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ABSTRACT

One of the central challenges within the domain of computer visionis object detection,
encompassing the identification and localization of specific entities within an image.
Introducing a pioneering approach, the YOLO (You Only Look Once) algorithm emerged
in 2815, executing object detection within a singular neural network. This innovation
triggered a profound transformation within object detection, ushering in remarkable
advancements beyond the capacities of the preceding decade. Subsequently, YOLO
underwent successive iterations, culminating in eight versions that have earned
prominent stature among leading object identification algorithms. This recognition is
attributed to YOLO's integration of state-of-the-art concepts prevalent in the realm
of computer vision research. Particularly noteworthy is the latest iteration, YOLOVS,
which demonstrates superior performance in terms of both accuracy and speed
when juxtaposed with YOLOv7 and YOLOv5. This study delves into the most recent
strides in object detection as an important field of computer vision, which has been
seamlessly assimilated into YOLOv5, YOLOv7, YOLOvS8, and their antecedents. The
introductory section, delineating the foundational importance of object detection,
aligns seamlessly with the research’s overall narrative. The elucidation of object
detection's significance within diverse contexts, such as vehicle identification
across varying scales and environments, underscores its multifaceted utility. The
refinement process further enhances the discernment of YOLO's progression through
its iterations, elucidating the evolution from the pre-eminent YOLOvV1 to the recent
apex represented by YOLOv8. Notably, the text now highlights YOLOv8's distinc- tive
advancements in accuracy and speed over YOLOv7 and YOLOv5, lending heightened
clarity to the incremental evolution of the algorithm. The augmentation extends
to the exploration of YOLOv8's amalgamation with contemporary computer vision
concepts. These concepts’ incorporation is now underscored, demonstrating how
YOLOv8 benefits from the strides made in computer vision research. The final passage
captures the thrust of the research, examining the application of the developed
object detection models within the specific context of inland waterway vessels.
The distinct stages of detection, the addition of new classes, manual annotation,
and the process of network training are now presented with greater precision,
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ensuring a lucid understanding of the methodology. Moreover, the description of the
combined model's competence to detect all 85 classes with a measure of accuracy

enhances the comprehensiveness of the study's contributions.

Index Terms: Object Detection, YOLO, YOLOS, Autonomous

. INTRODUCTION

BJECT detection is a well-known research topic that hasbeen extensively studied
in computer vision systems. Object detection objective in many fields is to
identifythe location and classify the objects that are of intereston the scene.
The analysis of detection methods involvesthe utilization of different technigues
to extract featuresthat are primarily designed for detecting vehicle objects
atmultiple scales and in various environmental conditions. Inthis context, the
term “object” typically refers to entities thatare either human-made or possess
a high degree of structure(such as vehicles, buildings, ships, etc.), and which
aredistinguishable from complex background environments andlandscapes. Over
the past two decades, the improved accuracy of image interpretation in these
applications has allowed themto fulfill the necessary requirements in real-world
situations,which has in turn greatly advanced the development of Earthobservation
technologies and object-detection methodologies.Many computer vision fields rely
on moving object detectionas a fundamental research component. Over the last
fewdecades, numerous detection methods have been suggested.Existing surveys
have mostly concentrated on the accuracyof detection, but practical detection
tasks were not takeninto account. However, in various application tasks, the
training modes and requirements differ significantly. Moving object detection
serves as the initial stage in numerous computer vision processes aimed at
identifying movingobjects that are not part of a scene, known as the foreground.
Afterward, the objects are isolated from the backgroundthrough segmentation.
Several intelligent monitoring tasksrely on moving object detection and foreground
segments, including but not limited to target tracking, behavior analysis, traffic
monitoring, visual surveillance, and human-machine interaction [1]-{4].

The field of computer vision is currently experiencing a widespread use of deep
learning models, thanks to the development of Deep Convolutional Neural Networks
(DC- NNs) and the increasing computational power of GPUs. Object detection aims
to identify visual objects belonging to specific classes, such as TV/monitor, books,
cats, humans, etc.,and determine their location by enclosing them in bounding boxes.
Once located, these objects are then classified into their respective categories.
Object detection is a task that involves detecting and categorizing a diverse range
of objects within an image. It involves identifying the location of an object in an
image, drawing a bounding box around it, andthen determining the category it
belongs to. Object detection also emphasizes the recognition of instances belonging
to predefined categories. The advancement of object detection can be divided
into two distinct historical phases. The period before 2814 was dominated
by traditional methods, whereas the era following 2814 was characterized by
the emergence of deep learning-based methods. The architectures of these two
phases differ in terms of accuracy, speed, and hardware resources required. When
compared to traditional technigues, Convolutional Neural Networks (CNNs) have
superior architecture and are significantly more expressive, which contributes to
their improved performance [5].

In this paper, different methods of object detection willbe -roughly- overviewed.
YOLO (You Only Look Once) as a popular object detection method, will be compared
-briefly-to other state-of-the-art object detection methods through some relevant
studies. The rest of this paper will cover the application of detecting objects for
inland waterway vessels through three stages and combined trained and pretrained
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model. The first one, is to detect the objects listed in the readytrained list from the
coco dataset that contains 88 classes and includes objects like:(person, bird, boat,
.. and etc.). The next stage of this system is to add five classes which are more
popular in the environment of the inland vessels through their waterway path and
start to train and validate the output of a certain set. The selected classes which
are added at this step are as follows:

- L Shore

- R Shore

- Bridge Pillar
- Crane

- Buoyer

After doing the steps of manual annotation and labeling, the images set will be
divided to two sub-sets: train and validate sets. The training of the YOLO8 custom
network isdone and labels are generated accordingly. The third stageof the
system here is responsible for combining the detected output from the ready
pretrained YOLO8 network with thenew output generated from the next level
of the 5 classestrained network. Combined model will be able to detect all85
classes with a measures’ accuracy as shown on results part of this paper.

Il.  OBJECT DETECTION METHODS: HISTORY AND STATE OF THE ART

Object detection is a fundamental task in computer vision that involves detecting
the presence and location of objectsin an image or video. Over the years, various
object detection methods have been developed, each with its own strengths and
limitations. These methods will be roughly overviewed in the next part of this paper
section, and they could be categorized as two main big groups, as [B] states:

A. Traditional Methods.
B. Deep Learning Based Methods.

A. TRADITIONAL METHODS

Traditional methods of object detection involve using com- puter vision technigues
to analyze the image and extract in- formation about the objects within it. These
methods typically involve a series of image processing steps, including feature
extraction, object classification, and object localization. Thesesteps are processed
step by step as follows:

1) Feature extraction: The first step in traditional object detection
involves extracting features from the image that can be used to identify
and classify objects. Common fea-ture extraction techniques include edge
detection, corner detection, and texture analysis.

2) Object classification: Once features have been extracted, the next
step is to classify them into different categories. This can be done using a
variety of machine learning algorithms, such as support vector machines
(SVMs] or decision trees.

3) Object localization: The final step in traditional object detection is to
localize the objects within the image. This typically involves identifying the
position and size of the object relative to the image frame.

There are several traditional methods of object detectionthat are commonly used
in computer vision research and ap- plications, as shown in figure 1. These methods
are including:
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1)  Feature-based methods:

- SIFT (Scale-Invariant Feature Transform] features: SIFT features are a
feature extraction technique thatis commonly used in object detection and
recognition. The technique involves identifying distinctive features in an image,
such as corners and edges, and then matching those features to a database of
known objects.SIFT detects and describes local features that are invariant to scale,
rotation, and illumination changes. SIFT works by identifying key points in an image
that are both stable and distinctive, and then describing the surrounding region
of the image in a way that is invariant to rotation and scale changes. SIFT is quite
accurate and robust to noise and illumination changes, but can be slow to compute
and is patented, which maylimit its use in some contexts [7].

- HOG (Histogram of Oriented Gradients) features: HOG features are a feature
extraction technique that involves calculating the gradients of an image and then
constructing a histogram of the gradient orientations. HOG computes a histogram
of gradient orientations in an image to capture edge information and shape
features. This technique has been used to successfully detect objects in a variety
of applications, including pedestrian detection and face detection [8].

- SURF (Speeded Up Robust Features). SURF features are similar to SIFT
features in that they involve identi- fying distinctive features in an image. However,
SURFfeatures are designed to be faster and more robustthan SIFT features, making
them well-suited to real- time object detection applications. SURF detects and
describes local features that are invariant to scale, rotation, and affine distortion
using a modified Hessianmatrix. [9].

9- Frequency

domain-based

Fig. 1. Traditional Methods Based Object Detection Technigues.
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. ORB (Oriented FAST and Rotated BRIEF): a fusionof the FAST (Features
from Accelerated Segment Test) keypoint detector and the BRIEF (Binary Robust
Independent Elementary Features) descriptor that is faster and more robust
than SIFT and SURF. ORB is less accurate than SIFT, but is more robust to lighting
changes and has a lower memory footprint. ORB is alsofree to use and does not
have any patent restrictions. Overall, both SIFT and ORB are effective methods
for object detection, but they differ in their trade-offs between accuracy, speed,
and robustness. The choice of which method to use will depend on the specific
application and the properties of the images being analyzed [18].

Detailed overview of the ORB algorithm and its ap- proach to object detection could
be listed as:

a) Feature Detection: ORB starts by detecting featureswithin an image, such
as corners or edges, that are likely to be distinctive and repeatable. ORB
uses a modified version of the FAST algorithm for featuredetection, which is
designed to identify featureswith high-contrast edges.

b) Feature Description: Once features are detected, ORB then extracts a
compact binary descriptor for each feature. The descriptors are designed to
be robust to changes in lighting and scale, making them suitable for object
detection across a wide range of conditions.

c) Feature Matching: After descriptors have been ex- tracted for each
image, ORB then matches the descriptors between the target object and the
scene image. This is typically done using a nearest- neighbor search, where
each descriptor in the targetobject is compared to descriptors in the scene
image to find the best match.

d) RANSAC-based Pose Estimation: Once feature matches have been
identified, ORB uses a robust estimation algorithm called RANSAC (Random
Sample Consensus) to estimate the pose (position and orientation] of the
target object within the scene. RANSAC iteratively samples subsets of the
feature matches and computes the pose estimatefor each subset, selecting
the estimate with the highest number of inliers (matches that agree with the
estimated pose) as the final estimate.

e) Object Localization: Finally, once the object pose has been estimated, ORB
can localize the object within the scene by drawing a bounding box aroundthe
object and overlaying it on the scene image.

