 models x and l brings 
forth a multitude of advantages tailored to precise object detection within the realm 
of 33 images. Model x excels in achieving faster inference times, allowing for real-
time detection in dynamic scenarios. Its optimized architecture efficiently balances 
accuracy and speed, making it ideal for applications requiring swift decision-mak- 
ing. On the other hand, model l boasts exceptional accuracy in object localization 
and recognition. Its deeper architecture and refined feature extraction enable it 
to discern intricate details within the images, ensuring a high level of detection 
precision, especially in complex scenes with overlapping objects or varying scales. 
By harnessing the strengths of both models x and l, the overall detection process 
becomes comprehensive and robust, encompassing scenarios that demand both 
speed and precision in object identification within the set of the 33 images 
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Detecting of objects in 33 images by YOLOv5 models sand m are applied. YOLOv5 
model s is designed with a focus on speed and efficiency. Its architecture is 
optimized for rapid inference times, enabling real-time object detection in dynamic 
scenarios. This advantage is particularly valuable in applica- tions requiring quick 
decision-making and tracking, such as video surveillance and robotics. Model s 
efficiently balances speed and accuracy, making it well-suited for scenarios where 
timely detection is essential. On the other hand, YOLOv5 model m strikes a balance 
between speed and accuracy. With a slightly deeper architecture and enhanced 
feature extraction, it excels in accurately localizing and recognizing objects within 
images. This accuracy advantage is especially useful in scenarios with complex 
scenes, overlapping objects, or varying object scales. Model m’s versatility makes it 
suitable for a wide range of applications, including autonomous vehicles, industrial 
automation, and quality control. By leveraging the strengths of both models s and m, 
the overall object detection process is enriched, catering to scenarios that demand 
different priorities in terms of speed and accuracy within the specified previous 
sample set of 33 images 

The remaining part of this subsection displays several images generated by four 
YOLOv5 models: x, l, s, and m. The detected objects in these images are enclosed 
within bounding boxes and labeled with the class assigned by the respective model. 
Additionally, an F1 score will be calculated on this sample test to demonstrate the 
performance and accuracy of these models.

Figures 7 (a), (b), (c), and (d) display the output achieved of applying YOLOv5 model 
x, l, s, and m respectively, and show true positive detection instant for one bird 
and false positive for the other one in some cases. Furthermore, the existence of 
showing multiple labels for the same object by two different classes, one is true 
which is “car” and the other one is false as well and it is “boat”. The existence 
of water near to the car do this sort of ambiguity and the presence of some wood 
bars in front of the car, leads to detect the wood as bench in model m, as shown in 
7 (d), and it leads falsely the s model to detect the car as a train on the other hand, 
as Figure 7 (c) illustrates.

A bird in the sky is detected only in one model of YOLOv5 which is x model as 
appears in 8 (a). but the hand back on the person’s shoulder is detected in model 
x and l as 8 shows in (a) and (b) respectively. True positive person detection is 
achieved in all models of 8 as well. False Detection of a boat is only achieved 
in this image when model x applies as 8 (a) illustrates. Model x at this image 
is most accurate one in this case to detect person, bird, backpack objects very 
professionally as shown in 8 (a) and (b).

Bridge pillar is detected as boat, as Figures 9 (b) and (c) show. The same vessel 
is detected as one boat in Figures 9 (c) and (d), but it is counted as two boats in 
(a) and (b) respectively. Yellow buoy is not detected at all and needs to be added 
in the training model to be differentiated to the boat. Figures 10 (a), (b), (c), and (d) 
show that white car on top of the vessel is not detected except the case (a). 
While the persons in the images are detected accurately.

The trailer part contains the cabin is only detected from the vessel in model x of 
Figure 11 (a). The person on the vessel surface is not detected in all models except 
of Model m as Figure 11 (d) illustrates. Building with the boat is delt as one object, as 
shown in Figure 11 (c). Model x and m are detecting a back shore building as a boat, 
as shown in Figure 11 (a), (d) respectively. A vessel is sailing in the opposite direction 
and delt as multiple objects in (b), (d) and as boat partially in (a) as Figure 11 shows.



