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 Rescue-Bots: A proposed Multi-robot 
Architecture for Rescue Missions 

 Abstract

The growing frequency of natural disasters and armed conflicts has created an urgent need for rapid, 
reliable, and autonomous rescue solutions, particularly in situations where traditional methods become 
inefficient or unsafe for human responders. This work presents the design and implementation of a 
fully autonomous rescue system aimed at detecting survivors and delivering immediate assistance 
without exposing rescue personnel to risk. The system integrates three main components: an aerial 
drone, a control center, and a ground vehicle. The drone performs autonomous search operations 
and transmits detected survivor locations to the control center, which handles decision-making and 
dispatches commands to the ground vehicle. The vehicle then navigates to the identified location 
to provide essential aid. A comprehensive high-level and low-level design is developed, detailing the 
system architecture, detection algorithm, communication framework, and hardware components. The 
implementation of the drone platform, ground vehicle, pre-trained detection model, and inter-device 
communication is presented based on this design. The system undergoes multiple tests evaluating 
drone search patterns, communication reliability, and detection performance. Results demonstrate 
accurate human detection and effective guidance of the ground vehicle to target locations, confirming 
the feasibility and robustness of the proposed autonomous rescue solution.

Key-words: Autonomous, Rescue System, Self-Centralized, Low-Level Design, High-Level 
Design, Pre-trained Model
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I.	 Introduction

In recent times, the world has experienced 
significant loss of lives due to a combination of 
natural disasters[3] and armed conflicts[4,5]. A 
notable example is the devastating earthquake 
that impacted Turkey and Syria. This event 

resulted in the deaths of approximately 50,000 
people, with many more injured. Additionally, 
tens of thousands of individuals were missing, 
and over 100,000 have been displaced, facing a 
lack of shelter. Figure 1 depicts the aftermath of 
the earthquake in Turkey and Syria, highlighting 
the destruction [1].

* Corresponding Author
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Figure 1: Aftermath of the Turkey–Syria earthquake, illustrating large-scale structural destruction and debris. Adapted from [1].

Additionally, Figure 2 depicts the escalating 
trend of natural disasters year by year, 
attributed to global warming and other sources 

of climate change. It also categorizes the types 
of disasters [2].  

Figure 2: Reported natural disasters by type from 1970 to 2023, showing long-term variation in disaster frequency.                                   
Data sourced from [2].

To address the increasing number of natural 
and human-made disasters, it’s important 
to recognize the urgency caused by rising 
global temperatures. This will likely face many 
challenges from these disasters, and it’s crucial 
to find ways to reduce the number of people 
harmed or killed.

Modern technology plays a crucial role in 
disaster management [6-10]. Its primary 
strength lies in its ability to spread awareness 
and knowledge. This report focuses on 
leveraging technological advancements 
to reduce human casualties and losses in 
disaster situations. Recent developments 
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in artificial intelligence [11,12] and robotics 
[13,14] have significantly enhanced the 
disaster response capabilities [15,16]. These 
technological innovations offer substantial 
promise in transforming search and rescue 
operations, providing hope in dire situations. 
Integrating advanced AI systems into disaster 
management procedures is a promising 
strategy for saving lives and mitigating the 
effects of these disastrous events.

In response to urgent and challenging 
situations, this study’s primary goal is to 
protect lives at risk from being trapped under 
collapsed structures, lost in vast deserts, or 
stranded in harsh terrains. Utilizing advanced 
technology, it was proposed to develop a 
robot capable of locating missing individuals 
and transmitting their location. This approach 
enables effective tracking and rescue, either 
by the robot directly or through the automatic 
and adaptive dispatch of necessary 

assistance, thus reducing the need for human 
involvement. This innovative approach is 
central to this research and has the potential 
to save not only the lives of rescue personnel 
but also those of the survivors.

In Table 1, it can be seen that, in disaster 
response, humans and robots each have 
their own strengths and weaknesses. Humans 
are adaptable and experienced, but they 
face risks in dangerous environments and 
get tired. They may also struggle in tight 
spaces. Robots, on the other hand, can work 
continuously without getting tired and can 
go into risky areas. They can be equipped 
with special tools. However, they may have 
trouble quickly changing situations and rely on 
programming for decisions. Humans are good 
at communication, while robots use devices. By 
combining human skills with robot capabilities, 
it can improve disaster response efforts.

Table 1: Comparison of human and robotic capabilities in rescue missions, highlighting key strengths and limitations of each.

Aspect Humans Robots

Risk to Rescuers High risk in hazardous environments Low risk, can navigate dangerous areas

Physical Limitations Limited, fueled by strength and 
endurance No physical limitations, operates continuously

Adaptability Can quickly adapt to changing 
situations

May face challenges in rapidly changing 
environments

Specialized Capabilities Limited by human capabilities Can be equipped with specialized sensors 
and tools

Decision-Making Based on experience, intuition, and 
training

Rely on programming and sensor data for 
decision-making

Access to Confined Spaces Limited by size and physical constraints Can navigate tight or small spaces

Remote Operation Not applicable Can be operated remotely

Surveillance Visual and auditory senses Equipped with cameras for visual information

Communication Verbal and non-verbal communication Equipped with communication devices

II.	 Design development

A.	 Proposed design

The proposed solution is a self-centralized 
autonomous rescue system consisting of a 
drone, a central unit, and a ground vehicle. The 
drone will continuously stream its camera feed 
and location data to the central unit, which acts 
as the operation’s brain. This central unit will 
receive data from the drone, perform decision-

making, and conduct object recognition on the 
drone’s stream. If a survivor is detected, the 
central unit will send the survivor’s location to 
the ground vehicle, which will then proceed to 
provide the necessary aid. Utilizing UAVs and 
AI significantly enhances capabilities in post-
disaster scenarios beyond human abilities. 
Consequently, the disaster response time will 
be reduced, and the probability of rescuing 
survivors will be much higher.
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Solution requirements and criteria:
1.	 Computer Vision System: The drone 

must have an advanced computer vision 
system to identify people effectively in 
various conditions.