Overall, the ORB algorithm is an effective and efficienttraditional method for object
detection, especially in scenarios where deep learning approaches may not be
feasible due to limited data or hardware resources.However, it may not perform as
well as state-of-the-artdeep learning methods in complex and varied scenesor
with highly similar objects [11] [12].

2)  Template matching-based methods:

- Template matching: Template matching is a simple method of object
detection that involves comparing an image to a template image of the object being
detected. If the two images match, the object is considered to be present in the
image. Template matching compares a template image with a larger search image
at different locations and scales to find the best match, using meth-ods such as
cross-correlation or normalized correlation[13].

3)  Edge-based methods: These methods are often used for real-time applications,
as they are computationally effi- cient and can work well in low light conditions
[14].

- Canny edge detector: One of the earliest and most widely used edge
detection algorithms which was introduced by John Canny in 1986. The Canny
detectorapplies a series of filters to an image to identify edges, and then uses
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non-maximum suppression and hysteresis thresholding to produce the final edge
map. The algorithm has been shown to produce high-quality edge maps with low
false positive rates. It detects sharpchanges in intensity or color, which are then
used to define the boundaries of objects [15].

- Sobel operator
- Prewitt operator
- Laplacian of Gaussian (LoG] filter

The Sobel and Prewitt operators are simple gradient- based edge detectors that
compute the gradient mag- nitude of an image and threshold it to obtain an edge
map. The LoG filter is a more sophisticated approach that convolves animage with a
Gaussian filter followedby the Laplacian operator to identify edges [16] [17].

4)  Contour-based methods:

- Contour-based methods are a type of image processing technique that
focus on identifying and analyzing the edges or contours in an image. These
methods are com- monly used in computer vision, pattern recognition, and
object detection. As [18] proposes, new algorithm for contour detection
that combines both bottom-upand top-down approaches to achieve more
accurateresults.

5)  Region-based methods:

- Selective search: generates a large set of region pro- posals in an image
based on color, texture, and size similarity, which can then be classified as object
or background regions. This algorithm involves identify- ing and localizing objects
within an image by dividing the image into regions and analyzing each region for
the presence of an object. These methods are com- monly used in computer vision
applications such as object recognition and tracking [11].

6)  Scale-invariant methods:

- SIFT, SURF, ORB: as described above. Scale-invariant methods are a type of
object detection technigue that aim to identify objects at different scales
within an image. These methods are commonly used in computer vision
applications such as object recognition, tracking,and surveillance [19].

7)  Scale-space methods: refer to technigues that analyze images at different
scales to detect objects of varying sizes. These methods are based on the principle
that objects in images can appear at different scales due to their size, distance
from the camera, and other factors. By analyzing images at multiple scales, scale-
space methods can detect objects regardless of their size or location in the image.
One popular scale-space approach is:

- The Laplacian of Gaussian (LoG) operator, which involves convolving the image
with a Gaussian filter at different scales and then applying the Laplacian
operator to the filtered image. The resulting imagehighlights regions with high
intensity variations at different scales, which can be used to detect objects
of different sizes [28].

8)  Correlation-based methods: Correlation-based methodsare a type of object
detection technigue that involve computing the correlation between an image and
a tem-plate to identify objects. Correlation-based methods for object detection
describe several variations of methods, including:

- Normalized cross-correlation (NCC): a method for comparing two images by

computing their correlation coefficients at each pixel location to find the best
match.
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. Mean Squared Error (MSE] correlation
. Phase-only correlation (POC)

These methods are commonly used in computer vi- sion applications such as face
recognition, tracking, and surveillance. correlation-based methods can be extended
to handle variations in lighting, pose, and occlusion [21].

9)  Freqguency domain-based methods:

- Fourier-Mellin transform: a technigue for matching objects in an image by
analyzing their frequency content and phase relationships. Frequency domain-
based methods are a type of object detection techniguethat analyze the frequency
content of an image to identify objects. These methods are commonly used in
computer vision applications such as image processing,texture analysis, and pattern
recognition. Frequency- based method for object detection that uses a bank of
Gabor filters to analyze the frequency content of an image. The method is able to
detect objects at differentscales and orientations by analyzing the responses of the
Gabor filters across the image. the effectiveness of this method on several object
detection shows that it is able to achieve high accuracy with low computational
complexity [22].

10) Color-based methods: Color-based methods are a typeof object detection
technigue that use color informationto identify objects in an image. These methods
are commonly used in computer vision applications such as traffic monitoring,
object tracking, and image retrieval.

- Color histograms: Represent the distribution of color values in an image
using a histogram, which can be used to identify objects with specific color
character- istics.

- Color Moments: are atype of feature extraction methodcommonly used in color-
based object recognition and image retrieval. Color moments are statistical
descrip- tors that capture the statistical properties of color distributions in an
image. There are several types of color moments, including:

—  The first-order moments (mean)
—  Second-order moments (variance)

- higher-order moments (skewness, kurtosis, etc.) These moments are
computed separately for each colorchannel (e.g., red, green, blue) and can
be combined into a feature vector to represent the color distribution of
an image.Color moments are popular because they are simple to compute,
invariant to translation and scal-ing, and can capture higher-order statistical
properties of the color distribution. However, they can be sensitive to noise
and may not capture spatial information about the object [23].

- Color Coherence Vectors: are a type of feature extrac- tion method used in
color-based object recognition andimage retrieval. Color coherence vectors capture
the spatial coherence of color distributions in an image by measuring the degree to
which neighboring pixels havesimilar color values.

To compute color coherence vectors, an image is first segmented into regions or
objects, and the color distribution of each region is represented as a color histogram.
Next, the spatial coherence of the colordistribution is measured by computing the
similarity between adjacent pixels or regions. This similarity measure can be based
on various metrics, such as:

—  Euclidean distance

— Mahalanobis distance
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— correlation coefficient

Theresult of the computationis a set of vectors that represent the spatial coherence
of the color distributionin each region. These vectors are called color coher- ence
vectors and can be used as features for object recognition or image retrieval.

Color coherence vectors are effective in capturing the spatial coherence of
color distributions and canhandle variations in lighting, shadows, and object pose.
However, they can be sensitive to image noise and may not capture global color
information [24].

11) Texture-based methods: refer to technigues that utilize the texture or
patterns in an image to detect objects.These methods are based on the principle
that objectsin images often have distinctive textures or patterns that can be used
to identify them. Texture-based methods are typically used in scenarios where
the objects of interest have similar colors or shapes to the background, making it
difficult to detect them using traditional color or shape-based methods.

One popular texture-based approach is:

- The Local Binary Pattern (LBP) operator: which in- volves comparing the
intensity values of pixels in an image with their neighboring pixels and encoding the
results as binary patterns. The resulting patterns canbe used to detect texture
variations in the image and identify objects with distinctive textures. that works
by computing a binary pattern for each pixel in an image based on the values of its
surrounding pixels. The LocalBinary Pattern (LBP) operator binary patterns are then
used to describe the texture of the image. LBP can be used for object detection by
comparing the texture of the object to the texture of the background. [25].

12) Motion-based methods: refer to the techniques that utilize the motion of
objects to identify and track them in video sequences. These methods are typically
used in scenarioswhere objects are moving in a dynamic environment and traditional
static object detection technigues may not be sufficient.

One popular motion-based approach is:

- Optical flow: which computes the displacement of pixels between
consecutive frames in a video sequence.0ptical flow can be used to track objects
by detecting the regions where the flow vectors are consistent over time. Another
approach is background subtraction, which involves subtracting a background
image from each frame in the video sequence to highlight moving objects [26].

In conclusion, traditional methods for object detection have their own strengths
and weaknesses, and the choice of method depends on the specific application and
the nature of the objects to be detected.

While deep learning-based methods have achieved state- of-the-art performance in
many areas, traditional methods are still useful in situations where data or hardware
resources are limited. Table I: shows the comparison of grouped traditional methods
of object detection into different categories and lists their pros and cons.

B. DEEP LEARNING BASED METHODS

There are many Convolutional Neural Networks architec- tures which are developed
by the time to solve object detection problem in a good, accurate and fast way.
These architectures could be listed as:

4)  Region-based Convolutional Neural Networks (RCNNs): RCNNs are one of the
earliest and most popular object detection methods [43]. They use a two-
stage approach, where the first stage proposes a set of object regions in the
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5)

6)

8)

image, and the second stage classifies each region as containing an object or
not [52] [11]. The most famous RCNN models are Faster RCNN, RFCN and Mask
RCNN, which have achieved state-of-the-art results on various benchmark
datasets [52] [53].

Single-Shot Detectors (SSDs): SSDs are a one-stage ap- proach that
simultaneously predicts the class and location of objects in an image [44].
Unlike RCNNs, they do not require a separate region proposal step, making
them faster and more efficient [47]. Some of the popular SSD models are YOLO
(You Only Look Once), RetinaNet, and EfficientDet [48]. EfficientDet is a family
of object detection models developed by Google Research that uses efficient
architectures and training techniques to achieve high accuracy while using
fewer computational resources. It achieves state-of-the-art performance on
several bench- mark datasets at 2820 [48].

Anchor-Free Detectors: Anchor-free detectors are a new class of object
detectors that do not rely on predefined anchor boxes for object localization
[54]. Instead, they use a set of learnable points to predict object locations and
sizes [55]. Some examples of anchor-free detectors are CornerNet, FCOS (Fully
Convolutional One-StageDetector), and RepPoints [56].

Transformer-based Detectors: Transformer-based object detectors use self-
attention mechanisms to capture long- range dependencies between different
parts of an image [58]. These models have achieved impressive results
on various object detection benchmarks. Some popular transformer-based
detectc[lrs]are DETR (DEtection TRans-former), Deformable DETR, and Sparse
R-CNN [51].

Hybrid Approaches: Hybrid object detectors combine multiple detection
methods to improve detection accuracyand efficiency. For example, CenterNet
combines the effi- ciency of SSDs with the accuracy of RCNNs [57], while
Cascade RCNNs use multiple stages of classification to refine object detection
results [58].

As figure 2 shows, these different types of object detection methods which are
depending on Deep Learning Networks, could be summarized and discussed as
follows:

1)

2)

3]

4)

5)

6)

8)

Two-stage detectors: These methods include Faster R- CNN [43], R-FCN [59],
and Mask R-CNN [B8].

One-stage detectors: Examples of these methods include YOLO [44], SSD [46B],
and RetinaNet [47].

Multi-scale detectors: These methods include FPN [47], RetinaNet [47], and
Cascade R-CNN [58].

