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The growing frequency of natural disasters and armed conflicts has created an urgent need for rapid,
reliable, and autonomous rescue solutions, particularly in situations where traditional methods become
inefficient or unsafe for human responders. This work presents the design and implementation of a
fully autonomous rescue system aimed at detecting survivors and delivering immediate assistance
without exposing rescue personnel to risk. The system integrates three main components: an aerial
drone, a control center, and a ground vehicle. The drone performs autonomous search operations
and transmits detected survivor locations to the control center, which handles decision-making and
dispatches commands to the ground vehicle. The vehicle then navigates to the identified location
to provide essential aid. A comprehensive high-level and low-level design is developed, detailing the
system architecture, detection algorithm, communication framework, and hardware components. The
implementation of the drone platform, ground vehicle, pre-trained detection model, and inter-device
communication is presented based on this design. The system undergoes multiple tests evaluating
drone search patterns, communication reliability, and detection performance. Results demonstrate
accurate human detection and effective guidance of the ground vehicle to target locations, confirming
the feasibility and robustness of the proposed autonomous rescue solution.

Key-words: Autonomous, Rescue System, SelF-Centralized, Low-Level Design, High-Level

Design, Pre-trained Model

resulted in the deaths of approximately 50,000
people, with many more injured. Additionally,

l. Introduction

In recent times, the world has experienced
significant loss of lives due to a combination of
natural disasters[3] and armed conflicts[4,5]. A
notable exampleis the devastating earthquake
that impacted Turkey and Syria. This event

http://apc.oast.edu
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tens of thousands of individuals were missing,
and over 100,000 have been displaced, facing a
lack of shelter. Figure 1depicts the aftermath of
the earthquake in Turkey and Syria, highlighting
the destruction [1].

©08
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Figure 1: Aftermath of the Turkey—Syria earthquake, illustrating large-scale structural destruction and debris. Adapted from [1].

Additionally, Figure 2 depicts the escalating
trend of natural disasters year by year,
attributed to globalwarming and other sources

Global reported natural disasters by type, 1970 to 2025

of climate change. It also categorizes the types
of disasters [2].

Our World
inData

The annual reported number of natural disasters, categorised by type. The number of global reported natural
disaster events in any given year. Note that this largely reflects increases in data reporting, and should not be

used to assess the total number of events.
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Figure 2: Reported natural disasters by type from 1970 to 2023, showing long-term variation in disaster frequency.
Data sourced from [2].

To address the increasing number of natural
and human-made disasters, it's important
to recognize the urgency caused by rising
global temperatures. This will likely face many
challenges from these disasters, and it’s crucial
to find ways to reduce the number of people
harmed or killed.

Modern technology plays a crucial role in
disaster management [6-10]. Its primary
strength lies in its ability to spread awareness
and knowledge. This report focuses on
leveraging technological advancements
to reduce human casualties and losses in
disaster situations. Recent developments

http://apc.oast.edu
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in artificial intelligence [1112] and robotics
[1314] have significantly enhanced the
disaster response capabilities [1516]. These
technological innovations offer substantial
promise in transforming search and rescue
operations, providing hope in dire situations.
Integrating advanced Al systems into disaster
management procedures is a promising
strategy for saving lives and mitigating the
effects of these disastrous events.

In response to urgent and challenging
situations, this study’s primary goal is to
protect lives at risk from being trapped under
collapsed structures, lost in vast deserts, or
stranded in harsh terrains. Utilizing advanced
technology, it was proposed to develop a
robot capable of locating missing individuals
and transmitting their location. This approach
enables effective tracking and rescue, either
by the robot directly or through the automatic
and adaptive dispatch of necessary

Aspect

Risk to Rescuers

Physical Limitations
Adaptability
Specialized Capabilities

Decision-Making
Access to Confined Spaces
Remote Operation

Surveillance

Communication

A.  Proposed design

The proposed solution is a self-centralized
autonomous rescue system consisting of a
drone, a central unit, and a ground vehicle. The
drone will continuously stream its camera feed
andlocation data to the central unit, which acts
as the operation’s brain. This central unit will
receive data from the drone, perform decision-

Humans
High risk in hazardous environments

Limited, fueled by strength and
endurance

Can quickly adapt to changing
situations

Limited by human capabilities

Based on experience, intuition, and
training

Limited by size and physical constraints
Not applicable
Visual and auditory senses

Verbal and non-verbal communication

assistance, thus reducing the need for human
involvement. This innovative approach is
central to this research and has the potential
to save not only the lives of rescue personnel
but also those of the survivors.

In Table 1, it can be seen that, in disaster
response, humans and robots each have
their own strengths and weaknesses. Humans
are adaptable and experienced, but they
face risks in dangerous environments and
get tired. They may also struggle in tight
spaces. Robots, on the other hand, can work
continuously without getting tired and can
go into risky areas. They can be equipped
with special tools. However, they may have
trouble quickly changing situations and rely on
programming for decisions. Humans are good
at communication, while robots use devices. By
combining human skills with robot capabilities,
it can improve disaster response efforts.

Robots

Low risk, can navigate dangerous areas

No physical limitations, operates continuously

May face challenges in rapidly changing
environments

Can be equipped with specialized sensors
and tools

Rely on programming and sensor data for
decision-making

Can navigate tight or small spaces
Can be operated remotely
Equipped with cameras for visual information

Equipped with communication devices

making, and conduct object recognition on the
drone’s stream. If a survivor is detected, the
central unit will send the survivor’s location to
the ground vehicle, which will then proceed to
provide the necessary aid. Utilizing UAVs and
Al significantly enhances capabilities in post-
disaster scenarios beyond human abilities.
Consequently, the disaster response time will
be reduced, and the probability of rescuing
survivors will be much higher.

http://apc.aast.edu
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Solution requirements and criteria:

1. Computer Vision System: The drone
must have an advanced computer vision
system to identify people effectively in
various conditions.