Journal of Advances in Computing and Engineering (ACE)                       Volume 3, Issue 2, December 2023- ISSN 2735-5985 

  87

http://dx.doi.org/10.21622/ACE.2023.03.2.064

http://apc.aast.edu

Fig. 7. YOLOv5 detection run for selected image 1.

Fig. 8. YOLOv5 detection run for selected image 2.

Fig. 9. YOLOv5 detection run for selected image 3.

C.	 APPLYING YOLOV7 X MODEL FOR THE SELECTED IMAGES SET.

YOLOv7 demonstrates superior performance in 2022 in terms of both speed and 
accuracy across a range of frame rates, from 5 FPS to 160 FPS. It achieves the 
highest accuracy, with an average precision (AP) of 56.8%, among all real-time
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Fig. 10. YOLOv5 detection run for selected image 4.

Fig. 11. YOLOv5 detection run for selected image 5.

Deformable DETR, DINO-5scale-R50, ViT-Adapter-B, and several others, in terms of 
both speed and accuracy as 12 shows Only one model YOLOv7x is used here and 
as with the previous subsection, limitations of object detection are applied here 
too with YOLOv7x. The run process to detect objects in 33 selected data set is also 
applied here by using YOLOv7x.  One of the main YOLOv7x model advantagesis could 
be considered as one of the fastest object detection algorithms available. It can 
detect objects in real time, making it ideal for applications such as autonomous 
driving and robotics. YOLOv7x is also very accurate, achieving state-of-the-art 
results on a variety of object detection benchmarks. This makes it a good 
choice for applications where accuracy is important, such as medical imaging and 
security. YOLOv7x has fewer parameters than previous versions of YOLO, making it 
easier to train and deploy on resource-constrained devices. This makes it a good 
choice for applications where speed and accuracy are both important, such as 
mobile phone cameras.
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Fig. 12. YOLOv7 in comparison with other real-time object detectors (https://github.
com/WongKinYiu/yolov7).

YOLOv7x can detect objects of different sizes at the same time. This makes it a 
good choice for applications where objects can vary in size, such as traffic or 
surveillance. YOLOv7x is robust to noise and occlusion. This makes it a good choice 
for applications where objects may be partially obscured, such as in poor lighting 
conditions or with moving objects. YOLOv7x achieves its speed by using a simplified 
model architecture with fewer parameters. This means that the model is less 
computationally expensive to train and run. YOLOv7x also uses a more efficient 
implementation of the convolution operations, which further improves its speed 

In terms of accuray, YOLOv7x achieves its accuracy by using a larger training 
dataset with more diverse objects. This helps the model to learn to identify a 
wider variety of objects. YOLOv7x also uses a more powerful loss function that 
pe- nalizes inaccurate predictions. This helps the model to learn to make more 
accurate predictions. YOLOv7x has fewer pa- rameters than previous versions of 
YOLO because it uses a simplified model architecture. This makes it easier to train 
and deploy on resource-constrained devices, such as mobile phones or embedded 
systems. YOLOv7x can detect objects of different sizes at the same time by using 
a technique called anchor boxes. Anchor boxes are a set of pre-defined boxes that 
are used to represent the possible sizes and aspect ratios of objects. YOLOv7x 
predicts the probability of each object being present in each anchor box, as well 
as the coordinates of the object’s bounding box. YOLOv7x is robust to noise and 
occlusion because it uses a technique called spatial pyra- mid pooling. Spatial 
pyramid pooling divides the image into a grid of cells, and then averages the 
predictions from each cell. This helps to reduce the impact of noise and occlusion 
on the predictions Applying this model on many images is done and Figure 13 shows 
one image from the selected set and also the same limitations apply here as well.

Detected images can differ based on model accuracy and previous training process: 
The accuracy of an object detection model can vary depending on various factors, 
including the training data, model architecture, and optimization techniques used. A 
model that has been trained on a large, diverse, and well-annotated dataset is likely 
to perform better in detecting objects compared to a model trained on a smaller or 
less diverse dataset. Additionally, the training process itself, such as the choice of 
hyperparameters and training duration, can impact the accuracy of the model.
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Fig. 13. YOLOv7 Image Run.