2.	 Navigation and Autonomy: Both the 
drone and the ground vehicle require 
sophisticated navigation systems for 
autonomous operation in unpredictable 
areas.

3.	 Communication: Robust communication 
is essential between the drone, vehicle, 
and base station, capable of efficient 
data transfer even in low connectivity 
areas.

4.	 Safety and Reliability: The system 
should include fail-safe mechanisms 
and thorough safety testing to ensure 
reliability and prevent accidents.

5.	 Natural Language Processing: Advanced 
natural language processing is needed 
for clear communication with and 
assessment of found individuals.

6.	 Operational Endurance: The drone and 
vehicle should have long battery life and 
energy efficiency for extended missions.

7.	 Simplified Controls: The system should 
feature straightforward and easy controls 
for efficient operation and quick response 
by the team. 

8.	 Scalability and Adaptability: Design 
should be scalable and adaptable for 
future technological integrations.

Solution constraints:
9.	 Financial Constraints: Operating within 

a limited budget restricts the ability to 
acquire top-tier equipment and software, 
potentially impacting the overall 
effectiveness of the rescue system.

10.	 Technological Limitations: The drones 
and autonomous vehicles have inherent 
limitations in terms of weight capacity, 
battery life, and physical dimensions, 
which can limit their operational 
capabilities.

11.	 Regulatory Compliance: Adherence to 
existing laws and regulations governing 
the use of drones and autonomous 
vehicles is mandatory, which can 
complicate deployment in certain areas.

12.	 Environmental Challenges: Diverse 
weather conditions, difficult terrain, 
and natural obstacles pose significant 
challenges to the efficiency and success 
of rescue missions.

13.	 Communication Barriers: Limited 
or unreliable internet and phone 
connectivity in certain areas can hinder 
communication with the drones.

14.	 Interaction with Survivors: Challenges 
in interacting with survivors, including 
language barriers, fear, and injuries, can 
complicate rescue efforts.

15.	 Public Perception and Trust: Gaining 
public acceptance and trust is a 
challenge due to concerns about privacy, 
safety, and reliance on technology in life-
saving scenarios.

16.	 Operational Constraints: The physical 
weight and size of the drones and vehicles 
may restrict their access and utility in 
certain environments, particularly in 
confined areas.

B.	 Detailed high-level specifications

After starting the operation, the central control 
unit (PC server) establishes communication 
with both the drone and vehicle to enable 
the transmission and reception of requests. 
Initially, both the drone and vehicle are 
instructed to calibrate their current locations 
as the home position (X, Y, Z = 0, 0, 0). Afterwards, 
the vehicle enters a standby mode, awaiting 
further instructions. Simultaneously, the drone 
is tasked to perform reconnaissance within a 
300m2 area in the vicinity of the central unit. 
During this operation, it continuously streams 
video back to the central unit along with real-
time positional data (X, Y, Z). As illustrated in 
Figure 3. 
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The central unit, equipped with AI image 
analysis capabilities, specifically utilizes a 
Convolutional Neural Network (CNN) algorithm 
[17], processes the incoming video stream 
by capturing a snapshot every 20 seconds 
and analyzing these images. Upon identifying 
a survivor within these images, the precise 
coordinates are transmitted to both the 
drone and vehicle. In response, the drone may 
either broadcast a prerecorded message or 
engage its speaker system as determined 
by the situation, then maintain a hovering 
position near the identified survivor to scout for 
additional survivors.

At the same time, the vehicle is navigating 
through the terrain towards the survivor’s 
location. The vehicle will either wait for a preset 
duration or visual confirmation via onboard 
cameras to ensure the survivor has entered it. 
Following the successful entry of the survivor, 
both the drone and vehicle are instructed to 
return to their designated home position (0, 0, 
0).

Figure 3: High-level architecture of the autonomous rescue 
system, showing interactions among the drone, central unit, 

and ground vehicle. 

C.	 Detailed Low-Level Specifications

Figure 4 illustrates three distinct elements: the 
server, the vehicle, and the drone. It outlines 
how each of these systems receives inputs, 
the nature of their outputs, and the manner in 
which they communicate with one another. This 
visual representation helps in understanding 
the integration. 

Operation and collaboration between the 
server, vehicle, and drone in the context of the 
system’s overall functionality.

Figure 4: Input–output diagram illustrating communication 
flows among the server, drone, and ground vehicle.

The vehicle system is designed around four 
key components: a Raspberry Pi 4, a webcam, 
a motor driver, and a pair of DC motors, as 
shown in Fig. 4. The Raspberry Pi 4 serves as 
the central processing unit, orchestrating the 
vehicle’s overall functionality. It operates as the 
main controller, managing both the reception 
and transmission of commands to and from 
the central server.

Communication with the server is facilitated 
through a secure SSH port, enabling the 
Raspberry Pi to receive coordinates and other 
operational commands. Upon receipt of these 
coordinates, the Raspberry Pi directs the 
vehicle, through the integration of the motor 
driver and DC motors, to navigate towards 
the designated survivor’s location, as shown 
in Fig. 5. This motor assembly is crucial for 
controlling the vehicle’s movements, allowing 
for precise adjustments in direction and speed 
as required.

Once the vehicle arrives at the specified region 
or coordinates, the webcam camera, acting as 
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an optical sensor, is activated to commence 
the search for the nearest survivor. The 
camera, in conjunction with image processing 
algorithms running on the Raspberry Pi, scans 
the area to detect and identify any individuals 
in distress. This combination of hardware and 
software enables the vehicle to fulfill its mission 
of reaching and assisting survivors effectively. 