Anchor-based detectors: Examples of these methods in- clude Faster R-CNN
[43], RetinaNet [47], and YOLOv3 [B1].

Anchor-free detectors: Examples of these methods in- clude FCOS [55]
CornerNet [54], and CenterNet [B62].

3D object detectors: These methods include PointNet [63], MV3D [64], and
AV0D [B5].

Video object detectors: Examples of these methods in- clude Tube-CNN [BB],
SlowFast [67], and SiamRPN [68].

Few-shot object detectors: Examples of these methods include Meta R-CNN
[69], FSOD [78], and Few-Shot Object Detection via Feature Reweighting [71].
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OBJECT DETECTION TECHNIQUES AND DEVELOPMENT

Object detection is an active area of research and develop- ment, with many new
methods and techniques emerging on a regular basis. This section of the paper
coversthedevelopmenttimeline of Object Detection techniques briefly to give the
pig picture needed when studying this important and widely used field of computer
vision. a brief overview of some of the major milestones in the development of
object detection methods over the past few decades could be listed through the

time lime as:

- 1998s: The first object detection methods based on hand-crafted features,
such as Histograms of Oriented Gra-dients (HOG) and Haar-like features,
were introduced. These methods used traditional machine learning algo-
rithms, such as Support Vector Machines (SVM), to detect objects in images

[29].

- 2000s: The use of deep neural networks for object detection began to gain
popularity. The seminal workon this topic was the Viola-Jones algorithm,
which useda boosted cascade of simple classifiers to achieve real- time face
detection [72]. In the later years of the decade, methods such as Deformable
Part Models (DPM] and Fast R-CNN: a Fast Region-based Convolutional Network
were introduced, which combined deep neural networks with traditional
machine learning technigues to improve accuracy and speed [73] [42].

TABLE |

HISTORY OF SOME FAMOUS TRADITIONAL OBJECT DETECTION METHODS WITH

PROS AND CONS

illumination changes.
Computationally
expensive.

Method Year |Pros Cons Refer-
ences
Feature-based | 268081 |Robust to occlusion. | Sensitive to noise. [27]
methods Can detect objects |Com-  putationally
in cluttered | expensive.
environments.
Can detect objects "
1998 |of vari- ous Jsizes sensitive to | [28]
and orientations.Can |iMage noise and
handle occlusion and | lumination changes.
cluttered scenes. Computational
complexityis high.
Color-based 1999 |Can detect objects |Limited to objects [29]
methods based on color |with distinctive
information. colors. Sensi- tive
to changes in illumi-
nation.
Region-based | 1998 |Can detect objects |Computationally [38]
methods of vari-ous sizes and | expensive. Sensitive
shapes. Can handle |to imagenoiseand
occlusion and clut- |[illumination changes.
tered scenes.
Scale-invariant | 1998 |Can detect objects |Sensitive to [31]
methods at dif-ferent scales. |image noise and
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Contour-based
methods

1995

1994

Can detect
objects with well-
defined contours.
Computationally
efficient.

Can handle objects
with smooth
boundaries. Can
handle occlusion and
clut-tered scenes.

Sensitive to noise.
Can fail to detect
objects with poorly
defined contours.

Sensitive to noise
and poor edge
detection incluttered
scenes. Compu-
tationally expensive.

[32]

[33]

Scale-space
method

1987

Can detect objects
at dif-ferent scales.

Computationally
expensive.

[34]

Template
match-
ing-based
methods

2000

1983

Simple and easy to
imple- ment. Can
detect objects
in cluttered
environments.

Simple and efficient.
Can detect objects
in cluttered scenes.

Sensitive to changes
in  lighting and
viewpoint.  Limited
to detecting ob-
jects with a similar
ap- pearance to the
templateimage.

Limited to specific
objects and can't
handle varia- tions
in scale and orienta-
tion.

[35]

[36]

Texture-based
methods

1983

Can detect objects
based on texture
information.

Limited to objects
with distinctive
textures. Sensi- tive
to changes in illumi-
nation.

[37]

Motion-based
methods

1980

Can detect moving
objects in  video
sequences.

Limited to moving
ob- jects. Sensitive
to camera motion.

[38]

Correla-
tion-based
methods

1980

Can detect objects
in clut-tered scenes.

Sensitive to image
noiseand illumination
changes. Limited to
specific ob- jects.

[39]

Edge-based
methods

1986

1979

Can detect
objects with well-
defined edges.
Com-  putationally
efficient.

Can detect
objects with sharp
boundaries. Compu-
tationally efficient.

Sensitive to noise.
Can fail to detect
objects with poorly
defined edges.

Sensitive to noise
and poor edge
detection incluttered
scenes.

[46]

[46]

Frequency
domain-based
methods

1987

Can detect objects
based on their
frequency con- tent
and handle occlu-
sion and cluttered
environ- ments. Can
handle noisy images
and detect periodic
patterns objects.

Computationally
expensive.

Sensitive to changes
in lighting and
viewpoint.  Limited
to specific objects.
Can'thandlen o n -
periodic patterns.

[41]
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CornerNet
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Fig. 2. Deep Learning Based Object Detection Methods.

» 2818s: This decade saw the rise of two-stage object de- tection methods,
such as Faster R-CNN: Region ProposalNetworks (RPN) and Mask R-CNN, which
separated ob- ject proposal generation from object classification. FasterR-CNN:
Region Proposal Networks (RPN]) are used to generate region proposals, and a
Fast R-CNN networkis used for object detection. These methods achieved state-
of-the-art performance on benchmark datasets such as COCO and Pascal VOC
[43]. Mask R-CNN: addsa branch to Faster R-CNN for predicting object masks
in addition to bounding boxes and class labels [68]. In the later years of the
decade, single-stage methods such as YOLO (You Only Look Once) and SSD
(Single Shot Detector) were introduced, which achieved real-time performance
by directly predicting object bounding boxesand class labels in a single pass of
the network. [44][46].

» 20828s: In recent years, the focus of object detection research has shifted
towards improving efficiency and robustness. Methods such as EfficientDet
(starting by EfficientDet-DB through EfficientDet-D7 models) [74] and DETR
(DEtection TRansformer) have achieved state- of-the-art performance on
benchmark datasets while re- ducing the computational cost and improving the
gen- eralization ability of the models. Additionally, there has been increasing
interest in using self-supervised and un- supervised learning methods for object
detection, as these approaches can leverage large amounts of unlabeled data
to improve performance. In this decade, many algorithms have been introduced
to be a normal result for the tedious and continues work to achieve better and
better performance, For example:
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YOLOv4: an improvement over YOLOv3, achieving high accuracy with faster
inference time [75].

YOLOvb: is a family of object detection models de- veloped by Ultralytics that
builds on the success of the previous YOLO models. YOLOv5 uses a novel
neural network architecture and training technigues to achieve state-of-the-
art performance on several bench- mark datasets [45].

SpineNet: a family of object detectors that use a new architecture to achieve
high accuracy with efficientcomputation and memory usage. It is developed
by Facebook Al Research that uses a novel neural network architecture to
achieve high accuracy while using fewercomputational resources. It achieves
state-of-the-art performance at 2828 on several benchmark datasets [49].

DETR(Detection Transformer): is a novel object detec- tion architecture that
uses a transformer-based neural network to perform object detection. It
achieves state- of-the-art performance at 2828 on several benchmark
datasets while using a simple and unified approach[58].

Deformable DETR: is an extension of the DETR architecture in 2821 that uses
deformable convolutional layers to perform feature extraction. It achieves
state- of-the-art performance on several benchmark datasets while improving
the detection of small objects [51].

Detectron2: is a popular open-source object detec- tion framework developed
by Facebook Al Research (FAIR). It builds on the success of the original De-
tectron framework and offers a modular and flexible platform for developing
and training state-of-the-artobject detection models at 2828. Detectron2
supportsa wide range of model architectures and can be easily customized
for different tasks and it provides a user- friendly interface and extensive
documentation. On the other hand, it requires significant computational
resources for training and inference and it may havea steeper learning
curve for users unfamiliar with the PyTorch framewaork [76] [77].

Sparse R-CNN: is an object detection method that uses a sparse convolutional
neural network to perform feature extraction. It achieves state-of-the-
art perfor- mance on several benchmark datasets at 2821 while using
fewer computational resources compared to other methods. It achieves
high accuracy with fewer compu- tational resources and can be fine-tuned
for specific tasks. Furthermore, it is highly modular and it canbe easily
customized for different tasks. On the other hand, it may require specialized
hardware to achieve real-time performance and it can be sensitive to the
choice of hyperparameters [78].

TABLE Il

HISTORY OF SOME FAMOUS DEEP LEARNING-BASED OBJECT DETECTION METHODS

WITH PROS AND CONS

Method Year |Pros Cons Refer-

ences

R-CNN (Re- 2014 |Good detection ac- | Slow  training

gion-based Con-
volutional Neural
Networks)

curacy, high recall,
good for com- plex
images.

and testing, re-
guires selective
search for re-
gion proposals,
notreal-time.

(1]
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Fast R-CNN 2815 | Faster than R-CNN, | Still requires re- [42]
end- to-end training, | gion pro-posals,
good de- tection ac- | not real-time.
curacy.

Faster R-CNN 2815 |Faster than R-CNN | Still requires re- [43]
and Fast R-CNN, | gion pro-posals,
end-to-end training, | not real-time.
good detection ac-
curacy.

YOLO (You Only 20816 | Real-time, good | Can miss small [44]

Look Once) detection accura- | objects, and less
cy, and end-to-end | accurate than
training. other methods

on complex im-
ages.

YOLOVS 2828 |Achieves high ac- | May not be as [45]
curacy with faster | accurate as
inference time com- | some other
pared to previous | methods. May
YOLO models. Has | require special-

a lightweight ar- | ized hard- ware
chitecture that re- | to achieve re-
quires fewercompu- | al-time perfor-
tational resources. | mance.

Can be fine-tuned

for specific tasks.

SSD (Single Shot 2816 | Real-time, good | Can miss small [4B]

MultiBox Detector) detection accura- | objects, less
cy,and end-to-end | accurate than
training. other methods

on complex im-
ages.

RetinaNet 2017 |Good detection ac- | Can miss large [47]
curacy for small ob- | objects, slower
jects, less prone to | than some other
false negatives. methods.

EfficientDet 2828 | Achieves high ac- | May require spe- [48]
curacy with less | cialized hard-
computational re- | ware to achieve
sources. Has a good | real- time per-
balance  between | formance. Can
accuracy and effi- | be sensitive to
ciency. Can be fine- | hyperparame-
tuned for specific | ters and initial-
tasks. ization.