2. Navigation and Autonomy: Both the
drone and the ground vehicle require
sophisticated navigation systems for
autonomous operation in unpredictable
areas.

3. Communication: Robust communication
is essential between the drone, vehicle,
and base station, capable of efficient
data transfer even in low connectivity
areas.

4. Safety and Reliability: The system
should include fail-safe mechanisms
and thorough safety testing to ensure
reliability and prevent accidents.

5. NaturalLanguageProcessing: Advanced
natural language processing is needed
for clear communication with and
assessment of found individuals.

6. Operational Endurance: The drone and
vehicle should have long battery life and
energy efficiency for extended missions.

7. Simplified Controls: The system should
feature straightforward and easy controls
for efficient operation and quick response
by the team.

8. Scalability and Adaptability: Design
should be scalable and adaptable for
future technological integrations.

Solution constraints:

9. Financial Constraints: Operating within
a limited budget restricts the ability to
acquire top-tier equipment and software,
potentially  impacting the overall
effectiveness of the rescue system.

10. Technological Limitations: The drones
and autonomous vehicles have inherent
limitations in terms of weight capacity,
battery life, and physical dimensions,
which can limit their operational
capabilities.

1. Regulatory Compliance: Adherence to
existing laws and regulations governing
the use of drones and autonomous
vehicles is mandatory, which can
complicate deployment in certain areas.

12. Environmental Challenges: Diverse
weather conditions, difficult terrain,
and natural obstacles pose significant
challenges to the efficiency and success
of rescue missions.

13. Communication  Barriers: Limited
or unrelioble internet and phone
connectivity in certain areas can hinder
communication with the drones.

14. Interaction with Survivors: Challenges
in interacting with survivors, including
language barriers, fear, and injuries, can
complicate rescue efforts.

15. Public Perception and Trust: Gaining
public acceptance and trust is a
challenge due to concerns about privacy,
safety, and reliance on technology in life-
saving scenarios.

16. Operational Constraints: The physical
weight and size of the drones and vehicles
may restrict their access and utility in
certain environments, particularly in
confined areas.

B.  Detailed high-level specifications

After starting the operation, the central control
unit (PC server) establishes communication
with both the drone and vehicle to enable
the transmission and reception of requests.
Initially, both the drone and vehicle are
instructed to calibrate their current locations
as the home position (X, Y,Z=0, 0, 0). Afterwards,
the vehicle enters a standby mode, awaiting
further instructions. Simultaneously, the drone
is tasked to perform reconnaissance within a
300m2 area in the vicinity of the central unit.
During this operation, it continuously streams
video back to the central unit along with real-
time positional data (X, Y, Z). As illustrated in
Figure 3.

http://apc.aast.edu
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The central unit, equipped with Al image
analysis capabilities, specifically utilizes a
Convolutional Neural Network (CNN) algorithm
[17], processes the incoming video stream
by capturing a snapshot every 20 seconds
and analyzing these images. Upon identifying
a survivor within these images, the precise
coordinates are transmitted to both the
drone and vehicle. In response, the drone may
either broadcast a prerecorded message or
engage its speaker system as determined
by the situation, then maintain a hovering
position near the identified survivor to scout for
additional survivors.

At the same time, the vehicle is navigating
through the terrain towards the survivor's
location. The vehicle will either wait for a preset
duration or visual confirmation via onboard
cameras to ensure the survivor has entered it.
Following the successful entry of the survivor,
both the drone and vehicle are instructed to
return to their designated home position (0.0,

0).

Cloud CNN

Establish
Commumcatlon Connected

PC Server + Control Center

Rescue Bots
Project V.1

UDP
Based

(Streaming)
Vehicle

Vehicle
Vehicle

Calibration
Home
Position

Stand-by
Mode

Identify
Survivor's
Location

Get back
home

< Get back
home

ool i

Rescue bot system
(Drone side)

Rescue bot system
(server side)

Rescue bot system
(Vehicle side)

The vehicle system is designed around four
key components: a Raspberry Pi 4, a webcam,
a motor driver, and a pair of DC motors, as
shown in Fig. 4. The Raspberry Pi 4 serves as
the central processing unit, orchestrating the
vehicle’s overall functionality. It operates as the
main controller, managing both the reception
and transmission of commands to and from
the central server.

Communication with the server is facilitated
through a secure SSH port, enabling the
Raspberry Pi to receive coordinates and other
operational commands. Upon receipt of these
coordinates, the Raspberry Pi directs the
vehicle, through the integration of the motor
driver and DC motors, to navigate towards
the designated survivor's location, as shown
in Fig. 5. This motor assembly is crucial for
controlling the vehicle's movements, allowing
for precise adjustments in direction and speed
as required.

Once the vehicle arrives at the specified region
or coordinates, the webcam camera, acting as

http://apc.aast.edu
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an optical sensor, is activated to commence
the search for the nearest survivor. The
camera, in conjunction with image processing
algorithms running on the Raspberry Pi, scans
the area to detect and identify any individuals
in distress. This combination of hardware and
software enables the vehicle to fulfill its mission
of reaching and assisting survivors effectively.