Figure 5: Hardware configuration of the ground vehicle, 
including the Raspberry Pi 4, motor driver, DC motors, and 

onboard camera.

The drone constitutes a central component of 
the rescue system, operating as the primary 
field unit responsible for environmental 
scanning and real-time data acquisition, as 
demonstrated in Fig. 6. It performs systematic 
aerial reconnaissance across the designated 
area and transmits continuous image streams 
to the server for processing and survivor 
identification. The drone executes flight 
commands issued by the control server while 
simultaneously returning visual data, thereby 
forming an essential link in the overall search-
and-rescue workflow.

The drone’s software architecture integrates 
autonomous navigation, visual detection, 
and communication functions into a unified 
operational framework. It establishes a stable 
connection with the aerial platform, manages 
live video acquisition, and employs advanced 
image-recognition algorithms to detect 
potential survivors. Upon detection, the system 
activates predefined alert mechanisms and 
initiates coordination procedures with the 
ground vehicle. The drone’s programmed flight 
pattern enables systematic coverage of the 

search area, while the detection subsystem 
provides continuous analysis of captured 
frames to identify human figures or distress 
signals.

The ground vehicle is controlled through 
a dedicated software module designed 
to execute remote navigation commands 
securely. Communication is established via 
an SSH-based protocol that enables the 
transmission of movement instructions and 
mission parameters to the vehicle’s onboard 
processor. The vehicle navigates toward 
specified coordinates while maintaining 
communication with the control server and 
subsequently activates its own detection 
procedures upon arrival at the target location. 
This software framework ensures reliable 
coordination between the aerial and ground 
units and supports the system’s overall 
goal of autonomous survivor localization 
and assistance. This logic is exemplified in 
Appendices 1 and 2 by a flowchart. 

Figure 6: Drone platform used for aerial imaging, showing the 
mounted camera and live-streaming components.

III.	 Realization & performance 
optimization

A.	 Planned implementation and 
experiments
In this innovative work, the drone plays a crucial 
role as a primary tool for survivor detection. It 
is equipped with a camera whose angle can 
be adjusted from 0 to 90 degrees, as illustrated 
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in Figure 7, to provide a comprehensive bird’s 
eye view for horizontal detection. Additionally, 
a specially designed vehicle, powered by a 
Raspberry Pi 4 and programmed using Python, 
acts as a secondary element. This vehicle is 
responsible for retrieving the survivor and 
transporting them to the rescue station. To 
implement this modification, the drone’s 
casing was opened, the original camera 
connection was detached, and the camera was 
repositioned vertically to obtain a downward-
facing, bird’s-eye view. This configuration was 
required to accommodate the YOLO-based 
detection method [19] and the characteristics 
of the custom dataset used.

The operational plan for the search and rescue 
system seamlessly integrates three pivotal 
devices: the drone in Figure 8, the vehicle in 
Figure 9, and a central server, each playing a 
critical role. Upon initiating the Python script 
on the server, automatic connections are 
established with both the drone and vehicle 
via a LAN network. The drone then takes off, 
embarking on a search within a specific 
randomized area, utilizing computer vision 
techniques. Leveraging advanced technologies 
like artificial intelligence and convolutional 
neural networks (CNN), the drone intelligently 
identifies the survivor’s location, sending the 
images back to the server for further analysis.

On the server side, advanced image-
processing operations are executed to 
interpret the visual data captured by the 
mobile application. The incoming frames are 
analyzed using the YOLOv8 object-detection 
model, which provides rapid and highly 
accurate classification of pedestrians and 
other relevant scene elements. This stage relies 
on a custom dataset developed through the 
Roboflow platform to ensure robust detection 
performance. The subsequent section 
presents a detailed description of the dataset 
construction process, including annotation 
procedures, augmentation strategies, and 
quality-control measures. It also outlines the 
complete training pipeline implemented on 
Google Colab, covering model configuration, 
hyperparameter optimization, and evaluation 
methodologies.

Figure 7: Modified drone prototype with a repositioned 
downward-facing camera to enable vertical image capture for 

YOLO-based detection.

Figure 8: Final drone prototype used in field testing, 
incorporating the integrated camera and communication 

modules.

Figure 9: Ground vehicle prototype equipped with a Raspberry 
Pi 4, motor system, and optical sensing module.
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Once the survivor’s coordinates are pinpointed, 
the server promptly transmits this information 
to the vehicle. Embedded within the vehicle 
is a Raspberry Pi, which, upon receiving the 
coordinates via an SSH port, executes another 
Python script. This enables the vehicle to 
autonomously navigate towards the survivor, 
facilitate their rescue, and safely return to 
base. This sophisticated interplay between the 
drone, vehicle, and server exemplifies a highly 
interdisciplinary approach, merging robotics, 
computer vision, and artificial intelligence to 
significantly enhance the efficacy of search 
and rescue operations.

In this paper, the YOLOv8 deep-learning model 
is employed as the primary method for survivor 
detection. A dedicated dataset consisting of 118 
images of a survivor figure, as shown in Figure 

10, was developed to ensure robust model 
performance. Dataset construction followed a 
structured workflow: images were first captured 
under varied angles and environmental 
conditions to improve generalization 
capability; subsequently, precise annotations 
were performed using the Roboflow platform. 
Model training was conducted on Google 
Colab, utilizing its available GPU resources to 
accelerate computation and optimize learning 
efficiency. Following training, the model 
underwent extensive evaluation to verify 
performance in realistic operational scenarios. 
The overall pipeline—from dataset collection 
and annotation to training and validation—
was computationally demanding yet essential 
for achieving high accuracy and reliability in 
survivor detection.