SpineNet 2828 | Achieves high ac- | May require spe- [49]
curacy with less | cialized hard-
computational re- | ware to achieve
sources. Has a good | real- time per-
balance  between | formance. Can
accuracy and ef- | be sensitive to
ficiency. Is highly | hyperparame-
modular and can be | ters and initial-
eas- ily customized | ization.
for differ- ent tasks.

DETR (DEtection 2628 |No need for region | Less accurate [50]

TRansformer) pro- posals, end-to- | for large ob-
end train- ing, good | jects, slower
accuracy for small | than some other
objects, efficient. methods.
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Deformable DETR 26821 | Achieves high ac- | May require [51]
curacy with im- | more com- puta-
proved detection of | tional resources
small objects. Can | com- pared to
de- tect objects of | other methods.
different sizes and | Can be sensitive
shapes. Is highly | to the choice of
modular and can be | hyperparame-
eas- ily customized | ters.
for differ- ent tasks.

DETR (DEtection 2628 |No need for region | Less accurate [50]

TRansformer) pro- posals, end-to- | for large ob-
end train- ing, good | jects, slower
accuracy for small | than some other
objects, efficient. methods.

In summary, there has been significant progress and im- provement in object
detection over the past few years. The state-of-the-art in object detection has
been rapidly advancing in recent years, with new methods continually emerging
that achieve better accuracy, efficiency, and robustness. Overall, these neural
network-based methods of object detection repre-sent significant advancements
in the field and offer a range of pros and cons depending on the specific application
and use case, As shown in Table Il.

Furthermore, there is an ongoing process of discovery and innovation in the field
of object detection, with researchersand developers constantly exploring new
approaches and tech-niques. Through these technigues:

- Accuracy: The ability of an object detection system to correctly identify
objects in an image or video is extremely increased.

- Efficiency: The speed and computational resources re- quired to perform
object detection

- Robustness: The ability of an object detection system to perform well under
various conditions, such as changesin lighting, camera angle, or object
orientation.

The ability of an object detection system to correctly identify objects in an image
or video is extremely increased, and new methods and techniques are being
developed that areable to achieve these goals more effectively than previous
approaches. In addition, a number of benchmark datasets havebeen instrumental
in advancing the field of object detection. These include the Caltech [79], KITTI [88],
ImageNet [81], PASCAL VOC [82], MS COCO [83], and Open Images V5 [84] datasets.
Recently, a new drone-based dataset was introduced as part of the ECCV VisDrone
2018 contest [85]. This dataset is comprised of a significant amount of images and
videos captured from a drone platform [86].

IV. YOLO (YOU ONLY LOOK ONCE) OBJECT DETECTION
ALGORITHM: HISTORY AND STATE OF THE ART

YOLO(You Only Look Once)is a popular object detectionalgorithm that has undergone
several iterations since its initial release. Furthermore, it is concluded from the
previous sectionwith its subsections and from [74], that the primary single- stage
detection networks are:

- Single Shot multiBox Detector (SSD] [87].
. EfficientDet [88].
. You Only Look Once (YOLO) series of networks [89] Although SSD has
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good detection accuracy, it lacks sufficientlow-level feature convolution layers,
resulting in inadequate feature extraction, which makes it less sensitive to small
target detection. EfficientDet-D@ through EfficientDet-D7 modelscan achieve higher
accuracy, but this comes at performane weakness factors such that the cost of
higher memory con- sumption and slower inference. In [98], YOLOv5 was used for
some object detection applications (palm tree detection) using UAV images and
was guantitatively compared with main-stream networks such as YOLOv3, YOLOv4,
and SSD388, with YOLOvb demonstrating the best accuracy. The YOLOvSnetwork
adjusts the perceptual field size and enhances the feature extraction ability,
indicating its potential for detection in regions with high canopy coverage [74]. Here
are the key differences between each version:

1)  YOLOvT: This was the first version of YOLO released in 2815. It used a single
deep neural network to perform both object classification and localization in
a single stage. It achieved competitive accuracy and speed on the PASCAL
VOC 268087 detection dataset. However, it suffered from low recall due to the
“grid cell” structure, which made it difficult to detect small objects [44].

2)  YOLOvZ2: Released in 2816, YOLOvZ2 addressed some of the limitations of the
original version. It introduced anchor boxes, which improved the detection
of small objects, and a multi-scale feature extraction network, which
improved performance on objects of different sizes. It also incorporated
batch normalization and residual con- nections for improved training and
performance. further- more, it addressed the shortcomings of the first version.
It achieved a very good results on multiple detection datasets and improved
the accuracy and speed of the algorithm [91].

3)  YOLOv3: The third version of YOLO further improved the algorithm by
introducing various enhancements such as multi-scale prediction, feature
pyramid networks, and improved training technigues. It achieved state-of-
the-art results on multiple detection benchmarks and improved the accuracy,
speed, and robustness of the algorithm. YOLOv3 is released in 2818, YOLOv3
introduced several improvements over YOLOVZ2. It increased the number of
anchor boxes, improved the feature extraction network, and introduced skip
connections to help detect small objects. It also introduced the concept
of "darknet-53," a more complex feature extraction network that improved
detection accuracy [B1].

4)  YOLOv4: Released in 26828, It introduced a number of new features, including
the “CSPDarknet-53" archi- tecture, which improved feature extraction and
training efficiency. It also introduced the “Mish” activation func- tion, which
outperforms traditional activation functions like ReLU. YOLOv4 also introduced
a variety of train- ing techniques, including self-adversarial training, Drop-
Block regularization, and improved data augmentation. The fourth version
of YOLO introduced a number of enhancements such as a CSPDarknet53
backbone, spatial attention, and dynamic anchor assignment, among others.
It achieved fabulous results on multiple detection bench- marks and improved
th![a at]zcuracy. speed, and efficiency of the algorithm at 2828, as mentioned
in[75].

5)  YOLOvb5: Released in 2828, YOLOvVS is an independent project by Ultralytics that
is based on the YOLOv4 architecture. It introduced a number of improvements,
including a redesigned backbone network, a “Swish” activation function, and
improved anchor box placement. It also incorporated a new training pipeline
that made it easier to train on custom datasets [92].

6)  YOLO Nano: Released in 2828, YOLO Nano is a lightweight version of YOLO
designed for resource-constrained devices. It achieves real-time performance
on mobile devices with limited computing power by using a simplified
architecture and fewer layers. It was presented at the 2828 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays [93].
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7)  YOLOvbs, YOLOvGm, YOLOvVSI, YOLOvVSX: Ultralytics has released several versions
of YOLOv5 with varying levels of computational complexity. These versions
have different backbone architectures and feature extraction networks,
allowing users to choose the version that best suits their needs based on the
available hardware re- sources. The fifth version of YOLO introduced a number
of significant improvements such as a new architecture, self-attention, and
a novel anchor-free object detection method. It achieved state-of-the-art
results on multiple detection benchmarks and improved the accuracy, speed,
and simplicity of the algorithm [92][94] [95] [96] [97].

8)  YOLOvB: YOLOvB is verified to bring more improve- ments to the YOLO
architecture. The sixth version of YOLO introduced various improvements
such as custom architecture search, scaled-YOLOv4, and ensemble of models.
It achieved results on multiple detection bench- marks and improved the
accuracy, speed, and efficiency of the algorithm [98].

9)  YOLOv7: The seventh version of YOLO introduced a trainable bag-of-freebies
(BoF) module that can be added to any object detection architecture to
improve its per- formance. It achieved state-of-the-art results on multiple
detection benchmarks and improved the accuracy, speed, and efficiency of
the algorithm [99].

10) YOLOv8: The eighth and most recent version of YOLO introduced various
improvements such as deformable convolutional networks, Scaled-YOLOV5,
and ensemble of models with different input resolutions. It achieved state-of-
the-art results on multiple detection benchmarks and improved the accuracy,
speed, and efficiency of the algorithm. The YOLOv8 network is utilized for
address- ing classification, object detection, and image segmen- tation
challenges. These various approaches enable the identification of objects in
images or videos through distinct means. In addition to providing the object
type and probability, the neural network for object detection also outputs the
coordinates of the object on the image, including its x and y position, width,
and height. This information is demonstrated in the second image. More- over,
object detection neural networks have the capability to identify multiple
objects in an image and determine their respective bounding boxes [188].

Furthermore, it is noted that some of the versions mentioned above are not officially
released by the original authors of YOLO and might have some variations or
differences in their implementation.

V. YOLO 5,7, AND 8 DETECTION RUN COMPARISON FOR
OBJECT DETECTION PROCESS OF VEHICLES AND INLAND
VESSELS SCENCES

The YOLO model is currently the most widely used real- time object detector due
to its lightweight network architecture, effective feature fusion methods, and
more accurate de- tection results. Among the YOLO algorithm variants, YOLOv5 and
YOLOv7 have gained significant acceptance in current usage.

YOLOvb utilizes deep learning technology to achieve real- time and efficient object
detection tasks. It improves upon YOLOv4 by enhancing the model structure,
training strategy, and overall performance. YOLOvS adopts the CSP (Cross- Stage
Partial) network structure, which effectively reduces redundant calculations and
enhances computational efficiency. However, YOLOv5 still has room for improvement
in detect- ing small objects and dense object scenarios, as well as in handling
complex situations like occlusion and pose changes. YOLOv7 introduces a novel
training strategy, at that time (2822), called Trainable Bag of Freebies (TBoF)
to enhance the performance of real-time object detectors. TBoF incor- porates
various trainable tricks, including data augmentationand MixUp, which significantly
improve the accuracy and generalization ability of object detection. However,
YOLOv7is constrained by training data, model structure, and hy- perparameters,
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leading to performance degradation in some cases. Additionally, the proposed
method requires more com- putational resources and training time to achieve
optimal performance [181]. Figure V, shows the YOLO Publications Timeline before
YOLOvS.

In this section, a comprehensive evaluation is conducted on selected versions of
the YOLO platform applied to a specific selected dataset sample of images. A subset
of representative images is carefully chosen to determine the most effective YOLO
versions for efficient object detection. The selection criteria consider the diversity
of scenes, encompassing chal- lenging scenarios where objects may be combined
or difficult to detect. The dataset is thoughtfully balanced, featuring wa- terway
scenes for inland vessels, street traffic views capturing vehicles, pedestrians,
birds, horses, and traffic lights, among others.