Raspberry pi 4 model B

Th

L298 motor driver

The drone constitutes a central component of
the rescue system, operating as the primary
field unit responsible for environmental
scanning and real-time data acquisition, as
demonstrated in Fig. 6. It performs systematic
aerial reconnaissance across the designated
area and transmits continuous image streams
to the server for processing and survivor
identification. The drone executes flight
commands issued by the control server while
simultaneously returning visual data, thereby
forming an essential link in the overall search-
and-rescue workflow.

The drone’s software architecture integrates
autonomous navigation, visual detection,
and communication functions into a unified
operational framework. It establishes a stable
connection with the aerial platform, manages
live video acquisition, and employs advanced
image-recognition algorithms to detect
potential survivors. Upon detection, the system
activates predefined alert mechanisms and
initiates coordination procedures with the
ground vehicle. The drone’s programmed flight
pattern enables systematic coverage of the

search area, while the detection subsystem
provides continuous analysis of captured
frames to identify human figures or distress
signals.

The ground vehicle is controlled through
a dedicated software module designed
to execute remote navigation commands
securely. Communication is established via
an SSH-based protocol that enables the
transmission of movement instructions and
mission parameters to the vehicle’'s onboard
processor. The vehicle navigates toward
specified coordinates while maintaining
communication with the control server and
subsequently activates its own detection
procedures upon arrival at the target location.
This software framework ensures reliable
coordination between the aerial and ground
units and supports the system’s overall
goal of autonomous survivor localization
and assistance. This logic is exemplified in
Appendices 1and 2 by a flowchart.

supports WIF| 2.4 Ghz

A. Planned
experiments

implementation and

In this innovative work, the drone plays a crucial
role as a primary tool for survivor detection. It
is equipped with a camera whose angle can
be adjusted from 0 to 90 degrees, as illustrated

http://apc.aast.edu
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in Figure 7, to provide a comprehensive bird’s
eye view for horizontal detection. Additionally,
a specially designed vehicle, powered by a
Raspberry Pi 4 and programmed using Python,
acts as a secondary element. This vehicle is
responsible for retrieving the survivor and
transporting them to the rescue station. To
implement this modification, the drone’s
casing was opened, the original camera
connectionwasdetached,andthecamerawas
repositioned vertically to obtain a downward-
facing, bird’'s-eye view. This configuration was
required to accommodate the YOLO-based
detection method [19] and the characteristics
of the custom dataset used.

The operational plan for the search and rescue
system seamlessly integrates three pivotal
devices: the drone in Figure 8, the vehicle in
Figure 9, and a central server, each playing a
critical role. Upon initiating the Python script
on the server, automatic connections are
established with both the drone and vehicle
via a LAN network. The drone then takes off,
embarking on a search within a specific
randomized area, utilizing computer vision
techniques.Leveragingadvancedtechnologies
like artificial intelligence and convolutional
neural networks (CNN), the drone intelligently
identifies the survivor's location, sending the
images back to the server for further analysis.

On the server side, advanced image-
processing operations are executed to
interpret the visual data captured by the
mobile application. The incoming frames are
analyzed using the YOLOV8 object-detection
model, which provides rapid and highly
accurate classification of pedestrians and
otherrelevant scene elements. This stage relies
on a custom dataset developed through the
Roboflow platform to ensure robust detection
performance. The subsequent section
presents a detailed description of the dataset
construction process, including annotation
procedures, augmentation strategies, and
quality-control measures. It also outlines the
complete training pipeline implemented on
Google Colab, covering model configuration,
hyperparameter optimization, and evaluation
methodologies.

Figure 7: Modified drone prototype with a repositioned
downward-facing camera to enable vertical image capture for
YOLO-based detection.

Figure 8: Final drone prototype used in field testing,
incorporating the integrated camera and communication
modules.

Figure 9: Ground vehicle prototype equipped with a Raspberry
Pi 4, motor system, and optical sensing module.

http://apc.oast.edu
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Once the survivor’'s coordinates are pinpointed,
the server promptly transmits this information
to the vehicle. Embedded within the vehicle
is a Raspberry Pi, which, upon receiving the
coordinates via an SSH port, executes another
Python script. This enables the vehicle to
autonomously navigate towards the survivor,
facilitate their rescue, and safely return to
base. This sophisticated interplay between the
drone, vehicle, and server exemplifies a highly
interdisciplinary approach, merging robotics,
computer vision, and artificial intelligence to
significantly enhance the efficacy of search
and rescue operations.

In this paper, the YOLOV8 deep-learning model
isemployed as the primary method for survivor
detection. A dedicated dataset consisting of 118
images of a survivor figure, as shown in Figure

10, was developed to ensure robust model
performance. Dataset construction followed a
structured workflow:imageswerefirst captured
under varied angles and environmental
conditions to  improve  generdlization
capability; subsequently, precise annotations
were performed using the Roboflow platform.
Model training was conducted on Google
Colab, utilizing its available GPU resources to
accelerate computation and optimize learning
efficiency. Following training, the model
underwent extensive evaluation to verify
performance in realistic operational scenarios.
The overall pipeline—from dataset collection
and annotation to training and validation—
was computationally demanding yet essential
for achieving high accuracy and reliability in
survivor detection.