(a)

(b)

Figure 10: Annotation process used in dataset preparation: (a) sample of annotated training images; (b) example of a single 
annotated survivor instance. 
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Figure 10 displays a variety of images 
annotated with different poses, ensuring both 
accuracy and diversity in the dataset. This 
approach enhances the model’s ability to 
recognize the target object survivors, in this 
case, across a wide range of scenarios and 
positions. By incorporating multiple poses, the 
dataset effectively trains the deep-learning 
model to identify survivors in various conditions 
and orientations, significantly improving the 
model’s robustness and performance in real-
world applications. Figure 10 shows the overall 
annotation process and dataset results, 
including Dimension Insights and the total 
number of trained and annotated images. 
This visualization offers key insights into the 
diversity of image sizes and the scale of data 
preparation, crucial for assessing the dataset’s 
robustness and effectiveness in training the 
model.

Figure 11 is valuable for assessing the quality 
and comprehensiveness of the dataset used 
for training machine learning models, ensuring 
that the model is trained on well-rounded and 
representative data.

Figure 11: Dataset statistics generated through Roboflow, 
including image dimensions, class distribution, and annotation 

completeness.

B.	 Design analysis and feedback

Comprehensive testing has been conducted 
on the prototype to ensure it meets all the 
requirements. The first set of tests focused on 
key aspects of the system:

Quick response is crucial in rescue operations. 
Extensive testing ensured the system’s quick 
response to disasters. As a self-centralized 
rescue system, decision-making regarding the 
survivor’s location and the vehicle’s movement 
initially caused delays. To address this, 
improvements in detection speed and vehicle 
pathing were tested as shown in Figure 12.

The prototype uses a map, so it was essential to 
ensure the drone’s search paths stayed within 
the map boundaries. Multiple tests confirmed 
the drone remained within these borders and 
thoroughly searched every necessary section 
of the map.

Comprehensive tests checked for issues in 
communication between the drone, server, and 
vehicle. Centralized systems can fail at a single 
point, so the server’s operation must be robust 
to prevent system-wide failures. The prototype 
was tested under connection obstacles, such 
as crowded connections, to assess how much 
connection disruption it could handle before 
failing.

Figure 12: Experimental setup used to evaluate drone detection 
accuracy, communication latency, and vehicle navigation. 

The drone was put in a series of trials to check 
the accuracy of survivor detection in various 
environments, as shown in Figure 13. The 
vehicle, using the same pre-trained model 
but detecting survivors from different angles, 
was also tested. These tests assessed how 
the camera angles of both the drone and the 
vehicle, as well as different poses of the survivor 
on the map, affected detection accuracy.
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(a)

(b)

Figure 13: Experimental detection results for two test scenarios: 
(a) trial 1 showing successful aerial detection; (b) trial two under 

different survivor pose and lighting conditions.

C.	 Design optimization and 
improvements

Using Yolov9 significantly improved detection 
speed. However, vehicle pathing still needs 
refinement. Testing various pathing methods 
revealed that directly approaching the survivor 
is the fastest, but this can be problematic if 
obstacles are present, since the vehicle lacks 
a collision avoidance system. Further tests are 
needed to develop a reliable path assessment. 

After extensive testing, the fourth pattern 
proved the fastest for finding survivors and 
returning home, especially since the map is not 
square. Further tests are needed to integrate 
SLAM [22-23], which would eliminate the need 

for predefined search patterns in a localized 
map.

Testing various communication methods 
showed that a LAN network connecting the 
vehicle and server to the central unit was 
the most stable. However, interference from 
multiple people using Wi-Fi or cellular networks 
can disrupt communication, necessitating 
further testing with alternative methods.

Several algorithms were tested as 
demonstrated in Figure 14, including pretrained 
Yolov8, a pretrained TensorFlow CNN model, 
custom-trained Yolov8, and a custom-trained 
TensorFlow CNN. The custom-trained Yolov8 
was superior for the drone’s stream, offering 
great accuracy and detection speed. For the 
vehicle, the pretrained TensorFlow model 
performed better due to the Raspberry Pi 
4 limitations. Further testing on different 
algorithms and datasets is required.

                                   (a) 	 (b)

                                  (c) 	 (d)

Figure 14: evaluated search strategies for drone 
reconnaissance: (a) row-by-row search; (b) column-by-column 
search; (c) outside-inward pattern; (d) hybrid approach where 

the drone scans the first column followed by row-by-row 
coverage. 
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IV.	 Conclusion & future works 

In conclusion, a self-centralized autonomous 
rescue system has been developed, consisting 
of an aerial drone, a central control unit, 
and a ground vehicle. The drone performs 
reconnaissance, identifies potential survivors, 
and transmits their coordinates to the control 
center, which subsequently directs the ground 
vehicle to the detected location. A custom 
YOLOv8 model is employed for detecting 
survivors or visual signals indicating a need for 
assistance. The ground vehicle is equipped with 
a Raspberry Pi 4, providing the computational 

capability necessary for real-time processing 
and navigation.

Future enhancements include the integration 
of drone swarms to improve search coverage 
and overall system efficiency. Additional 
sensors will be incorporated to enhance 
detection performance under poor visibility 
or challenging environmental conditions. 
Furthermore, the use of Simultaneous 
Localization and Mapping (SLAM) is planned to 
enable operation in previously unmapped or 
unknown environments, allowing the drone to 
construct and navigate a map in real time. 

V.	 Appendix 

Appendix1: 

Autonomous drone rescue system flowchart for YOLO human detection. 

Figure A1
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Appendix 2: 

Raspberry Pi Ground Vehicle flowchart for pedestrian detection and avoidance. 