Objects detected multiple times with different classes: It is not uncommon for an 
object detection model to produce mul- tiple bounding boxes for the same object 
instance, especially if the object is large or has complex geometry. However, if the 
model assigns different classes to these multiple detections of the same object, 
it could indicate issues with the training process or the quality of the training data. 
In such cases, reevaluating the training pipeline and dataset annotations may help 
improve the model’s performance.

Misclassifying buoys as boats: Object detection models are trained on large datasets 
containing various object classes. If a model misclassifies buoys as boats, it might 
indicate a lack of specific training examples for buoys or similarities between the 
visual features of buoys and boats. Adding more diverse training examples of buoys 
and refining the training process can help address this issue.

Need for adding different classes and training the system: If you want the system 
to detect objects from rivers, waterways, and streets, you would need to include 
specific classes for those objects during the training process. This would require 
augmenting the training dataset with relevant images and annotations for objects 
like riverbanks, bridges, street signs, etc. By training the system on a comprehensive 
dataset with a wide range of classes, you can enhance its ability to detect and 
classify objects accurately in different environments.

Based on the results obtained from running the four YOLOv5 models on each image 
of the sample set in the previ- ous subsection, and after contrast them with the 
performance of the other x model of YOLOv7, several observations can be drawn:

•	 The accuracy of detected objects in an image can vary based on the 
model’s accuracy and the training process it underwent.

•	 In certain cases, an object detection model may detect the same object 
multiple times but assign different classes to those detections.

•	 For instance, buoys might be misclassified as boats in- stead of being 
recognized as buoys.

•	 To enhance the system’s capability to detect objects from rivers, 
waterways, and streets, it is necessary to add and train the model 
in different classes, enabling it to identify various objects in these 
environments.

•	 In certain models, static objects like cranes may be included within the 
bounding box of a boat, while in other cases, they may not be included.

•	 Sometimes, a single long boat may be treated as a single object, while in 
other instances, it may be detected as two separate boats.

•	 Treating a part of an object as a complete object, such as considering a 
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partial boat as a whole boat, is a problem that needs to be addressed.

•	 Some objects may be misidentified due to misleading neighboring 
objects. For example, a car with pieces of wood in front might be 
incorrectly classified as a train, boat, or another car in different runs of 
the model.

From all these outcomes and other results, it is clear that object detection 
models can have varying performance depending on their architecture, training 
data, and optimization techniques. Addressing these issues may involve refining the 
training process, augmenting the dataset with diverse exam- ples, and fine-tuning 
the model to improve its accuracy and robustness in detecting and classifying 
objects correctly in both environments, driverless vehicles, and pedestrian streets 
and for waterway inland vessels, as well.

IV.	 YOLO8 APPLIED TRAINING AND DETECTING USING 
COMBINED DATASET OBJECTS FOR DRIVERLESS VEHICLES  
AND  INLAND  VESSELS

A.	 YOLO8 FEATURES AND NETWORK STRUCTURE

The latest iteration in the YOLO model series, YOLOv8, was recently introduced 
by Ultralytics. Although a reviewed paper is yet to be published, examination of 
the repository reveals several notable features that distinguish it from other 
object detection models. In terms of architecture, as shown in Figure 15, YOLOv8 
incorporates significant changes, particu- larly in how it receives and analyzes 
visual data. Unlike previ- ous YOLO models like YOLOv4, YOLOv8 adopts an anchor- 
free approach. This is like other variations in the YOLO model series, such as YOLOX, 
which aims to streamline performance while maintaining high accuracy. Empirically, 
the best anchor- free approaches have demonstrated comparable or improved 
performance. However, from a theoretical standpoint, there are certain trade-offs. 
Anchor-free approaches offer greater flexibility in object detection as they directly 
identify objects without relying on preset anchors, which can be biased based on 
previous training and fail to generalize well to new data. However, this flexibility may 
also lead to biased and mislead- ing predictions that lack the logical foundation 
inherent in the more traditional process of human object detection and observation.