2 =
EpEEEaeag

http://apc.aast.edu


https://apc.aast.edu/ojs/index.php/RIMC/article/view/RIMC.2025.02.2.1414

[RIMC volume 2, 1ssue 2, December 2025 | http://dx.doi.org/10.21622/RIMC.2025.02.2.1414

Journal ofF Robotics: Integration, ManuFacturing € Control - eISSN 3@@9-7967

Figure 10 displays a variety of images
annotated with different poses, ensuring both
accuracy and diversity in the dataset. This
approach enhances the model's ability to
recognize the target object survivors, in this
case, across a wide range of scenarios and
positions. By incorporating multiple poses, the
dataset effectively trains the deep-learning
model to identify survivors in various conditions
and orientations, significantly improving the
model’'s robustness and performance in real-
world applications. Figure 10 shows the overall
annotation process and dataset results,
including Dimension Insights and the total
number of trained and annotated images.
This visualization offers key insights into the
diversity of image sizes and the scale of data
preparation, crucial for assessing the dataset’s
robustness and effectiveness in training the
model.

Figure 11 is valuable for assessing the quality
and comprehensiveness of the dataset used
for training machine learning models, ensuring
that the model is trained on well-rounded and
representative data.

) human figure detection  Dataset Health Check
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Figure 11: Dataset statistics generated through Roboflow,
including image dimensions, class distribution, and annotation
completeness.

B.  Design analysis and feedback

Comprehensive testing has been conducted
on the prototype to ensure it meets all the
requirements. The first set of tests focused on
key aspects of the system:

Quick response is crucial in rescue operations.
Extensive testing ensured the system’s quick
response to disasters. As a self-centralized
rescue system, decision-making regarding the
survivor’s location and the vehicle’s movement
initially caused delays. To address this,
improvements in detection speed and vehicle
pathing were tested as shown in Figure 12.

The prototype uses a map, so it was essential to
ensure the drone’s search paths stayed within
the map boundaries. Multiple tests confirmed
the drone remained within these borders and
thoroughly searched every necessary section
of the map.

Comprehensive tests checked for issues in
communicationbetweenthe drone, server,and
vehicle. Centralized systems can fail at a single
point, so the server’s operation must be robust
to prevent system-wide failures. The prototype
was tested under connection obstacles, such
as crowded connections, to assess how much
connection disruption it could handle before
failing.

Figure 12: Experimental setup used to evaluate drone detection
accuracy, communication latency, and vehicle navigation.

The drone was put in a series of trials to check
the accuracy of survivor detection in various
environments, as shown in Figure 13. The
vehicle, using the same pre-trained model
but detecting survivors from different angles,
was also tested. These tests assessed how
the camera angles of both the drone and the
vehicle, as well as different poses of the survivor
on the map, affected detection accuracy.
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and

C. Design
improvements

optimization

Using Yolov9 significantly improved detection
speed. However, vehicle pathing still needs
refinement. Testing various pathing methods
revealed that directly approaching the survivor
is the fastest, but this can be problematic if
obstacles are present, since the vehicle lacks
a collision avoidance system. Further tests are
needed to develop a reliable path assessment.

After extensive testing, the fourth pattern
proved the fastest for finding survivors and
returning home, especially since the map is not
square. Further tests are needed to integrate
SLAM [22-23], which would eliminate the need

for predefined search patterns in a localized
map.

Testing various communication methods
showed that a LAN network connecting the
vehicle and server to the central unit was
the most stable. However, interference from
multiple people using Wi-Fi or cellular networks
can disrupt communication, necessitating
further testing with alternative methods.

Several algorithms  were tested as
demonstrated in Figure 14, including pretrained
Yolov8, a pretrained TensorFlow CNN model,
custom-trained Yolov8, and a custom-trained
TensorFlow CNN. The custom-trained Yolov8
was superior for the drone’s stream, offering
great accuracy and detection speed. For the
vehicle, the pretrained TensorFlow model
performed better due to the Raspberry Pi
4 limitations. Further testing on different
algorithms and datasets is required.

First pattern Second pattern

Third pattern Fourth pattern
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In conclusion, a self-centralized autonomous
rescue system has been developed, consisting
of an aerial drone, a central control unit,
and a ground vehicle. The drone performs
reconnaissance, identifies potential survivors,
and transmits their coordinates to the control
center, which subsequently directs the ground
vehicle to the detected location. A custom
YOLOv8 model is employed for detecting
survivors or visual signals indicating a need for
assistance.The ground vehicle is equipped with
a Raspberry Pi 4, providing the computational

capability necessary for real-time processing
and navigation.

Future enhancements include the integration
of drone swarms to improve search coverage
and overall system efficiency. Additional
sensors will be incorporated to enhance
detection performance under poor visibility
or challenging environmental conditions.
Furthermore, the wuse of Simultaneous
Localization and Mapping (SLAM) is planned to
enable operation in previously unmapped or
unknown environments, allowing the drone to
construct and navigate a map in real time.

AppendixI:

Autonomous drone rescue system flowchart for YOLO human detection.