Figure A2
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 Real-time Object Detection and Diagnosis 
of Tomato Quality using YOLO 

 Abstract

Tomato quality plays a critical role in both customer satisfaction and the efficiency of post-harvest 
processing. Traditional sorting and grading methods are labor-intensive, subjective, and unsuitable for 
high-throughput operations. This study proposes a smart AI-based vision system capable of real-time 
classification of tomato quality into three classes: fresh, damaged, and unripe. The system employs 
advanced deep learning techniques, specifically a custom-trained YOLO object-detection model, to 
analyze key visual attributes such as color, texture, and surface defects. A diverse, labeled custom 
dataset of tomato images was collected to train and evaluate the model. This dataset included tomato 
images with the three health conditions according to the output classes of the neural network. The 
results show that the system has achieved high accuracy and strong robustness across varying lighting 
conditions and backgrounds, making it suitable for deployment in real agricultural and industrial 
environments. By enabling fast, automated, and objective quality assessment, the proposed system 
significantly enhances the reliability and efficiency of tomato grading and contributes to improved 
food supply chain management.
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I.	 Introduction

A.	 Problem statement

With an annual production of about 186 million 
metric tons, tomatoes are one of the most 
consumed vegetables in the world (FAO, 2022). 
Food safety, waste reduction, and consumer 
pleasure all depend on maintaining the quality 
after harvest. Sorting and grading tomatoes 
according to their ripeness, freshness, and 
physical flaws is still quite difficult, though, 
particularly in high-volume production settings 
like farms, warehouses, and supermarkets. 
With an annual production of about 186 million 

metric tons, tomatoes are one of the most 
consumed vegetables in the world (FAO, 2022). 
Food safety, waste reduction, and consumer 
pleasure all depend on maintaining the quality 
after harvest. Sorting and grading tomatoes 
according to their ripeness, freshness, and 
physical flaws is still quite difficult, though, 
particularly in high-volume production settings 
like farms, warehouses, and supermarkets [1].

B.	 Literature review

Since Deep Learning (DL) showed the best 
results in the literature review, a modified 
YOLOv5 object detection model was used to 
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solve this problem. The DL model categorizes 
tomatoes according to their color, outer look, 
damage symptoms, and obvious defects 
after being trained on a dataset of more 
than 2,000 annotated tomato photos. The 
suggested system can be used in robotic arms 
or conveyor belts in agricultural environments 
and is built for real-time response [2]. Mukesh 
Dalal and Payal Mittal systematically reviewed 
recent advancements in using deep learning 
models (YOLO v9, v10, EfficientDet, Transformer-
based models, and hybrid frameworks) for 
real-time object detection in agriculture 
(crops, fruits, diseases), noting enhanced 
precision but emphasizing challenges 
like data scarcity and the need for edge 
computing [3]. Campos Soto, Rojas Pino, and 
Aguilera Carrasco systematically review the 
use of deep learning models (CNNs, R-CNN, 
YOLO) for fruit classification and detection, 
emphasizing challenges like data scarcity and 
occlusion while proposing future research into 
multi-modal integration and computational 
efficiency [4]. Tan et al. review the application 
of deep learning in fruit and vegetable picking 
robots, summarizing key technologies in visual 
perception, path planning, and end effector 
control to highlight the shift towards intelligent, 
automated harvesting [5]. Dewi, Thiruvady, 
and Zaidi propose a novel Fruit Classification 
System that applies Neural Architecture Search 
(NAS) to automatically refine the deep learning 
network topology, achieving a superior 99.98% 
mAP for classifying 15 distinct fruit categories 
[6]. 

The study by Ioannis D. Apostolopoulos, Mpesi 
Tzani, and Sokratis I. Aznaouridis proposes 
a novel, generalizable machine learning 
(ML) model—specifically leveraging Vision 
Transformers (ViT)—to objectively assess fruit 
quality (distinguishing between good and 
rotten) across various fruit types [7]. The review 
by Ignacio Rojas Santelices, Cano, Moreira, and 
Peña Fritz thoroughly analyzes Artificial Vision 
Systems for fruit inspection and classification, 
categorizing methodologies by algorithms 
(e.g., CNN, ANN) and features (Color, Shape, 
and Texture) to detail the field’s current state 
and common practices for automated quality 
control [8].  Sarron  et al. utilized a YOLOv5 
network for mango yield estimation across 
diverse orchards, finding that correcting 

for occlusion and detection errors required 
incorporating categorical covariates (region, 
cropping system) into the linear model to 
significantly improve generalization (R2 from 
0.34 to 0.66) [9]. Wang, Fang, Mo, Gan, and Sun 
reviewed deep learning models for tomato 
ripeness detection, noting that while existing 
YOLO-based methods offer high accuracy in 
controlled settings, they often fail in complex 
outdoor environments due to reliance on 
substantial memory and computational 
resources. This led them to propose the 
lightweight YOLOv11-MHS model to achieve 
high precision with reduced overhead in 
challenging agricultural scenes [10]. Wu, Huang, 
Song, and Zhou (2025) reviewed deep learning 
models for tomato ripeness detection, noting 
that while existing YOLO-based methods offer 
high accuracy in controlled settings, they 
often fail in complex outdoor environments 
due to reliance on substantial memory and 
computational resources. This led them to 
propose the lightweight YOLO-PGC model to 
achieve high precision with reduced overhead 
in challenging agricultural scenes [11]. The 
literature review by Wang, Xu, Hu, Zhang, Li, Zhu, 
and Liu identifies that accurate tomato yield 
estimation is challenging in field environments 
due to fruit occlusion and overlap, which limit 
the performance of traditional and older 
machine vision techniques. Consequently, the 
study emphasizes the need for lightweight, 
deep learning-based networks (like their 
improved YOLO11n) that can maintain high 
detection accuracy while being efficient 
enough for real-time deployment on edge 
computing devices [12].

II.	 Dataset

A.	 Data collection

In this study, a custom image dataset of 
tomatoes was collected and annotated to add 
to the YOLO’s COCO dataset to include different 
tomato health conditions.  The  modified 
dataset was used to train and evaluate the 
proposed AI vision system. The dataset is 
divided into three quality-based classes. 

Figure 1 displays an example of each of the 
three conditions. 
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Figure 1: Dataset classes.