YOLOv8 implements Anchor-Free instead of Anchor-Based object detection. It 
employs a dynamic Task Aligned Assigner for the matching strategy, calculating 
the alignment degree of Anchor-level for each instance. YOLOv8 achieves better 
accuracy than YOLOv5, making it the most accurate detector to date.
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Fig. 14. YOLOv8 Architecture, visualization made (GitHub user Range King)

One key feature of YOLOv8 is its extensibility. It is de- signed to seamlessly work 
with all YOLO versions and allows researchers to switch between them, facilitating 
performance comparisons. Therefore, YOLOv8 was selected as the baseline version 
used in work implementation.

Furthermore, YOLOv8 benefits from the extensive commu- nity support it has 
garnered, which has contributed to its popu- larity and widespread usage. This 
community involvement has facilitated empirical investigations into more effective 
training schedules and methods. For instance, YOLOv8 does not ad- here to the same 
training strategy throughout the entire training    process. One notable example is the 
mosaic augmentation, which stitches together images to train the model to detect 
objects with varying combinations and locations. However, it has been observed 
that employing this augmentation towards the end of the training process can 
degrade performance. Consequently, YOLOv8 employs a carefully selected training 
setup based on empirical experimentation to achieve optimal results.

YOLOv8 offers support for all versions of YOLO but with a focus on speed, 
accuracy, and user-friendliness, as shown by 15. YOLOv8 presents itself as an 
exceptional option for addressing diverse requirements in object detection and 
tracking, instance segmentation, image classification, and pose estimation tasks. 
and allows seamless switching between different versions, providing researchers 
with flexibility in their experiments. Furthermore, YOLOv8 is compatible with various 
hardware platforms (CPU-GPU), enhancing its versa- tility.
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Fig. 15. YOLOv8 is a cutting-edge, state-of-the-art (SOTA) model (https://github.com/
ultralytics)

YOLOv8 represents a collection of neural network mod- els developed and trained 
using PyTorch, which have been exported as files with the .pt extension. 
These models can be categorized into three types: Classification, Detection, and 
Segmentation, each serving a distinct purpose. Additionally, there are five models 
available for each type, differing in size, as shown in Table III.

TABLE III
YOLO8 Three types of models and 5 models of different sizes for each type

Classification Detection Segmentation Kind

yolov8n-cls.pt yolov8n.pt yolov8n-seg.pt Nano

yolov8s-cls.pt yolov8s.pt yolov8s-seg.pt Small

yolov8m-cls.pt yolov8m.pt yolov8m-seg.pt Medium

yolov8l-cls.pt yolov8l.pt yolov8l-seg.pt Large

yolov8x-cls.pt yolov8x.pt yolov8x-seg.pt Huge

B.	 YOLO8 BASED DETECTION RUN ON A SET OF IMAGES FOR INLAND VESSELS 
USING COCO 80 CLASSES DATASET READY TRAINED MODEL

In the subsequent sections of this paper, object detection will be performed using 
YOLOv8. The YOLOv8 models specifi- cally designed for object detection come with 
pre-training on the COCO dataset, which includes a wide range of images covering 
80 different categories. As a result, for the purpose of detecting objects on the 
street for driverless vehicles, the pre-trained models based on the COCO dataset 
fulfil the requirements, and there is no need for custom training. The pre-trained 
models listed in Table III are sufficient for this environment without requiring any 
additional training. By applying YOLOv8x on objects detecting for the same images, 
It is noticed that detection is much better than the previously tested versions, as 
Figure 16 shows, and the existing x model is enough to base on at the train phase to 
add new ability for detecting the new object.