Autonmous Drone Rescue System Logic: YOLO
Human Detection

Main Drone Mission (Thread 1

Intitlization Phase

* Initilize DJI Tello drone
« Connect & Enable Video Stream
+ Load YOLO Model (‘best.pt")

Start Frame-Processing
Thread (Thread 2)

Execute Programmed
Search Path

* Move forward, rotate 90°,

move forward, etc.
* Repeats for search grid

Drone Landing

Threaded Frame-Processing (Thread 2)

Process_Frames() Loop
(while True)

Read Frame

Convert frame to RGB

-Sleep 003 s

YOLO Inference:
YOLO Inference:
model.predict()

Detection Results?
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Tomato quality plays a critical role in both customer satisfaction and the efficiency of post-harvest
processing. Traditional sorting and grading methods are labor-intensive, subjective, and unsuitable for
high-throughput operations. This study proposes a smart Al-based vision system capable of real-time
classification of tomato quality into three classes: fresh, damaged, and unripe. The system employs
advanced deep learning techniques, specifically a custom-trained YOLO object-detection model, to
analyze key visual attributes such as color, texture, and surface defects. A diverse, labeled custom
dataset of tomato images was collected to train and evaluate the model. This dataset included tomato
images with the three health conditions according to the output classes of the neural network. The
results show that the system has achieved high accuracy and strong robustness across varying lighting
conditions and backgrounds, making it suitable for deployment in real agricultural and industrial
environments. By enabling fast, automated, and objective quality assessment, the proposed system
significantly enhances the reliability and efficiency of tomato grading and contributes to improved
food supply chain management.

Key-words: Tomato Quality Classification, Computer Vision, YOLO, Deep Learning

metric tons, tomatoes are one of the most
consumed vegetables in the world (FAO, 2022).
Food safety, waste reduction, and consumer

A. Problem statement AR .
pleasure all depend on maintaining the quality

With an annual production of about 186 million
metric tons, tomatoes are one of the most
consumed vegetables in the world (FAO, 2022).
Food safety, waste reduction, and consumer
pleasure all depend on maintaining the quality
after harvest. Sorting and grading tomatoes
according to their ripeness, freshness, and
physical flaws is still quite difficult, though,
particularly in high-volume production settings
like farms, warehouses, and supermarkets.
With an annual production of about 186 million
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after harvest. Sorting and grading tomatoes
according to their ripeness, freshness, and
physical flaws is still quite difficult, though,
particularly in high-volume production settings
like farms, warehouses, and supermarkets [1].

B. Literature review

Since Deep Learning (DL) showed the best
results in the literature review, a modified
YOLOV5 object detection model was used to

QOB
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solve this problem. The DL model categorizes
tomatoes according to their color, outer look,
damage symptoms, and obvious defects
after being trained on a dataset of more
than 2,000 annotated tomato photos. The
suggested system can be used in robotic arms
or conveyor belts in agricultural environments
and is built for real-time response [2]. Mukesh
Dalal and Payal Mittal systematically reviewed
recent advancements in using deep learning
models (YOLO v9, V10, EfficientDet, Transformer-
based models, and hybrid frameworks) for
real-time object detection in agriculture
(crops, fruits, diseases), noting enhanced
precision but emphasizihng challenges
like data scarcity and the need for edge
computing [3]. Campos Soto, Rojas Pino, and
Aguilera Carrasco systematically review the
use of deep learning models (CNNs, R-CNN,
YOLO) for fruit classification and detection,
emphasizing challenges like data scarcity and
occlusion while proposing future research into
multi-modal integration and computational
efficiency [4]. Tan et al. review the application
of deep learning in fruit and vegetable picking
robots, summarizing key technologies in visual
perception, path planning, and end effector
control to highlight the shift towards intelligent,
automated harvesting [5]. Dewi, Thiruvady,
and Zaidi propose a novel Fruit Classification
System that applies Neural Architecture Search
(NAS) to automatically refine the deep learning
network topology, achieving a superior 99.98%
MAP for classifying 15 distinct fruit categories

[6].

The study by loannis D. Apostolopoulos, Mpesi
Tzani, and Sokratis |. Aznaouridis proposes
a novel, generalizable machine learning
(ML) model—specifically leveraging Vision
Transformers (ViT)—to objectively assess fruit
quality (distinguishing between good and
rotten) across various fruit types [7]. The review
by Ignacio Rojas Santelices, Cano, Moreira, and
Pena Fritz thoroughly analyzes Artificial Vision
Systems for fruit inspection and classification,
categorizing methodologies by algorithms
(e.g. CNN, ANN) and features (Color, Shape,
and Texture) to detail the field’'s current state
and common practices for automated quality
control [8]. Sarron et al. utilized a YOLOV5
network for mango yield estimation across
diverse orchards, finding that correcting

for occlusion and detection errors required
incorporating categorical covariates (region,
cropping system) into the linear model to
significantly improve generalization (R? from
0.34 to 0.66% [9]. Wang, Fang, Mo, Gan, and Sun
reviewed deep learning models for tomato
ripeness detection, noting that while existing
YOLO-based methods offer high accuracy in
controlled settings, they often fail in complex
outdoor environments due to reliance on
substantial memory and computational
resources. This led them to propose the
lightweight YOLOVI-MHS model to achieve
high precision with reduced overhead in
challenging agricultural scenes [10]. Wu, Huang,
Song, and Zhou (2025) reviewed deep learning
models for tomato ripeness detection, noting
that while existing YOLO-based methods offer
high accuracy in controlled settings, they
often fail in complex outdoor environments
due to reliance on substantial memory and
computational resources. This led them to
propose the lightweight YOLO-PGC model to
achieve high precision with reduced overhead
in challenging agricultural scenes [l1]. The
literature review by Wang, Xu, Hu, Zhang, Li, Zhu,
and Liu identifies that accurate tomato yield
estimation is challenging in field environments
due to fruit occlusion and overlap, which limit
the performance of traditional and older
machine vision techniques. Consequently, the
study emphasizes the need for lightweight,
deep learning-based networks 8ike their
improved YOLOTIn) that can maintain high
detection accuracy while being efficient
enough for real-time deployment on edge
computing devices [12].