The results of the runs reveal distinct identification out- comes for each
object in all selected versions of YOLO. A total of thirty-three (33) images, as
illustrated in Figure V, are carefully curated, comprising 25 images related to
inland vessels scenes and 8 particularly challenging images representing street
traffic views with multiple objects. The subsequent part of this section delves into
the detailed analysis of the object detection results, highlighting the capabilities of
each selected YOLO version in various challenging conditions.

The selected dataset images, as shown in figure V, are selected as:
- 25 images for inland vessels related images.

- 8 (tricky) images are selected for the other (street traffic views for
vehicle, pedestrians, one for a bird, one for a horse, traffic lights, and
etc.]

The rest part of this section will cover the different output and shows the abhility
of each version of the selected ones to detect object in a various set of different
conditions.

A. COMMON OBJECTS IN CONTEXT DATASET (COCO)

The Common Objects in Context (COCO) dataset has emerged as a significant
milestone in the field of computer vision, specifically for object recognition and
detection tasks [83]. With its vast collection of images and meticulously annotated
objects, the COCO dataset provides researchers and developers with a standardized
benchmark to evaluate and advance the performance of object detection algorithms
[182]. By offering a diverse range of object categories and complex scenes, COCO
has become an invaluable resource for training and testing state-of-the-art models,
pushing the boundaries of object recognition and detection capabilities.

Object recognition and detection form the fundamental building blocks of many
computer vision applications, includ- ing autonomous driving, surveillance systems,
robotics, and augmented reality. The ability to accurately identify and local- ize
objects within an image is crucial for understanding visual scenes and enabling
intelligent decision-making. However, this task is inherently challenging due to
variations in object appearance, scale, occlusion, and cluttered backgrounds.

The COCO dataset addresses these challenges by providing a large-scale and diverse
collection of images spanning 86 object categories, as shown in table IV [83].

These categories encompass a wide range of everyday objects such as people,
animals, vehicles, household items, and more. The dataset consists of over 268,880
images from complex real-world scenes, covering a diverse set of visual contexts
and capturing a wide variety of object instances. Each image is meticulously
annotated with multiple objects bounding boxes, segmentations, and corresponding
category labels, enabling fine-grained analysis and evaluation of object detection
algorithms [83].
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The COCO dataset is a comprehensive and extensive re- source for object detection,
segmentation, and captioning tasks. It encompasses a range of notable features,
including [83]:

1))

2)

3)

4

5)

6)

J“i‘.?'?;ﬁ?ﬂ"” Alexey Bochkovskiy -Hau Yeh Feng Wang Lulu Li Alexey Bochkovskiy

Santosh Divvala 1 > g E i
Ross Girshick Ali Farhadi Ali Farhadi Hong-Yuan M. L Hong-Yuan M.L JianSun  Glenn Jocher Team’ Hong-Yuan M. L

Object segmentation: The dataset provides precise de- lineation of objects
through segmentation, allowing for pixel-level ground truth information.

Recognition in context: COCO captures objects within their surrounding
scenes, enabling recognition in diverse visual contexts and promoting a better
understanding of object interactions.

Super pixel stuff segmentation: The dataset includes detailed annotations for
stuff segmentation, providing insights into the distribution and boundaries of
regions like sky, water, and vegetation.

Scale and diversity: COCO comprises a substantial col- lection of 338,088
images, encompassing a wide variety of scenes and object instances. This
large-scale nature allows for robust training and evaluation of models.

Abundance of object instances: With approximately 1.5 million annotated object
instances, the COCO dataset offers a rich variety of examples for each object
cate- gory, facilitating comprehensive analysis and algorithm development.

Extensive object and stuff categories: The dataset covers 86 object categories,

including people, animals, vehicles, and household items, providing a broad
range of objects to detect and recognize. Additionally, it includes 91 stuff
categories, capturing various contextual elements.

YOLO Timeline From 2015 to 2022
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Fig. 3. YOLO Publications and Authors Timeline from 2815 to 2822 (Zoumana KEITA)

7)

8)

Caption annotations: Each image in the COCO dataset is associated with
five captions, enabling research and development in image captioning and
language under- standing tasks.

Key points annotations: COCO provides annotations for key points, specifically
for approximately 258,688 peo- ple, facilitating the development and
evaluation of pose estimation algorithms.

The combination of these features makes the COCO dataset a highly valuable
resource for advancing research in computer vision, enabling the development
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and evaluation of state-of- the-art models across multiple tasks, including object
detec- tion, segmentation, captioning, and pose estimation. One of the distinguishing
features of the COCO dataset is its emphasis on accurately localizing objects of
interest. In addition to category labels, each annotated object is precisely delineated
using segmentation masks, providing pixel-level ground truth information [83]. This
level of detail allows researchers to explore advanced detection technigues that go
beyond simple bounding box estimation, enabling more precise object local- ization
and instance segmentation.

The availability of such a rich and comprehensive dataset has fostered significant
advancements in object recognition and detection. Researchers and developers
have leveraged the COCO dataset to train and benchmark state-of-the-art models,
resulting in remarkable progress in object detection accuracy and efficiency
[183] [184]. The dataset's widespread adoption has fueled the development of
sophisticated algorithms, in- cluding deep learning approaches, which have
demonstrated exceptional performance in detecting and recognizing objects across
a wide variety of challenging scenarios [185] [186].

Furthermore, the COCO dataset has facilitated the develop- ment of robust and
generalizable object detection frameworks. By training models on COCO, researchers
can leverage the dataset's diversity to enhance the models' ability to handle
complex scenes, occlusion, and small object instances [185]. The evaluation metrics
provided by COCO, such as aver- age precision (AP] and intersection over union
(loU), offer standardized benchmarks for comparing the performance of different
objectdetectionalgorithms, promoting fairand objec- tive evaluations[182]. The COCO
dataset has revolutionized the field of object recognition and detection by providing
a comprehensive benchmark for training, testing, and evaluating algorithms. Its
large-scale collection of images, diverse object categories, precise annotations, and
detailed evaluation metrics have accelerated progress in the development of state-
of-the- art models. As computer vision applications continue to evolve and demand
increasingly accurate and robust object detection capabilities, the COCO dataset
will undoubtedly remain a vital resource in driving advancements and pushing the
boundaries of object recognition technology [83].
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Fig. 4. Dataset samples for vehicles with various behavior patterns, including mixed
traffic situations and inland waterway vessels
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Dataset examples

Fig. 5. COCO Objects Examples [83]

B. APPLYING YOLOVS X, L, S, AND M MODELS FOR THE SELECTED IMAGES SET.

YOLOv5 provides a range of options with four available models: s, m, |, and x. Each
model offers distinct levels of de- tection accuracy and performance, as illustrated
in figure V-B Although, there are more models for YOLOV5 but they are dealing with
the images width of 1288 pixels. All considered models here to be applied is 468
pixels in size. YOLOv5s,

YOLOvbm, YOLOv5I, and YOLOvbx is used here with the selected 33 images set to
test the ability of the system to detect the different objects pretrained in COCO
dataset 88 classes.

Better YOLOvSx
501 -
YOLOvSI |1
a51
BvoLovsn I
%
o %0
g .
YOLOvSs YOLOvSs
35 P —e— YOLOVSm
—=— YOLOVSI
—— YOLOVSx
30 «— EfficientDet

0 20 25 30

5 10 15
Faster e GPU Speed (msfimg)

Fig. 6. YOLOvV5 Four Models s, m, |, and x Accuracy and Performance (Source: https://
github.com/ultralytics/yolov5s)

This subsection here aims to analyze and compare the differences between s, m,
I, and x models of YOLOv5, employing the COCO 88 classes model. The resulting
output provides valuable insights into the variations and characteris- tics exhibited
by these weight models in terms of their object detection capabilities. Detecting
of objects in thirty-three (33) images by YOLOv5 models x and | are applied. The
utilization of YOLOv5 models x and | yields the capability to accurately detect
objects within the sample of the 33 images. Employing YOLOv5 models x and | brings
forth a multitude of advantages tailored to precise object detection within the realm
of 33 images. Model x excels in achieving faster inference times, allowing for real-
time detection in dynamic scenarios. Its optimized architecture efficiently balances
accuracy and speed, making it ideal for applications requiring swift decision-mak-
ing. On the other hand, model | boasts exceptional accuracy in object localization
and recognition. Its deeper architecture and refined feature extraction enable it
to discern intricate details within the images, ensuring a high level of detection
precision, especially in complex scenes with overlapping objects or varying scales.
By harnessing the strengths of both models x and |, the overall detection process
becomes comprehensive and robust, encompassing scenarios that demand both
speed and precision in object identification within the set of the 33 images
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Detecting of objects in 33 images by YOLOv5 models sand m are applied. YOLOvS
model s is designed with a focus on speed and efficiency. Its architecture is
optimized for rapid inference times, enabling real-time object detection in dynamic
scenarios. This advantage is particularly valuable in applica- tions requiring quick
decision-making and tracking, such as video surveillance and robotics. Model s
efficiently balances speed and accuracy, making it well-suited for scenarios where
timely detection is essential. On the other hand, YOLOv5 model m strikes a balance
between speed and accuracy. With a slightly deeper architecture and enhanced
feature extraction, it excels in accurately localizing and recognizing objects within
images. This accuracy advantage is especially useful in scenarios with complex
scenes, overlapping objects, or varying object scales. Model m's versatility makes it
suitable for a wide range of applications, including autonomous vehicles, industrial
automation, and quality control. By leveraging the strengths of both models sand m,
the overall object detection process is enriched, catering to scenarios that demand
different priorities in terms of speed and accuracy within the specified previous
sample set of 33 images

The remaining part of this subsection displays several images generated by four
YOLOvS models: x, |, s, and m. The detected objects in these images are enclosed
within bounding boxes and labeled with the class assigned by the respective model.
Additionally, an F1 score will be calculated on this sample test to demonstrate the
performance and accuracy of these models.

Figures 7 (a), (b), (c), and (d) display the output achieved of applying YOLOv5 model
X, I, s, and m respectively, and show true positive detection instant for one bird
and false positive for the other one in some cases. Furthermare, the existence of
showing multiple labels for the same object by two different classes, one is true
which is “car” and the other one is false as well and it is “boat”. The existence
of water near to the car do this sort of ambiguity and the presence of some wood
bars in front of the car, leads to detect the wood as bench in model m, as shown in
7 (d), and it leads falsely the s model to detect the car as a train on the other hand,
as Figure 7 (c] illustrates.