YOLOv8 employs a novel architecture known as BiFPN (Bidirectional Feature Pyramid 
Network), which synergisti- cally amalgamates features from various network strata. 
This integration equips YOLOv8 with enhanced capabilities in managing objects of 
varying dimensions and aspect ratios. While YOLOv7 also employs BiFPN, YOLOv8 
distinguishes itself by incorporating a higher count of channels within the Feature 
Pyramid Network (FPN) layers, affording it the ca- pacity to assimilate more intricate 
features. The adaptability of YOLOv8 is exemplified by its capacity to accommodate 
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higher input resolutions during training compared to its predecessors. This elevated 
resolution empowers YOLOv8 to discern and precisely identify smaller objects. 
Though YOLOv7 exhibits similar adaptability, YOLOv8’s superior performance in man- 
aging higher resolutions is evident 

The adoption of the ResNet-50 backbone network in YOLOv8 represents a notable 
advancement over previous versions. This deeper and more expansive architecture 
en- ables YOLOv8 to distill complex features that contribute to refined object 
detection. Although YOLOv7 also integrates the ResNet-50 backbone, YOLOv8’s 
augmented depth furnishes it with an advantage in feature extraction. YOLOv8 
leverages anchor-free detection for bounding box prediction, a technique that 
surpasses predefined anchor boxes in terms of flexibility and precision. While 
YOLOv7 embraces anchor-free detec- tion, YOLOv8 employs a superior approach 
termed CenterNet, showcasing enhanced accuracy 

The expanded repertoire of detectable object classes in YOLOv8 stems from its 
utilization of a broader and more diverse training dataset. This augmentation enables 
YOLOv8 to surpass its predecessors, including YOLOv7, in terms of class diversity. 
YOLOv8 employs focal loss as a pivotal training mechanism, effectively mitigating 
the impact of mis- classified objects and elevating accuracy. While YOLOv7 also 
integrates focal loss, YOLOv8 deploys an advanced version, demonstrative of its 
commitment to precision 

The innovative amalgamation of Focal Loss and Smooth L1 Loss functions in YOLOv8 
addresses misclassification and inaccurate bounding boxes, resulting in superior 
performance. The unique weighting of these loss functions in YOLOv8 is carefully 
tailored for optimal efficacy, distinguishing it from YOLOv7’s similar approach. 
YOLOv8 employs the Swish activation function, known to heighten the precision of 
object detection algorithms. This function is shared with YOLOv7, albeit contributing 
to YOLOv8’s consistent accuracy enhancements Auto Augment serves as YOLOv8’s 
preprocessing technique, incorporating an automated application of diverse 
transformations to images. This feature is an evolution over YOLOv7’s utilization 
of Auto Augment, with YOLOv8’s iteration displaying a refined effectiveness. Post-
processing, YOLOv8 employs Non-Maximum Suppression (NMS) to re- fine detection 
outcomes by eliminating redundancy and over- laps. This NMS approach, while 
comparable to YOLOv7’s application, reflects YOLOv8’s superior optimization for 
enhanced efficacy. Overall, YOLOv8 is a significant improvement over previous 
versions of YOLO. It achieves better accuracy, handles objects of different sizes 
and aspect ratios better, can be trained on images with a higher input resolution, 
and can detect more object classes, as Table V shows.

The accuracy of the YOLO object detection algorithms has steadily improved over the 
years. mAP (mean Average Preci- sion) is a metric used to evaluate the performance 
and accuracy of object detection algorithms. It is calculated by averaging the 
average precision (AP) scores for each object category in a dataset. The AP score 
for a single category is calculated by first calculating the precision and recall scores 
for that cat- egory. Precision is the fraction of predicted bounding boxes that 
actually contain the object. Recall is the fraction of ground truth bounding boxes 
that are predicted by the algorithm. The AP score is then calculated as the area 
under the precision- recall curve. The mAP score is a more robust metric than the 
AP score because it averages the AP scores for all object categories in a dataset. 
This helps to reduce the impact of any individual category that may have a low AP 
score. The mAP score is typically used to compare the performance of different 
object detection algorithms. A higher mAP score indicates that the algorithm is 
more accurate. Overall, mAP is a useful metric for evaluating the performance of 
object detection algorithms. Nevertheless, a crucial consideration necessitates an 
awareness of its limitations during the interpretation of the outcomes  YOLOv8 is 
the most accurate version of YOLO, achieving an mAP of 65.7% on the COCO dataset, 
as shown in Table VI. 