A. Data collection

In this study, a custom image dataset of
tomatoes was collected and annotated to add
tothe YOLO's COCO dataset to include different
tomato health conditions. The modified
dataset was used to train and evaluate the
proposed Al vision system. The dataset is
divided into three quality-based classes.

Figure 1 displays an example of each of the
three conditions.
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Fresh Tomato

Damaged Tomato

Unriped Tomato

The dataset was designed to reflect real-
world conditions, including variations in
lighting, background, and angle. As shown in
the distribution, the number of unripe tomato
samplesis relatively smaller than the other two
categories. Thisimbalance is due to the distinct
visual features of unripe tomatoes, particularly
their color and surface characteristics,
which differ significantly from both fresh and
damaged tomatoes. These unique features
result in distinct feature extraction patterns,
allowing the model to effectively learn
their representations with fewer samples.
Nonetheless, data augmentation techniques
such as flipping, rotation, and contrast
adjustment were applied to improve model
robustness and mitigate class imbalance.

Figure 2 displays a bar chart titled “Dataset
Classes’, which illustrates the distribution of
images across three tomato categories: fresh,
damaged, and unripe tomatoes. The dataset
comprises 960 images of fresh tomatoes and
953 images of damaged tomatoes, indicating
that these two classes are nearly equivalent
in size. Conversely, the unripe tomato class
contains only 424 images, representing o
substantially smaller proportion of the dataset.
This disparity reveals a noticeable class
imbalance, with the unripe tomato category
being significantly underrepresented.

The use of color-coded bars, clearly labeled
axes, and explicit numerical values enhances
the clarity of this distribution.

Emphasizing the importance of applying data
augmentation or other balancing techniques
prior to model development.

1000 960 953
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800
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400
300

Fresh Tomato

Number of images

Damaged Tomato Unriped Tomato
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B. Annotation

All photos were labelled using the Roboflow
annotation platform, which provides a robust
toolset and user-friendly interface for labelling
computer vision datasets, to prepare the
dataset for training and evaluation. A bounding
box and one of three class labels: fresh,
damaged, or unripe, were manually applied
to each tomato instance in the pictures.
Trained annotators carried out the labelling,
visually examining each tomato to determine
its class based on color, surface texture, and
obvious flaws. While built-in features like auto-
zoom, keyboard shortcuts, and error checking
expedited the annotation workflow, Roboflow’s
integrated label management system helped
guarantee consistent labeling throughout
the dataset. To reduce human bias and
mislabeling, annotation quality was confirmed
by manual inspection and cross-validation
by a second reviewer. A total of 2,337 labelled
images were produced. Roboflow's dataset
management capability was then used to
export and version-control these annotations,
ensuring repeatability and traceability during
the model training procedure. Before exporting
the finished dataset, Roboflow was also utilized
to carry out data augmentation tasks,including
flipping, rotation, and brightness/contrast
correction, directly within the platform.

Building dependable and broadly applicable
machine learning models requires dividing the
dataset into subsets for testing, validation, and
training. To measure the model’s performance
in the actual world, this procedure makes sure
thatitlearns from one piece of data, is adjusted
using another, and is then tested on entirely
unseen data.
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The model was trained to identify
characteristics and patterns linked to each
class (Fresh, Damaged, and Unripe) using the
training data. During training, the validation set
was usedtotrackthe model’'s performance and
adjust hyperparameters to assist in avoiding
overfitting. In order to ensure an objective
assessment of the model's performance in the
real world on unknown data, the testing set
was finally set aside for the final review.

A. Checking integrity and fairness of
the evaluation process

The dataset was divided stratified by class in
order to preserve the fairness and integrity of
the assessment procedure. This indicates that,
as opposed to having any subset dominated
by a single tomato quality class, each subset
(training, validation, and test) includes a
representative portion of all three tomato
quality classes. For instance, the training set is
not skewed towards fresh tomatoes, and the
test set is not limited to unripe tomatoes. The
model’s robustness and practical application
are enhanced by this balanced distribution,
which guarantees that it learns equally from
each category and is assessed on its capacity
to generalise across all tomato quality kinds.

A. Model selection

When developing an image-based Al system,
choosing the right computer vision model
is essential since it has a direct impact on
the solution’s accuracy, speed, and overall
performance. The model must be able to
reliably detect small items, identify subtle
surface flaws, and function consistently in a
variety of lighting and background settings
for this project, which entails the real-time
classification of tomatoes into fresh, damaged,
and unripe categories.

A variety of model families is frequently
employed in computer vision tasks, such as
object identification models that integrate
localization and classification, semantic
segmentation  networks for  pixel-level
comprehension, and convolutional neural
networks (CNNs) for picture classification.
Object detection models are most suited for
this task because they involve recognizing

and categorizing several tomatoes in a single
image.

Among these, state-of-the-art models such as
YOLO g(ou Only Look Once), Faster R-CNN, and
SSD (Single Shot Multibox Detector) are widely
adopted.

B. YOLO

YOLO (You Only Look Once) is a state-of-the-
art, realtime object detection algorithm
that reframes object detection as a single
regression problem, rather than the traditional
two-step approach of region proposal followed
by classification. Unlike older methods like
R-CNN or Faster R-CNN that generate multiple
candidate regions and then classify them
separately, YOLO processes the entire image
in one forward pass through a neural network,
making it extremely fast and efficient.