A bird in the sky is detected only in one model of YOLOvV5 which is x model as
appears in 8 (a). but the hand back on the person's shoulder is detected in model
x and | as 8 shows in (a) and (b) respectively. True positive person detection is
achieved in all models of 8 as well. False Detection of a boat is only achieved
in this image when model x applies as 8 (a) illustrates. Model x at this image
is most accurate one in this case to detect person, bird, backpack objects very
professionally as shown in 8 (a) and (b).

Bridge pillar is detected as boat, as Figures 9 (b) and (c) show. The same vessel
is detected as one boat in Figures 9 (c) and (d), but it is counted as two boats in
(a) and (b] respectively. Yellow buoy is not detected at all and needs to be added
in the training model to be differentiated to the boat. Figures 18 (a), (b), (c), and (d)
show that white car on top of the vessel is not detected except the case (a).
While the persons in the images are detected accurately.

The trailer part contains the cabin is only detected from the vessel in model x of
Figure 11 (a). The person on the vessel surface is not detected in all models except
of Model m as Figure 11 (d] illustrates. Building with the boat is delt as one object, as
shown in Figure 11 (c). Model x and m are detecting a back shore building as a boat,
as shown in Figure 11 (a), (d) respectively. A vessel is sailing in the opposite direction
and delt as multiple objects in (b}, (d) and as boat partially in (a) as Figure 11 shows.
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(©): YOLOWSs output

(b): YOLOVS! output (@: YOLOvSm output

Fig. 7. YOLOv5 detection run for selected image 1.

(a): YOLOvSx cutput

(b): YOLOVS! output (@ YOLOVSm output

Fig. 8. YOLOv5 detection run for selected image 2.

(b): YOLOvSI output (@ YOLOvSm output

Fig. 9. YOLOv5 detection run for selected image 3.

C. APPLYING YOLOV7 X MODEL FOR THE SELECTED IMAGES SET.
YOLOv7 demonstrates superior performance in 2822 in terms of both speed and

accuracy across a range of frame rates, from 5 FPS to 168 FPS. It achieves the
highest accuracy, with an average precision (AP) of 56.8%, among all real-time
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(b): YOLOvS! output (@: YOLOvSm output

Fig. 18. YOLOv5 detection run for selected image 4.

Fig. 11. YOLOv5 detection run for selected image 5.

Deformable DETR, DINO-5scale-R58, ViT-Adapter-B, and several others, in terms of
both speed and accuracy as 12 shows Only one model YOLOv7x is used here and
as with the previous subsection, limitations of object detection are applied here
too with YOLOv7x. The run process to detect objects in 33 selected data set is also
applied here by using YOLOv7x. One of the main YOLOv7x model advantagesis could
be considered as one of the fastest object detection algorithms available. It can
detect objects in real time, making it ideal for applications such as autonomous
driving and robotics. YOLOv7x is also very accurate, achieving state-of-the-art
results on a variety of object detection benchmarks. This makes it a good
choice for applications where accuracy isimportant, such as medical imaging and
security. YOLOv7x has fewer parameters than previous versions of YOLO, making it
easier to train and deploy on resource-constrained devices. This makes it a good
choice for applications where speed and accuracy are both important, such as
mobile phone cameras.
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Fig. 12. YOLOv7 in comparison with other real-time object detectors (https://github.
com/WongKinYiu/yolov7).

YOLOv7x can detect objects of different sizes at the same time. This makes it a
good choice for applications where objects can vary in size, such as traffic or
surveillance. YOLOv7x is robust to noise and occlusion. This makes it a good choice
for applications where objects may be partially obscured, such as in poor lighting
conditions or with moving objects. YOLOv7x achieves its speed by using a simplified
model architecture with fewer parameters. This means that the model is less
computationally expensive to train and run. YOLOv7x also uses a more efficient
implementation of the convolution operations, which further improves its speed

In terms of accuray, YOLOv7x achieves its accuracy by using a larger training
dataset with more diverse objects. This helps the model to learn to identify a
wider variety of objects. YOLOv7x also uses a more powerful loss function that
pe- nalizes inaccurate predictions. This helps the model to learn to make more
accurate predictions. YOLOv7x has fewer pa- rameters than previous versions of
YOLO because it uses a simplified model architecture. This makes it easier to train
and deploy on resource-constrained devices, such as mobile phones or embedded
systems. YOLOv7x can detect objects of different sizes at the same time by using
a technigue called anchor boxes. Anchor boxes are a set of pre-defined boxes that
are used to represent the possible sizes and aspect ratios of objects. YOLOv7x
predicts the probability of each object being present in each anchor box, as well
as the coordinates of the object's bounding box. YOLOv7x is robust to noise and
occlusion because it uses a technique called spatial pyra- mid pooling. Spatial
pyramid pooling divides the image into a grid of cells, and then averages the
predictions from each cell. This helps to reduce the impact of noise and occlusion
on the predictions Applying this model on many images is done and Figure 13 shows
one image from the selected set and also the same limitations apply here as well.

Detected images can differ based on model accuracy and previous training process:
The accuracy of an object detection model can vary depending on various factors,
including the training data, model architecture, and optimization techniques used. A
model that has been trained on a large, diverse, and well-annotated dataset is likely
to perform better in detecting objects compared to a model trained on a smaller or
less diverse dataset. Additionally, the training process itself, such as the choice of
hyperparameters and training duration, can impact the accuracy of the model.
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Fig. 13. YOLOv7 Image Run.

Objects detected multiple times with different classes: It is not uncommon for an
object detection model to produce mul- tiple bounding boxes for the same object
instance, especially if the object is large or has complex geometry. However, if the
model assigns different classes to these multiple detections of the same object,
it could indicate issues with the training process or the guality of the training data.
In such cases, reevaluating the training pipeline and dataset annotations may help
improve the model's performance.

Misclassifying buoys as boats: Object detection models are trained on large datasets
containing various object classes. If a model misclassifies buoys as boats, it might
indicate a lack of specific training examples for buoys or similarities between the
visual features of buoys and boats. Adding more diverse training examples of buoys
and refining the training process can help address this issue.

Need for adding different classes and training the system: If you want the system
to detect objects from rivers, waterways, and streets, you would need to include
specific classes for those objects during the training process. This would require
augmenting the training dataset with relevant images and annotations for objects
like riverbanks, bridges, street signs, etc. By training the system on a comprehensive
dataset with a wide range of classes, you can enhance its ability to detect and
classify objects accurately in different environments.

Based on the results obtained from running the four YOLOv5 models on each image
of the sample set in the previ- ous subsection, and after contrast them with the
performance of the other x model of YOLOV7, several observations can be drawn:

- The accuracy of detected objects in an image can vary based on the
model's accuracy and the training process it underwent.

- In certain cases, an object detection model may detect the same object
multiple times but assign different classes to those detections.

- For instance, buoys might be misclassified as boats in- stead of being
recognized as buoys.

- To enhance the system's capability to detect objects from rivers,
waterways, and streets, it is necessary to add and train the model
in different classes, enabling it to identify various objects in these
environments.

- In certain models, static objects like cranes may be included within the
bounding box of a boat, while in other cases, they may not be included.

- Sometimes, a single long boat may be treated as a single object, while in
other instances, it may be detected as two separate boats.

- Treating a part of an object as a complete object, such as considering a
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partial boat as a whole boat, is a problem that needs to be addressed.

- Some objects may be misidentified due to misleading neighboring
objects. For example, a car with pieces of wood in front might be
incorrectly classified as a train, boat, or another car in different runs of
the model.

From all these outcomes and other results, it is clear that object detection
models can have varying performance depending on their architecture, training
data, and optimization technigues. Addressing these issues may involve refining the
training process, augmenting the dataset with diverse exam- ples, and fine-tuning
the model to improve its accuracy and robustness in detecting and classifying
objects correctly in both environments, driverless vehicles, and pedestrian streets
and for waterway inland vessels, as well.

IV. YOLO8 APPLIED TRAINING AND DETECTING USING
COMBINED DATASET OBJECTS FOR DRIVERLESS VEHICLES
AND INLAND VESSELS

A. YOLO8B FEATURES AND NETWORK STRUCTURE

The latest iteration in the YOLO model series, YOLOv8, was recently introduced
by Ultralytics. Although a reviewed paper is yet to be published, examination of
the repository reveals several notable features that distinguish it from other
object detection models. In terms of architecture, as shown in Figure 15, YOLOv8
incorporates significant changes, particu- larly in how it receives and analyzes
visual data. Unlike previ- ous YOLO models like YOLOv4, YOLOv8 adopts an anchor-
free approach. This is like other variations in the YOLO model series, such as YOLOX,
which aims to streamline performance while maintaining high accuracy. Empirically,
the best anchor- free approaches have demonstrated comparable or improved
performance. However, from a theoretical standpoint, there are certain trade-offs.
Anchor-free approaches offer greater flexibility in object detection as they directly
identify objects without relying on preset anchors, which can be biased based on
previous training and fail to generalize well to new data. However, this flexibility may
also lead to biased and mislead- ing predictions that lack the logical foundation
inherent in the more traditional process of human object detection and observation.

YOLOv8 implements Anchor-Free instead of Anchor-Based object detection. It
employs a dynamic Task Aligned Assigner for the matching strategy, calculating
the alignment degree of Anchor-level for each instance. YOLOv8 achieves better
accuracy than YOLOv5, making it the most accurate detector to date.
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Fig. 14. YOLOv8 Architecture, visualization made (GitHub user Range King])

One key feature of YOLOVS8 is its extensibility. It is de- signed to seamlessly work
with all YOLO versions and allows researchers to switch between them, facilitating
performance comparisons. Therefore, YOLOvV8 was selected as the baseline version
used in work implementation.

Furthermore, YOLOv8 benefits from the extensive commu- nity support it has
garnered, which has contributed to its popu- larity and widespread usage. This
community involvement has facilitated empirical investigations into more effective
training schedules and methods. For instance, YOLOv8 does not ad- here to the same
training strategy throughout the entire training process. One notable example is the
mosaic augmentation, which stitches together images to train the model to detect
objects with varying combinations and locations. However, it has been observed
that employing this augmentation towards the end of the training process can
degrade performance. Consequently, YOLOv8 employs a carefully selected training
setup based on empirical experimentation to achieve optimal results.