The COCO dataset is a challenging dataset for object detection, as it contains a wide 
variety of objects in a variety of settings. The mAP metric measures the accuracy 
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of an object detection algorithm by calculating the intersection over union (IoU) 
between the predicted bounding boxes and the ground truth bounding boxes. An 
mAP of 100% indicates that the predicted bounding boxes perfectly match the 
ground truth bounding boxes. It is rarely achieved in real-world scenarios due to 
various challenges. Object detection algorithms should aim for high mAP values, 
but it’s essential to balance precision and recall. Striking the right balance depends 
on the specific application and may require fine-tuning and optimization for optimal 
results.

The improvement in accuracy from YOLOv1 to YOLOv8 can be attributed to a number 
of factors, including: 

•	 The use of deeper and wider neural networks 

•	 The use of more data augmentation techniques 

•	 The use of more power- ful loss functions 

•	 The use of better optimization techniques 

YOLOv8 is the most accurate version of YOLO, but it is also the most computationally 
expensive.

C.	 TRAINING ON A SET OF IMAGES FOR INLAND VESSELS USING FIVE NEW 
CLASSES DATASET

COCO 80 classes are covering all the objects that are most likely appeared on the 
street for these autonomous vehicles and for their scene view. Each object that 
can be detected by the neural network is associated with a numeric ID. In the case 
of a YOLOv8 pre-trained model, there are 80 different object types, each assigned 
a unique ID ranging from 0 to 79, as mentioned in Table IV. The object classes in 
the COCO dataset are widely recognized. Testing this COCO trained model on the 
detection of the Inland vessels’ environment objects is efficient for the objects 
appeared in both environments like (person, bird, etc.) or already included inside 
the COCO dataset like (boat, surfboard, etc...), but it will not be sufficient in case 
of waterway objects like: buoys, shores, cranes and bridge pillars. These added 
classes will be discussed deeply in the next subsection.

Five more classes from inland vessels’ environment by extrapolation, as a 
contribution of this study, are added to the COCO dataset. These classes are:

•	 Left Shore (L Shore) with ID 80

•	 Right Shore (R Shore) with ID 81

•	 Bridge Pillar with ID 82

•	 Crane with ID 83

•	 Buoy with ID 8
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TABLE IV
COCO dataset 80 Classes with preassigned ID’s

ID
O

bject
ID

O
bject

ID
O

bject
ID

O
bject

ID
O

bject
ID

O
bject

ID
O

bject
ID

O
bject

0
person

1
bicy-
cle

2
car

3
m

otor-
cycle

4
airplane

5
bus

6
train

7
truck

8
boat

9
traffic 
light

10
fire hy-
drant

11
stop 
sign

12
parking 
m

eter
13

bench
14

bird
15

cat

16
dog

17
horse

18
sheep

19
cow

20
elephant

21
bear

22
zebra

23
giraffe

24
backpack

25
um

-
brella

26
handbag

27
tie

28
suitcase

29
fris-
bee

30
skis

31
snow

-
board

32
sports ball

33
kite

34
baseball 

bat
35

baseball 
glove

36
skate-
board

37
surf-
board

38
tennis 
racket

39
bottle

4
0

w
ineglass

4
1

cup
4

2
fork

4
3

knife
4

4
spoon

4
5

bow
l

4
6

banana
4

7
apple

4
8

sandw
ich

4
9

or-
ange

50
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Fig. 16. YOLOv8 model x object detection run.

D.	 COMBINED MODEL AND RESULTS

To combine the trained 80 classes dataset with the new classes data set, a set 
of processes starting with annotation, then training and predicting are applies in a 
certain sequence to reduce the annotation time and get the results accurately 
in both driverless and inland vessels environments. the next subsection shows the 
block diagram of the applied processes and discussed the methodology of detecting 
objects base on trained model for combined dataset.

In order to combine the trained model with 80 classes dataset and give it the ability 
to detect the new classes as well, a set of processes should be used. It is very 
important to do this as a building block and automate the process as can as possible. 
To achieve this goal, two main building blocks are needed as figures 17 and 18 show. 
First of all, as Figure 17 shows, the first block consists of three steps:

1)	 Annotate the dataset with the new objects with 5 Classes (Buoy, L 
Shore, R Shore, Crane, and Bridge Pillar).