The workflow of this research began by splitting
the inputimage into a13 x13 grid, depending on
the model version. A set number of bounding
boxes within each grid cell was then predicted.
The modelproduced afew parametersforeach
box, including the width and height of the box
in relation to the image, the (x, y) coordinates
of the box’s centre in relation to the cell, and a
confidence score that indicates the likelihood
of an object being present as well as the
accuracy of the predicted box. Furthermore,
class probabilities for the detected object—
such as whether it is an unripe, damaged,
or fresh tomato—are output by each grid
cell. The final detection confidence for each
object is calculated by multiplying these class
probabilities by the bounding box confidence
scores.

Once all grid cells and bounding boxes have
been predicted, YOLO uses a method known as
Non-Maximum Suppression (NMS) to remove
overlapping or redundant boxes, leaving only
the ones with the highest confidence scores.
This procedure minimizes false positives and
guarantees that each object is detected once.
The model learns by minimizing a mixed loss
function that has elements for objectless
confidence (determining whether an object
exists), classification accuracy (making
the right class prediction), and localization
accuracy (bounding box regression).
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Compared to region-based methods, YOLO
better captures global context and spatial
linkages since it examines the entire image
at once. Because of its architecture, YOLO is
incredibly quick, able to operate in real-time
(30+ FPS), and appropriate for uses such as
security monitoring, autonomous driving,
and, in this instance, real-time tomato quality
detection. YOLO is the perfect option for smart
agricultural systems that need real-time
automated decision-making because of its
speed-accuracy balance and capacity to
identify several items in a single frame.

C. YOLOvS

YOLOV5, created by Ultralytics, is a highly
favoured and extensively used object
identification  model because of its

performance, speed, and adaptability. In order
to balance accuracy with inference speed,
YOLOV5 is implemented in PyTorch and comes
in five primary pre-configured model sizes:
YoLovsn (Nano), YOLOVSs (Small), YOLOvEm
(Medium), YOLOVSI (Large), and YOLOvV5x (Extra
Large). Although the depth and width of each
version vary, they are all based on the same
architecture, which ultimately influences the
number of layers and channels as well as the
size, accuracy, and speed of the model.

D. YOLOv5n

The YOLOV5N (Nano) model was chosen for this
project because it strikes a great mix between
speed, efficiency, and tolerable accuracy. With
roughly 1.9 million parameters, YOLOv5N is the
lightest version of the YOLOV5 family. This makes
it ideal for real-time applications on devices
with limited resources, like the Raspberry
Pi, NVIDIA Jetson, or other edge computing
platforms frequently found in agricultural
settings. The key architectural advantages of
the YOLO family, such as quick inference, end-
to-end object recognition, and high spatial
awareness, are still present in YOLOv5n despite
its diminutive size. Even with different lighting
and backdrop conditions, it can identify and
categorize several tomato instances in a
single image. Even while it is not as accurate
as larger models like YOLOvEM or YOLOvVbX,
in well-structured, high-quality datasets, the
performance loss is negligible. YOLOvVGN is an
ideal solution for on-site, automated quality

assessment where speed and deployability
are more important than slight precision gains.
In this application, it successfully detected and
classified tomatoes into fresh, damaged, and
unripe categories with dependable accuracy
and low latency.

The provided Figure 3 illustrates the process
of object detection using a system like YOLO
(You Only Look Once). It shows an input image
divided into an $ S\times S$ grid, where each
cell predicts bounding boxes with confidence
scores. A class probability map determines
the object class for each grid cell, ultimately
leading to the final tomato detection results
with precise bounding boxes.

r= F
0 w2
L =, 4;_.
1 Bounding boxes + confidence
'
)\

S x S grid on input

Tomato detection results

Class probability map

E. YOLOv5n Layer architecture

The YOLOv5N (Nano) architecture is suitable for
edge devices and embedded systems used in
agricultural applications, as shown in Figure 3,
becauseitoffersreal-timeobjectdetectionwith
low computational overhead. The three main
parts of it are the head, neck, and Backbone. To
improve early-stage efficiency, the Backbone
starts with a special Focus layer that slices the
image, boosts the channel depth, and reduces
spatial dimensions. The Backbone oversees
extracting visual information from the input
image.

Convolutional layers used in conjunction with
Batch Normalization and the SiLU activation
function—which provides a smoother gradient
flow than ReLU—come next. The usage of Cross
Stage Partial (CSP) Bottlenecks, which divide the
feature map into two paths—one undergoing
transformation and the other preserved—and
then concatenate them to improve gradient
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flow and minimize computation, is a crucial
component of the Backbone. A layer called
Spatial Pyramid Pooling (SPP) completes the
Backbone. It uses max-pooling at various
scales to gather local and global information
for improved object representation. The next
step involves the use of convolutional layers
in combination with Batch Normalisation and
the SiLU activation function, which offers a
smoother gradient flow than RelU.

A key part of the Backbone is the use of Cross
Stage Partial (CSP) Bottlenecks, which spilit
the feature map into two paths, one of which
is undergoing transformation and the other
of which is maintained. These paths are then
concatenated to enhance gradient flow

L

1

i

I Neck(PaNet)

and reduce computation. The Backbone is
completed by alayer known as Spatial Pyramid
Pooling (SPP). For better object representation,
it collects local and global data using max-
pooling at different sizes.

Figure 4 illustrates two key architectural
modules of YOLOVG: the C3 (Cross Stage
Partial Bottleneck) module and the SPPF
(Spatial Pyramid Pooling - Fast) module. The
C3 module is the primary processing unit,
designed to improve gradient flow and reduce
computation by splitting and concatenating
feature paths. The SPPF module, used in the
Backbone, efficiently gathers multi-scale
global and local contextual information via a
sequential process. pooling operations.