YOLOv8 offers support for all versions of YOLO but with a focus on speed,
accuracy, and user-friendliness, as shown by 15. YOLOv8 presents itself as an
exceptional option for addressing diverse requirements in object detection and
tracking, instance segmentation, image classification, and pose estimation tasks.
and allows seamless switching between different versions, providing researchers
with flexibility in their experiments. Furthermore, YOLOv8 is compatible with various
hardware platforms (CPU-GPU), enhancing its versa- tility.
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Fig. 15. YOLOv8 is a cutting-edge, state-of-the-art (SOTA) model (https://github.com/
ultralytics)

YOLOv8 represents a collection of neural network mod- els developed and trained
using PyTorch, which have been exported as files with the .pt extension.
These models can be categorized into three types: Classification, Detection, and
Segmentation, each serving a distinct purpose. Additionally, there are five models
available for each type, differing in size, as shown in Table lIl.

YOLO8 Three types of models andT5AIr3nL0Edltlalls of different sizes for each type
Classification Detection Segmentation Kind
yolov8n-cls.pt yolov8n.pt yolov8n-seg.pt Nano
yolov8s-cls.pt yolov8s.pt yolovBs-seg.pt Small
yolov8m-cls.pt yolov8m.pt yolov8m-seg.pt Medium
yolov8l-cls.pt yolov8l.pt yolov8I-seg.pt Large
yolov8x-cls.pt yolov8x.pt yolov8x-seg.pt Huge

B. YOLO8 BASED DETECTION RUN ON A SET OF IMAGES FOR INLAND VESSELS
USING COCO 88 CLASSES DATASET READY TRAINED MODEL

In the subsequent sections of this paper, object detection will be performed using
YOLOv8. The YOLOv8 models specifi- cally designed for object detection come with
pre-training on the COCO dataset, which includes a wide range of images covering
80 different categories. As a result, for the purpose of detecting objects on the
street for driverless vehicles, the pre-trained models based on the COCO dataset
fulfil the requirements, and there is no need for custom training. The pre-trained
models listed in Table Il are sufficient for this environment without requiring any
additional training. By applying YOLOv8x on objects detecting for the same images,
It is noticed that detection is much better than the previously tested versions, as
Figure 16 shows, and the existing x model is enough to base on at the train phase to
add new abhility for detecting the new object.

YOLOv8 employs a novel architecture known as BiFPN (Bidirectional Feature Pyramid
Network], which synergisti- cally amalgamates features from various network strata.
This integration equips YOLOv8 with enhanced capabilities in managing objects of
varying dimensions and aspect ratios. While YOLOv7 also employs BiFPN, YOLOv8
distinguishes itself by incorporating a higher count of channels within the Feature
Pyramid Network (FPN] layers, affording it the ca- pacity to assimilate more intricate
features. The adaptability of YOLOv8 is exemplified by its capacity to accommodate
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higher input resolutions during training compared to its predecessors. This elevated
resolution empowers YOLOvB to discern and precisely identify smaller objects.
Though YOLOv7 exhibits similar adaptability, YOLOv8's superior performance in man-
aging higher resolutions is evident

The adoption of the ResNet-58 backbone network in YOLOv8 represents a notable
advancement over previous versions. This deeper and more expansive architecture
en- ables YOLOv8 to distill complex features that contribute to refined object
detection. Although YOLOv7 also integrates the ResNet-58 backbone, YOLOv8's
augmented depth furnishes it with an advantage in feature extraction. YOLOv8
leverages anchor-free detection for bounding box prediction, a technique that
surpasses predefined anchor boxes in terms of flexibility and precision. While
YOLOv7 embraces anchor-free detec- tion, YOLOv8 employs a superior approach
termed CenterNet, showcasing enhanced accuracy

The expanded repertoire of detectable object classes in YOLOv8 stems from its
utilization of a broader and more diverse training dataset. This augmentation enables
YOLOv8 to surpass its predecessors, including YOLOv7, in terms of class diversity.
YOLOv8 employs focal loss as a pivotal training mechanism, effectively mitigating
the impact of mis- classified objects and elevating accuracy. While YOLOv7 also
integrates focal loss, YOLOv8 deploys an advanced version, demonstrative of its
commitment to precision

The innovative amalgamation of Focal Loss and Smooth L1 Loss functions in YOLOv8
addresses misclassification and inaccurate bounding boxes, resulting in superior
performance. The unique weighting of these loss functions in YOLOvS8 is carefully
tailored for optimal efficacy, distinguishing it from YOLOv7's similar approach.
YOLOv8 employs the Swish activation function, known to heighten the precision of
object detection algorithms. This function is shared with YOLOv7, albeit contributing
to YOLOv8's consistent accuracy enhancements Auto Augment serves as YOLOv8's
preprocessing technique, incorporating an automated application of diverse
transformations to images. This feature is an evolution over YOLOv7's utilization
of Auto Augment, with YOLOv8's iteration displaying a refined effectiveness. Post-
processing, YOLOv8 employs Non-Maximum Suppression (NMS] to re- fine detection
outcomes by eliminating redundancy and over- laps. This NMS approach, while
comparable to YOLOv7's application, reflects YOLOv8's superior optimization for
enhanced efficacy. Overall, YOLOv8 is a significant improvement over previous
versions of YOLO. It achieves better accuracy, handles objects of different sizes
and aspect ratios better, can be trained on images with a higher input resolution,
and can detect more object classes, as Table V shows.

The accuracy of the YOLO object detection algorithms has steadily improved over the
years. mAP (mean Average Preci- sion) is a metric used to evaluate the performance
and accuracy of object detection algorithms. It is calculated by averaging the
average precision (AP) scores for each object category in a dataset. The AP score
for a single category is calculated by first calculating the precision and recall scores
for that cat- egory. Precision is the fraction of predicted bounding boxes that
actually contain the object. Recall is the fraction of ground truth bounding boxes
that are predicted by the algorithm. The AP score is then calculated as the area
under the precision- recall curve. The mAP score is a more robust metric than the
AP score because it averages the AP scores for all object categories in a dataset.
This helps to reduce the impact of any individual category that may have a low AP
score. The mAP score is typically used to compare the performance of different
object detection algorithms. A higher mAP score indicates that the algorithm is
more accurate. Overall, mAP is a useful metric for evaluating the performance of
object detection algorithms. Nevertheless, a crucial consideration necessitates an
awareness of its limitations during the interpretation of the outcomes YOLOv8 is
the most accurate version of YOLO, achieving an mAP of 65.7% on the COCO dataset,
as shown in Table VI.

The COCO dataset is a challenging dataset for object detection, as it contains a wide
variety of objects in a variety of settings. The mAP metric measures the accuracy
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COCO dataset 88 Classes with preassigned ID's

TABLE IV

ID Object ID | Object | ID Object ID Object ID Object ID | Object | ID Object ID Object
8 person 1 bicy- 2 car 3 motor- 4 airplane 5 bus B train 7 truck
cle cycle
8 boat 9 traffic | 10 fire hy- n stop 12 parking 13 | bench | 14 bird 15 cat
light drant sign meter
16 dog 17 horse | 18 sheep 19 cow 28 | elephant | 21 bear 22 zebra 23 giraffe
24 | backpack 25 um- 26 | handbag | 27 tie 28 | suitcase | 29 fris- 36 skis 31 SnNow-
brella bee board
32 | sports ball | 33 kite 34 baseball 35 | baseball 36 skate- 37 surf- 38 tennis 39 bottle
bat glove board board racket
48 | wineglass 41 cup 42 fork 43 knife 44 spoon 45 bowl 46 | banana | 47 apple
48 sandwich 49 or- 508 broccaoli 51 carrot 52 hot dog | 53 | pizza | 54 donut 55 cake
ange
56 chair 57 | couch | 58 potted 59 bed 66 dining B1 | toilet | 62 tv 63 laptop
plant table
64 mouse 65 re- 66 | keyboard | 67 cell- 68 micro- B9 | oven | 78 | toaster | 71 sink
mote phone wave
72 | refrigerator | 73 book | 74 clock 75 vase 76 | scissors | 77 | teddy | 78 hair 9 tooth
bear drier brushes
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Fig. 16. YOLOv8 model x object detection run.

D. COMBINED MODEL AND RESULTS

To combine the trained 88 classes dataset with the new classes data set, a set
of processes starting with annotation, then training and predicting are applies in a
certain sequence to reduce the annotation time and get the results accurately
in both driverless and inland vessels environments. the next subsection shows the
block diagram of the applied processes and discussed the methodology of detecting
objects base on trained model for combined dataset.

In order to combine the trained model with 88 classes dataset and give it the ability
to detect the new classes as well, a set of processes should be used. It is very
important to do this as a building block and automate the process as can as possible.
To achieve this goal, two main building blocks are needed as figures 17 and 18 show.
First of all, as Figure 17 shows, the first block consists of three steps:

1) Annotate the dataset with the new objects with 5 Classes (Buoy, L
Shore, R Shore, Crane, and Bridge Pillar).

2) Train the new dataset with new labels generated by the manual
annotation.

3) Validate the performance of the new trained model for the newly
added five objects.

For this purpose, a dataset of 388 images containing these new objects is chosen
and annotated manually. labellmg program is used here for this manual annotation
process, as shown in Figure 19, and the program output is with YOLO format for
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labels. This format is class code, and the location of the bounded box of this
object with x and y coordinates for the up left corner and down right on of the box.

These labels are saved with the same name of the images as txt file. After finish
all of the annotation process, a 388 text files for labels will be saved in the output
folder. All objects in these files are coded from 8 to 4, while the main COCO set
objects are coded from 8 to 79. It is clear here that it is @ must to avoid misleading
codes to shift the codes generated in the new set from 8 to 4 to be from 88 to 84.
A python program code is written for this purpose. This will make them combined in
one list to be ready for the whole training for all objects in the scene for both street
and waterway environments.

However, the training process takes a long time (in terms of days) on CPU based
machines, and it is very fast in GPU's base ones (12 hours). Google Co-lab Pro
package is used in training epochs. Utilizing the Google Colab Pro package for YOLO
training offers substantial benefits. First, it's cost-efficient, providing access to
powerful GPUs without substantial upfront investment. This accelerates training,
cru- cial for YOLO's computational demands. Second, Colab Pro ensures ample
resources, mitigating memory-related issues and enabling efficient handling of
larger datasets. Its integration with Jupyter Notebooks fosters collaborative and
interactive model development. Lastly, pre-installed libraries expedite setup, and
seamless integration with Google Drive aids version control and sharing.

After the training epochs finished, confusion matrix, the losses, and F1 score metric
are calculated to measure the model performance, accordingly, as illustrated in
Figures 28, 21,22, 23,24, and 25 respectively.