2)	 Train the new dataset with new labels generated by the manual 
annotation.

3)	 Validate the performance of the new trained model for the newly 
added five objects.

For this purpose, a dataset of 300 images containing these new objects is chosen 
and annotated manually. labelImg program is used here for this manual annotation 
process, as shown in Figure 19, and the program output is with YOLO format for 
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labels. This format is class code, and the location of the bounded box of this 
object with x and y coordinates for the up left corner and down right on of the box.

These labels are saved with the same name of the images as txt file. After finish 
all of the annotation process, a 300 text files for labels will be saved in the output 
folder. All objects in these files are coded from 0 to 4, while the main COCO set 
objects are coded from 0 to 79. It is clear here that it is a must to avoid misleading 
codes to shift the codes generated in the new set from 0 to 4 to be from 80 to 84. 
A python program code is written for this purpose. This will make them combined in 
one list to be ready for the whole training for all objects in the scene for both street 
and waterway environments.

However, the training process takes a long time (in terms of days) on CPU based 
machines, and it is very fast in GPU’s base ones (12 hours). Google Co-lab Pro 
package is used in training epochs. Utilizing the Google Colab Pro package for YOLO 
training offers substantial benefits. First, it’s cost-efficient, providing access to 
powerful GPUs without substantial upfront investment. This accelerates training, 
cru- cial for YOLO’s computational demands. Second, Colab Pro ensures ample 
resources, mitigating memory-related issues and enabling efficient handling of 
larger datasets. Its integration with Jupyter Notebooks fosters collaborative and 
interactive model development. Lastly, pre-installed libraries expedite setup, and 
seamless integration with Google Drive aids version control and sharing.

After the training epochs finished, confusion matrix, the losses, and F1 score metric 
are calculated to measure the model performance, accordingly, as illustrated in 
Figures 20, 21,22, 23,24, and 25 respectively.

In this stage and after training the 5 classes model with acceptable confidence for 
the detection of each class and low losses converges until the end of epochs it is 
time to prepare the dataset for the combined model. This data set includes both 80 
classes models labels and the newly generated 5 classes ones. Manual efforts done 
here but with a very important reward for the system. One of the famous problems 
here is the double detecting behavior for the same object with the old 80 
classes and in the 5 classes system too. Then a label correction phase is required 
here to distinguish between the old detection (boat, for example) and the new and 
correct one (buoy, in this case) as figure 26 shows.

The last preparation step here, the training for all of the system depending on the 
corrected labels and combined labels for each image is required to generate the 
.pt file which be the best weights file for the neural network to depend on it for 
further prediction in street environment or in waterway inland vessels one as well. 
The training and epochs are generated, as the previous training step, as figure 
4.36 shows and the losses, confusion matrix and F1 score metric is calculated to 
measure the model performance, accordingly, as illustrated in Figures 4.41, 4.42, and 
4.43 respectively.

The F1 score is a widely used evaluation metric in object detection tasks that 
combines precision and recall into a single value. It provides a measure of the 
overall performance and accuracy of an object detection model. In the context of 
detecting 85 classes on the street and on inland vessels, calculating the F1 score 
helps assess the model’s ability to correctly identify and classify objects within 
these environments. The F1 score takes into account both the model’s ability to 
correctly detect true positive instances (precision) and its ability to find all relevant 
instances (recall).

A high F1 score indicates that the model is effectively de- testing and classifying 
objects across 85 classes. It reflects a good balance between precision and recall, 
where both the number of correctly identified objects and the number of false 
positives and false negatives are minimized. It is important to note that achieving 
a high F1 score for such a diverse range of classes in different environments 
can be challenging. It requires a comprehensive and well-curated training dataset 
that includes sufficient examples for each class. Additionally, fine- tuning the 
model architecture, optimizing hyperparameters, and carefully selecting training 
techniques can contribute to improving the F1 score.
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Fig. 17. Training for the new 5 classes model.

Fig. 18. Combined model process flow.