The dataset was designed to reflect real-
world conditions, including variations in 
lighting, background, and angle. As shown in 
the distribution, the number of unripe tomato 
samples is relatively smaller than the other two 
categories. This imbalance is due to the distinct 
visual features of unripe tomatoes, particularly 
their color and surface characteristics, 
which differ significantly from both fresh and 
damaged tomatoes. These unique features 
result in distinct feature extraction patterns, 
allowing the model to effectively learn 
their representations with fewer samples. 
Nonetheless, data augmentation techniques 
such as flipping, rotation, and contrast 
adjustment were applied to improve model 
robustness and mitigate class imbalance.

Figure 2 displays a bar chart titled “Dataset 
Classes”, which illustrates the distribution of 
images across three tomato categories: fresh, 
damaged, and unripe tomatoes. The dataset 
comprises 960 images of fresh tomatoes and 
953 images of damaged tomatoes, indicating 
that these two classes are nearly equivalent 
in size. Conversely, the unripe tomato class 
contains only 424 images, representing a 
substantially smaller proportion of the dataset. 
This disparity reveals a noticeable class 
imbalance, with the unripe tomato category 
being significantly underrepresented. 

The use of color-coded bars, clearly labeled 
axes, and explicit numerical values enhances 
the clarity of this distribution. 

Emphasizing the importance of applying data 
augmentation or other balancing techniques 
prior to model development.

Figure 2: Dataset distribution.

B.	 Annotation 

All photos were labelled using the Roboflow 
annotation platform, which provides a robust 
toolset and user-friendly interface for labelling 
computer vision datasets, to prepare the 
dataset for training and evaluation. A bounding 
box and one of three class labels: fresh, 
damaged, or unripe, were manually applied 
to each tomato instance in the pictures. 
Trained annotators carried out the labelling, 
visually examining each tomato to determine 
its class based on color, surface texture, and 
obvious flaws. While built-in features like auto-
zoom, keyboard shortcuts, and error checking 
expedited the annotation workflow, Roboflow’s 
integrated label management system helped 
guarantee consistent labeling throughout 
the dataset. To reduce human bias and 
mislabeling, annotation quality was confirmed 
by manual inspection and cross-validation 
by a second reviewer. A total of 2,337 labelled 
images were produced. Roboflow’s dataset 
management capability was then used to 
export and version-control these annotations, 
ensuring repeatability and traceability during 
the model training procedure. Before exporting 
the finished dataset, Roboflow was also utilized 
to carry out data augmentation tasks, including 
flipping, rotation, and brightness/contrast 
correction, directly within the platform.

III.	 Training

Building dependable and broadly applicable 
machine learning models requires dividing the 
dataset into subsets for testing, validation, and 
training. To measure the model’s performance 
in the actual world, this procedure makes sure 
that it learns from one piece of data, is adjusted 
using another, and is then tested on entirely 
unseen data.
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The model was trained to identify 
characteristics and patterns linked to each 
class (Fresh, Damaged, and Unripe) using the 
training data. During training, the validation set 
was used to track the model’s performance and 
adjust hyperparameters to assist in avoiding 
overfitting. In order to ensure an objective 
assessment of the model’s performance in the 
real world on unknown data, the testing set 
was finally set aside for the final review.

A.	 Checking integrity and fairness of 
the evaluation process

The dataset was divided stratified by class in 
order to preserve the fairness and integrity of 
the assessment procedure. This indicates that, 
as opposed to having any subset dominated 
by a single tomato quality class, each subset 
(training, validation, and test) includes a 
representative portion of all three tomato 
quality classes. For instance, the training set is 
not skewed towards fresh tomatoes, and the 
test set is not limited to unripe tomatoes. The 
model’s robustness and practical application 
are enhanced by this balanced distribution, 
which guarantees that it learns equally from 
each category and is assessed on its capacity 
to generalise across all tomato quality kinds.

IV.	 Computer vision model

A.	 Model selection

When developing an image-based AI system, 
choosing the right computer vision model 
is essential since it has a direct impact on 
the solution’s accuracy, speed, and overall 
performance. The model must be able to 
reliably detect small items, identify subtle 
surface flaws, and function consistently in a 
variety of lighting and background settings 
for this project, which entails the real-time 
classification of tomatoes into fresh, damaged, 
and unripe categories.

A variety of model families is frequently 
employed in computer vision tasks, such as 
object identification models that integrate 
localization and classification, semantic 
segmentation networks for pixel-level 
comprehension, and convolutional neural 
networks (CNNs) for picture classification. 
Object detection models are most suited for 
this task because they involve recognizing 

and categorizing several tomatoes in a single 
image.

Among these, state-of-the-art models such as 
YOLO (You Only Look Once), Faster R-CNN, and 
SSD (Single Shot Multibox Detector) are widely 
adopted. 

B.	 YOLO

YOLO (You Only Look Once) is a state-of-the-
art, real-time object detection algorithm 
that reframes object detection as a single 
regression problem, rather than the traditional 
two-step approach of region proposal followed 
by classification. Unlike older methods like 
R-CNN or Faster R-CNN that generate multiple 
candidate regions and then classify them 
separately, YOLO processes the entire image 
in one forward pass through a neural network, 
making it extremely fast and efficient.

The workflow of this research began by splitting 
the input image into a 13 x 13 grid, depending on 
the model version. A set number of bounding 
boxes within each grid cell was then predicted. 
The model produced a few parameters for each 
box, including the width and height of the box 
in relation to the image, the (x, y) coordinates 
of the box’s centre in relation to the cell, and a 
confidence score that indicates the likelihood 
of an object being present as well as the 
accuracy of the predicted box. Furthermore, 
class probabilities for the detected object—
such as whether it is an unripe, damaged, 
or fresh tomato—are output by each grid 
cell. The final detection confidence for each 
object is calculated by multiplying these class 
probabilities by the bounding box confidence 
scores.