In this stage and after training the 5 classes model with acceptable confidence for
the detection of each class and low losses converges until the end of epochs it is
time to prepare the dataset for the combined model. This data set includes both 88
classes models labels and the newly generated 5 classes ones. Manual efforts done
here but with a very important reward for the system. One of the famous problems
here is the double detecting behavior for the same object with the old 86
classes and in the 5 classes system too. Then a label correction phase is required
here to distinguish between the old detection (boat, for example) and the new and
correct one (buoy, in this case) as figure 26 shows.

The last preparation step here, the training for all of the system depending on the
corrected labels and combined labels for each image is required to generate the
.pt file which be the best weights file for the neural network to depend on it for
further prediction in street environment or in waterway inland vessels one as well.
The training and epochs are generated, as the previous training step, as figure
4.36 shows and the losses, confusion matrix and F1 score metric is calculated to
measure the model performance, accordingly, as illustrated in Figures 4.41, 4.42, and
4.43 respectively.

The F1 score is a widely used evaluation metric in object detection tasks that
combines precision and recall into a single value. It provides a measure of the
overall performance and accuracy of an object detection model. In the context of
detecting 85 classes on the street and on inland vessels, calculating the F1 score
helps assess the model's ability to correctly identify and classify objects within
these environments. The F1 score takes into account both the model's ability to
correctly detect true positive instances (precision) and its ability to find all relevant
instances (recall).

A high F1 score indicates that the model is effectively de- testing and classifying
objects across 85 classes. It reflects a good balance between precision and recall,
where both the number of correctly identified objects and the number of false
positives and false negatives are minimized. It is important to note that achieving
a high F1 score for such a diverse range of classes in different environments
can be challenging. It requires a comprehensive and well-curated training dataset
that includes sufficient examples for each class. Additionally, fine- tuning the
model architecture, optimizing hyperparameters, and carefully selecting training
technigues can contribute to improving the F1 score.
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Annotate the dataset
with the new objects Train the new dataset
with 5 Classes (Buoy, with new labels
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performance of the

new traind model for
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L Shore, R Shore, generated by the
Crane, and Bridge manual annotation
Pillar)

Fig. 17. Training for the new 5 classes model.

YOLOv8 Detection Annotate the new
based on COCO 80 objects in the selected Combine the labels
Classes and Generate dataset with 5 Classes from the two previous

Based on the best.pt
file, it is the detection
process applied to
whole of the dataset

Train the YOLO8 and

generate best.pt
Labels files for each (Buoy, Shore, Crane stages weights file

image and, etc.)

Fig. 18. Combined model process flow.

Regular evaluation of the F1score is crucial during the development and improvement
stages of the object detection combined model. It helps identify areas where the
model may struggle, such as detecting specific classes or dealing with challenging
scenarios. By analyzing and addressing the factors affecting the F1score, developers
can continuously enhance the model's performance and accuracy in detecting the
85 classes on the street and on inland vessels.

V. CONCLUSION

This study has undertaken anin-depth exploration of object detection methodologies,
with a particular emphasis on the application of YOLOv7 and YOLOv8 models within
street and inland vessel environments. The evaluation of these models' performance
and accuracy was conducted using a comprehensive array of evaluation metrics,
notably including the F1 score.

The results demonstrated that YOLOv8 surpassed existing object detectors in
terms of both speed and accuracy across a range of frame rates. It achieved the
highest accuracy among real-time object detectors operating at 38 FPS or higher
on the GPU V188. The YOLOv8 models, pre-trained on the COCO dataset, showed
promising performance for detecting 85 combined classes in street and inland
vessel scenarios, eliminating the need for custom training.
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The findings unveiled that YOLOv8 surpassed prevailing object detection methods
in terms of both speed and accuracy across a diverse range of frame rates.
Particularly notable was its achievement of the highest accuracy among real-time
object detectors operating at 38 FPS or higher on the GPU V188. The YOLOv8 models,
having been pre-trained on the COCO dataset, exhibited promising performance
in detecting 85 combined classes across scenarios involving street and inland
vessels, obviating the necessity for custom training. Nonetheless, it is imperative
to acknowledge that the attainment of elevated accuracy and performance in
object detection tasks remains a multifaceted challenge. The process necessitates
meticulous model fine-tuning, meticulous hyperparameter optimization, and the
curation of a diverse and well-annotated training dataset. These considerations bear
significant weight in enhancing both the F1 score and the overarching performance
metrics. Future research trajectories might encompass the exploration of advanced
architectural paradigms, the integration of supplementary contextual information,
and the resolution of context-specific challenges intrinsic to street and inland vessel
domains. Addressing these challenges and pursuing innovation stands poised to
yield more robust and accurate object detection models, thereby capacitating the
adept identification and classification of objects within a spectrum of scenarios.

In summation, this paper profoundly contributes to the field of object detection
by rigorously evaluating the performance of the combined YOLOv8 model within
the contexts of street and inland vessel applications. This endeavor underscores
their potential efficacy in real-time scenarios, thereby charting a course towards
safer and more operationally efficient autonomous systems within these domains.
The revelations emanating from this study, enriched by insights into the intricacies
of YOLOv8, pave a discernible path for the progressive evolution of object
detection technology. The implications of these findings are poised to catalyze the
advancement of this field, fostering the development of more sophisticated and
precise models conducive to safer and more proficient autonomous systems.
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Fig. 19. Annotate new objects in the scene.
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Fig. 28. Confusion Matrix of the 5 Classes Model.
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TABLE V

YOLO8 and Evolution of Previous YOLO Algorithms

2012

and ImageNet
datasets
using darknet
framework

COCO dataset
using darknet
framework
with data
augmentation

COCO dataset
using darknet
framework

dataset using
the PyTorch
framework

PyTarch
framework with
various datasets,

such as COCQ,

VOC, and Open
Images

COCO dataset
using PyTorch
framework

Key features YOLO (V1) YOLO (V2) YOLO (V3) YOLO (Vv4) YOLO (V5) YOLO (VB) YOLO (V7) YOLO (v8)
Architecture Single neural Single neural Darknet-53 Single-shot Single neural Single-stage ELAN- The modified
network for network for both backbone and detection network for both object detection version of the
both object object localization three detection neural network object detection framework efficient layer SPP-YOLO
localization and and classification heads with for object and classification aggregation
clas ation feature maps localization and network
of different classification
resolutions
Input 448 X 448 416 X 416 Configurable input 648 X 648 The configurable Can be trained Can be Can be trained
resolution resolution up to resolution, on multiple trained on on multiple
pixels pixels 668 X 688 pixels typically 648 resolutions (up to resolutions (688
648 X 648) resolutions X 668)
pixels X 648 (1288 X
1288)
Backbone “Darknet-19" as Darknet-19 Darknet-53 CSPDarknet53 or CSPDarknet53 EfficientRep CBS, CSPDarknet53
network its backbone architecture as architecture as CSPRes- NeXt58 (improved Darknet architecture
network its backbone its backbone (depending on network]) E-ELAN, MP,
network network configuration) and SPPCSPC
modules
Bounding Predicts Predicts bounding Predicts bounding Predicts Predicts bounding Predicts Predicts Predicts bounding
boxes bounding boxes boxes with class boxes with class bounding boxes boxes with class bounding boxes bounding boxes and class
with class probabilities and probabilities and with class probabilities and with class boxes probabilities for
probabilities anchor boxes objectness score probabilities confidence score probabilities and with class an object
Object classes confidence score proba i ties
an
confidence
score
Object classes 28 86 COCO dataset 86 (COCo Customizable, 88 88 88
with 88 object depending on the
classes dataset) dataset
Training Trained on VOC Trained on Trained on Trained on COCO Trained using Trained on vl Trained on

COCO dataset
using PyTorch
framework
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Loss function

Includes three

main components:

Localization Loss
(Lloc), Confidence
Loss (Lconf), and

includes several

main components:

Localization Loss
(Lloc), Confidence
Loss (Lconf),

The multi-scale

loss combines
binary

loU loss, GloU
loss, and
objectness loss

Combined
loss function
oo:m_mﬁ_:m of

focal loss, binary

yolov8n-seg.pt

YOLOv6B used
Varifocal
loss (VFL) for
classification
and Distribution

VFL Loss as
classification loss
and DFL loss
+ CIOU loss as
classification loss

Classification Classification cross-entropy, cross-entropy, and Focal loss
Loss (Lcls) Loss (Lcls), and confidence loss, smooth L1 loss (DFL) for
Class Probability and regression detection
Loss (Lprab). loss
Activation Leaky RelLU Leaky RelLU Leaky RelLU Mish activation SiLU (Swish) SiLU Leaky Relu Leaky Relu
function
Pre-processing Resizing and Resizing and Random resizing Resizing and Random scaling, Padding Gray Compound Mosaic data
normalization normalization and data normalization translation, rotation borders scaling augmentation and
with data augmentation plus Random technigues are method
augmentation crop, resize used class-specific
with letter anchor boxes
boxing, and color
distortion
Post- Non-max Non-max Non-max NMS with an Non- maximum Non- maximum Non- maximum Non- maximum
processing suppression suppression with suppression with threshold of 8.5 suppression suppression suppression suppression
region proposal dynamic threshold and confidence
network (RPN) based on thresholding

and anchor
boxes

objectness score
and loU threshold
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TABLE VI
Comparison of YOLO8 with Previous Versions Accuracies

YOLO mAP on COCO
version (test-dev)
YOLOvVI1 21.2%
YOLOv2 33.1%
YOLOv3 35.5%
YOLOv4 43.5%
YOLOvVS 48.6%
YOLOvB 58.4%
YOLOv7 57.9%
YOLOv8 65.7%
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Fig. 21. F1-Confidence curve for the 5 classes model.
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Fig. 22. Precision-Confidence curve of the 5 Classes Model
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Fig. 23. Recall-Confidence curve of the 5 Classes Model.
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Fig. 24. Precision-Recall curves of the 5 Classes Model.
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Fig. 25. Losses different curves of the 5 Classes Model
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Fig. 26. Correcting multiple labels error and construct the combined model.
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Fig. 27. Confusion Matrix of the 85 Classes Model.
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Fig. 28. F1-Confidence curve for the 85 classes model.
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Fig. 29. Precision-Confidence curve of the 85 Classes Model
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Fig. 38. Recall-Confidence curve of the 85 Classes Model.
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Fig. 31. Precision-Recall curves of the 85 Classes Mode
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Fig. 32. Losses different curves of the 85 Classes Model
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