Regular evaluation of the F1 score is crucial during the development and improvement 
stages of the object detection combined model. It helps identify areas where the 
model may struggle, such as detecting specific classes or dealing with challenging 
scenarios. By analyzing and addressing the factors affecting the F1 score, developers 
can continuously enhance the model’s performance and accuracy in detecting the 
85 classes on the street and on inland vessels.

V.	 CONCLUSION

This study has undertaken an in-depth exploration of object detection methodologies, 
with a particular emphasis on the application of YOLOv7 and YOLOv8 models within 
street and inland vessel environments. The evaluation of these models’ performance 
and accuracy was conducted using a comprehensive array of evaluation metrics, 
notably including the F1 score.

The results demonstrated that YOLOv8 surpassed existing object detectors in 
terms of both speed and accuracy across a range of frame rates. It achieved the 
highest accuracy among real-time object detectors operating at 30 FPS or higher 
on the GPU V100. The YOLOv8 models, pre-trained on the COCO dataset, showed 
promising performance for detecting 85 combined classes in street and inland 
vessel scenarios, eliminating the need for custom training.
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The findings unveiled that YOLOv8 surpassed prevailing object detection methods 
in terms of both speed and accuracy across a diverse range of frame rates. 
Particularly notable was its achievement of the highest accuracy among real-time 
object detectors operating at 30 FPS or higher on the GPU V100. The YOLOv8 models, 
having been pre-trained on the COCO dataset, exhibited promising performance 
in detecting 85 combined classes across scenarios involving street and inland 
vessels, obviating the necessity for custom training. Nonetheless, it is imperative 
to acknowledge that the attainment of elevated accuracy and performance in 
object detection tasks remains a multifaceted challenge. The process necessitates 
meticulous model fine-tuning, meticulous hyperparameter optimization, and the 
curation of a diverse and well-annotated training dataset. These considerations bear 
significant weight in enhancing both the F1 score and the overarching performance 
metrics. Future research trajectories might encompass the exploration of advanced 
architectural paradigms, the integration of supplementary contextual information, 
and the resolution of context-specific challenges intrinsic to street and inland vessel 
domains. Addressing these challenges and pursuing innovation stands poised to 
yield more robust and accurate object detection models, thereby capacitating the 
adept identification and classification of objects within a spectrum of scenarios.

In summation, this paper profoundly contributes to the field of object detection 
by rigorously evaluating the performance of the combined YOLOv8 model within 
the contexts of street and inland vessel applications. This endeavor underscores 
their potential efficacy in real-time scenarios, thereby charting a course towards 
safer and more operationally efficient autonomous systems within these domains. 
The revelations emanating from this study, enriched by insights into the intricacies 
of YOLOv8, pave a discernible path for the progressive evolution of object 
detection technology. The implications of these findings are poised to catalyze the 
advancement of this field, fostering the development of more sophisticated and 
precise models conducive to safer and more proficient autonomous systems. 

Fig. 19. Annotate new objects in the scene.
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Fig. 20. Confusion Matrix of the 5 Classes Model.
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TABLE VI
Comparison of YOLO8 with Previous Versions Accuracies

YOLO 
version

mAP on COCO 
(test-dev)

YOLOv1 21.2%

YOLOv2 33.1%

YOLOv3 35.5%

YOLOv4 43.5%

YOLOv5 48.6%

YOLOv6 50.4%

YOLOv7 57.9%

YOLOv8 65.7%

Fig. 21. F1-Confidence curve for the 5 classes model.
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Fig. 22. Precision-Confidence curve of the 5 Classes Model

Fig. 23. Recall-Confidence curve of the 5 Classes Model.
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Fig. 24. Precision-Recall curves of the 5 Classes Model.

Fig. 25. Losses different curves of the 5 Classes Model
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Fig. 26. Correcting multiple labels error and construct the combined model.

Fig. 27. Confusion Matrix of the 85 Classes Model.
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Fig. 28. F1-Confidence curve for the 85 classes model.

Fig. 29. Precision-Confidence curve of the 85 Classes Model
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Fig. 30. Recall-Confidence curve of the 85 Classes Model.

Fig. 31. Precision-Recall curves of the 85 Classes Mode
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Fig. 32. Losses different curves of the 85 Classes Model
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