Figure 4: YOLOVG layers.

This Precision—Confidence Curve shown in
Figure 5 shows how the precision of your
tomato classification model changes as you
adjust the confidence threshold. The x-axis
represents the model's confidence level,
and the y-axis represents precision, which
measures how many predictions made above
that confidence level is correct. The curves for
Fresh and Unripe tomatoes (oronge and green)
stay high across almost all confidence levels,

meaning the model identifies these classes
very accurately even when its confidence is
low. In contrast, the Damaged Tomato curve
(light blue) remains low at lower confidence
levels and increases only gradually, showing
thatthis classis more difficult for the model and
produces more false positives. The thick blue
curve represents overall precision across all
classes, and it reaches perfect precision (1.00)
at a confidence of about 0.924. Overall, the plot
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highlights strong performance for Fresh and
Unripe tomatoes and weaker consistency for
Damaged tomatoes, helping you choose an

Precision-Confidence Curve

appropriate confidence threshold depending
on whether you prefer higher accuracy or
more detections.

0.8

Precision
°
o

1
P

0.2

0.0

Damaged Tomato

Fresh Tomato

Unriped Tomato
w3l classes 1.00 at 0.924

0.0 0.2 0.4 0.6
Confidence

The figure below (Figure 6) presents a
normalized confusion matrix that evaluates
the performance of a classification model
across four categories: Damaged Tomato,
Fresh Tomato, Unripe Tomato, and Background.
The diagonal values represent correct
predictions, showing that the model performs
exceptionally well for Fresh Tomato, with
precision of 0.98,and achieves strong accuracy
for Unripe Tomato and Damaged Tomato,
with scores of 0.86 and 0.70, respectively. The
matrix also indicates that a small proportion
of Damaged Tomato images (0.03) and Unripe

Confusion Matrix

Damaged Tomato

Fresh Tomato

Predicted

0.98

0.03 0.02

background  Unriped Tomato

Damaged Tomato Fresh Tomato

0.03

Unriped Tomato

0.8 1.0

Tomato images (011) were misclassified as
background, while minor confusion is observed
between the tomato classes, such as 0.01
of unripe tomatoes predicted as damaged
and 0.02 of fresh tomatoes predicted as
background. Overall, the matrix highlights that
while the model demonstrates high accuracy
for most categories, some misclassification
occurs, particularly with background and
visually similar tomato classes—indicating
areas where further model refinement or
dataset enhancement may be beneficial.

1.0

0.30

0.11

background
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V. Model perFormance
evaluation

A. YOLOv5n
evaluation

model performance

Precision—-97.3%Thepercentageof anticipated
positive cases (detections) that turn out to be
accurate is known as precision. In this case, a
precision of 97.3% indicates that the model is
97.3% accurate in predicting whether a tomato
is fresh, domaged, or unripe. Because of its
great precision, the model seldom mislabels
or mistakenly classifies non-tomato objects as
tomatoes (false positives). This high precision
is vital, as it ensures that when the model
signals a detection, the robotic arm can trust
the classification and act with high confidence,
minimizing false picks and maximizing process
reliability.

Recall - 63.1% Recall measures the model's
ability to detect all actual objects. A Recall
of 63.1% means that the model successfully
detects about 63 out of every 100 actual
tomatoes present in the images. This suggests
that some objects are being missed. This low
Recall reveals a significant limitation: the robot
is missing nearly 4 out of every 10 available
tomatoes due to challenges like occlusion or
lighting. Therefore, while the harvested crop
will be accurately sorted, the overall yield
collection will be substantially incomplete,
necessitating further optimization before full
robot deployment.

B. Model performance test

Figure 7 shows a single tomato with visible
signs of damage. The tomato surface has
dark spots, bruising, and areas of decay,
indicating biological or physical deterioration.
This crucial detection is necessary to prevent
the robotic arm from selecting and harvesting
a compromised fruit. These features—such as
discoloration, wrinkling, and surface lesions—
are commonly associated with damaged or
spoiled tomatoes.

Figure 8 shows the output of the tomato
detection model, where two tomatoes are
identified and classified using bounding
boxes. The tomato on the left is labeled “Fresh
Tomato” with 79% confidence, indicating it is

ready for the robot to pick, while the tomato
on the right is labeled “Unripe Tomato™ with
94% confidence, signaling it should be ignored.
This demonstrates the model’s ability to detect
multiple tomatoesin oneimage and accurately
distinguish between different ripeness stages,
effectively acting as the robot’s ‘eyes’ for
selective harvesting.

Figure 7: Damaged tomato detection.

Unriped Tomato 94%E

Figure 7: Multi-label tomato detection.

VI. Conclusion

This paper presented a real-time Al-based

computer vision system for automated
tomato quality detection using a lightweight
YOLOvbn object detection model. The

proposed approach addressed the limitations
of traditional manual grading by enabling
fast, objective, and scalable classification
of tomatoes into fresh, damaged, and
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unripe categories under diverse lighting and
background conditions. A custom annotated
dataset reflecting real-world variability was
developed to train and evaluate the model.
Experimental results demonstrated high
precision (97.3%), indicating strong reliability
in correct classification and low false-positive
rates, which are critical for automated
harvesting and sorting applications. While
the recall rate (63.1%) revealed challenges in
detecting all tomato instances—particularly
under occlusion and complex scenes—
the system proved effective as a real-time
decision-support tool for quality assessment
in smart agricultural environments.

Future improvements will focus on enhancing
Recall and overall robustness through dataset
expansion, improved class balancing, and
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