Once all grid cells and bounding boxes have 
been predicted, YOLO uses a method known as 
Non-Maximum Suppression (NMS) to remove 
overlapping or redundant boxes, leaving only 
the ones with the highest confidence scores. 
This procedure minimizes false positives and 
guarantees that each object is detected once. 
The model learns by minimizing a mixed loss 
function that has elements for objectless 
confidence (determining whether an object 
exists), classification accuracy (making 
the right class prediction), and localization 
accuracy (bounding box regression).
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Compared to region-based methods, YOLO 
better captures global context and spatial 
linkages since it examines the entire image 
at once. Because of its architecture, YOLO is 
incredibly quick, able to operate in real-time 
(30+ FPS), and appropriate for uses such as 
security monitoring, autonomous driving, 
and, in this instance, real-time tomato quality 
detection. YOLO is the perfect option for smart 
agricultural systems that need real-time 
automated decision-making because of its 
speed-accuracy balance and capacity to 
identify several items in a single frame.

C.	 YOLOv5

YOLOv5, created by Ultralytics, is a highly 
favoured and extensively used object 
identification model because of its 
performance, speed, and adaptability. In order 
to balance accuracy with inference speed, 
YOLOv5 is implemented in PyTorch and comes 
in five primary pre-configured model sizes: 
YOLOv5n (Nano), YOLOv5s (Small), YOLOv5m 
(Medium), YOLOv5l (Large), and YOLOv5x (Extra 
Large). Although the depth and width of each 
version vary, they are all based on the same 
architecture, which ultimately influences the 
number of layers and channels as well as the 
size, accuracy, and speed of the model.

D.	 YOLOv5n

The YOLOv5n (Nano) model was chosen for this 
project because it strikes a great mix between 
speed, efficiency, and tolerable accuracy. With 
roughly 1.9 million parameters, YOLOv5n is the 
lightest version of the YOLOv5 family. This makes 
it ideal for real-time applications on devices 
with limited resources, like the Raspberry 
Pi, NVIDIA Jetson, or other edge computing 
platforms frequently found in agricultural 
settings. The key architectural advantages of 
the YOLO family, such as quick inference, end-
to-end object recognition, and high spatial 
awareness, are still present in YOLOv5n despite 
its diminutive size. Even with different lighting 
and backdrop conditions, it can identify and 
categorize several tomato instances in a 
single image. Even while it is not as accurate 
as larger models like YOLOv5m or YOLOv5x, 
in well-structured, high-quality datasets, the 
performance loss is negligible. YOLOv5n is an 
ideal solution for on-site, automated quality 

assessment where speed and deployability 
are more important than slight precision gains. 
In this application, it successfully detected and 
classified tomatoes into fresh, damaged, and 
unripe categories with dependable accuracy 
and low latency.

The provided Figure 3 illustrates the process 
of object detection using a system like YOLO 
(You Only Look Once). It shows an input image 
divided into an $  S\times S$ grid, where each 
cell predicts bounding boxes with confidence 
scores. A class probability map determines 
the object class for each grid cell, ultimately 
leading to the final tomato detection results 
with precise bounding boxes.

Figure 3: YOLO feature extraction.

E.	 YOLOv5n Layer architecture

The YOLOv5n (Nano) architecture is suitable for 
edge devices and embedded systems used in 
agricultural applications, as shown in Figure 3, 
because it offers real-time object detection with 
low computational overhead. The three main 
parts of it are the head, neck, and Backbone. To 
improve early-stage efficiency, the Backbone 
starts with a special Focus layer that slices the 
image, boosts the channel depth, and reduces 
spatial dimensions. The Backbone oversees 
extracting visual information from the input 
image.

Convolutional layers used in conjunction with 
Batch Normalization and the SiLU activation 
function—which provides a smoother gradient 
flow than ReLU—come next. The usage of Cross 
Stage Partial (CSP) Bottlenecks, which divide the 
feature map into two paths—one undergoing 
transformation and the other preserved—and 
then concatenate them to improve gradient 

https://apc.aast.edu/ojs/index.php/RIMC/article/view/RIMC.2025.02.2.1846


Journal of Robotics: Integration, Manufacturing & Control - eISSN  3009-7967

Volume 2, Issue 2, December 2025  |  http://dx.doi.org/10.21622/RIMC.2025.02.2.1846

46
http://apc.aast.edu

flow and minimize computation, is a crucial 
component of the Backbone. A layer called 
Spatial Pyramid Pooling (SPP) completes the 
Backbone. It uses max-pooling at various 
scales to gather local and global information 
for improved object representation. The next 
step involves the use of convolutional layers 
in combination with Batch Normalisation and 
the SiLU activation function, which offers a 
smoother gradient flow than ReLU.   

A key part of the Backbone is the use of Cross 
Stage Partial (CSP) Bottlenecks, which split 
the feature map into two paths, one of which 
is undergoing transformation and the other 
of which is maintained. These paths are then 
concatenated to enhance gradient flow 

and reduce computation. The Backbone is 
completed by a layer known as Spatial Pyramid 
Pooling (SPP). For better object representation, 
it collects local and global data using max-
pooling at different sizes.

Figure 4 illustrates two key architectural 
modules of YOLOv5: the C3 (Cross Stage 
Partial Bottleneck) module and the SPPF 
(Spatial Pyramid Pooling - Fast) module. The 
C3 module is the primary processing unit, 
designed to improve gradient flow and reduce 
computation by splitting and concatenating 
feature paths. The SPPF module, used in the 
Backbone, efficiently gathers multi-scale 
global and local contextual information via a 
sequential process. pooling operations.

Figure 4: YOLOv5 layers.

This Precision–Confidence Curve shown in 
Figure 5 shows how the precision of your 
tomato classification model changes as you 
adjust the confidence threshold. The x-axis 
represents the model’s confidence level, 
and the y-axis represents precision, which 
measures how many predictions made above 
that confidence level is correct. The curves for 
Fresh and Unripe tomatoes (orange and green) 
stay high across almost all confidence levels, 

meaning the model identifies these classes 
very accurately even when its confidence is 
low. In contrast, the Damaged Tomato curve 
(light blue) remains low at lower confidence 
levels and increases only gradually, showing 
that this class is more difficult for the model and 
produces more false positives. The thick blue 
curve represents overall precision across all 
classes, and it reaches perfect precision (1.00) 
at a confidence of about 0.924. Overall, the plot 
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highlights strong performance for Fresh and 
Unripe tomatoes and weaker consistency for 
Damaged tomatoes, helping you choose an 

appropriate confidence threshold depending 
on whether you prefer higher accuracy or 
more detections.

Figure 5: Precision-confidence curve.

The figure below (Figure 6) presents a 
normalized  confusion  matrix  that  evaluates 
the performance of a classification model 
across four categories: Damaged Tomato, 
Fresh Tomato, Unripe Tomato, and Background. 
The diagonal values represent correct 
predictions, showing that the model performs 
exceptionally well for Fresh Tomato, with a 
precision of 0.98, and achieves strong accuracy 
for Unripe Tomato and Damaged Tomato, 
with scores of 0.86 and 0.70, respectively. The 
matrix also indicates that a small proportion 
of Damaged Tomato images (0.03) and Unripe 

Tomato images (0.11) were misclassified as 
background, while minor confusion is observed 
between the tomato classes, such as 0.01 
of unripe tomatoes predicted as damaged 
and 0.02 of fresh tomatoes predicted as 
background. Overall, the matrix highlights that 
while the model demonstrates high accuracy 
for most categories, some misclassification 
occurs, particularly with background and 
visually similar tomato classes—indicating 
areas where further model refinement or 
dataset enhancement may be beneficial.

Figure 6: Confusion matrix.
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V.	 Model performance 
evaluation

A.	 YOLOv5n model performance 
evaluation

Precision – 97.3% The percentage of anticipated 
positive cases (detections) that turn out to be 
accurate is known as precision. In this case, a 
precision of 97.3% indicates that the model is 
97.3% accurate in predicting whether a tomato 
is fresh, damaged, or unripe. Because of its 
great precision, the model seldom mislabels 
or mistakenly classifies non-tomato objects as 
tomatoes (false positives). This high precision 
is vital, as it ensures that when the model 
signals a detection, the robotic arm can trust 
the classification and act with high confidence, 
minimizing false picks and maximizing process 
reliability.

Recall – 63.1% Recall measures the model’s 
ability to detect all actual objects. A Recall 
of 63.1% means that the model successfully 
detects about 63 out of every 100 actual 
tomatoes present in the images. This suggests 
that some objects are being missed. This low 
Recall reveals a significant limitation: the robot 
is missing nearly 4 out of every 10 available 
tomatoes due to challenges like occlusion or 
lighting. Therefore, while the harvested crop 
will be accurately sorted, the overall yield 
collection will be substantially incomplete, 
necessitating further optimization before full 
robot deployment.

B.	 Model performance test

Figure 7 shows a single tomato with visible 
signs of damage. The tomato surface has 
dark spots, bruising, and areas of decay, 
indicating biological or physical deterioration. 
This crucial detection is necessary to prevent 
the robotic arm from selecting and harvesting 
a compromised fruit. These features—such as 
discoloration, wrinkling, and surface lesions—
are commonly associated with damaged or 
spoiled tomatoes.

Figure 8 shows the output of the tomato 
detection model, where two tomatoes are 
identified and classified using bounding 
boxes. The tomato on the left is labeled “Fresh 
Tomato” with 79% confidence, indicating it is 

ready for the robot to pick, while the tomato 
on the right is labeled “Unripe Tomato” with 
94% confidence, signaling it should be ignored. 
This demonstrates the model’s ability to detect 
multiple tomatoes in one image and accurately 
distinguish between different ripeness stages, 
effectively acting as the robot’s ‘eyes’ for 
selective harvesting.

Figure 7: Damaged tomato detection.

Figure 7: Multi-label tomato detection.

VI.	 Conclusion

This paper presented a real-time AI-based 
computer vision system for automated 
tomato quality detection using a lightweight 
YOLOv5n object detection model. The 
proposed approach addressed the limitations 
of traditional manual grading by enabling 
fast, objective, and scalable classification 
of tomatoes into fresh, damaged, and 
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unripe categories under diverse lighting and 
background conditions. A custom annotated 
dataset reflecting real-world variability was 
developed to train and evaluate the model. 
Experimental results demonstrated high 
precision (97.3%), indicating strong reliability 
in correct classification and low false-positive 
rates, which are critical for automated 
harvesting and sorting applications. While 
the recall rate (63.1%) revealed challenges in 
detecting all tomato instances—particularly 
under occlusion and complex scenes—
the system proved effective as a real-time 
decision-support tool for quality assessment 
in smart agricultural environments.

Future improvements will focus on enhancing 
Recall and overall robustness through dataset 
expansion, improved class balancing, and 

additional data augmentation using images 
collected from real harvesting fields. Further 
research may explore advanced or hybrid 
deep learning architectures, including newer 
YOLO variants and attention-based models, 
to better capture subtle surface defects while 
maintaining real-time performance on edge 
devices. Additionally, model optimization 
techniques such as pruning and quantization 
can be employed to reduce computational 
overhead. Integrating the proposed vision 
system with robotic manipulators or conveyor-
based sorting platforms, along with depth 
sensing and grasp planning, represents a 
key step toward fully autonomous tomato 
harvesting and grading systems, contributing 
to reduced post-harvest losses and improved 
efficiency in smart agriculture.
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