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Speaker verification is the process of verifying an individual's identity by comparing their recorded voice
samples with their test speech signals. Speaker verification has various practical applications, such as
verifying customer identities in call centers, enabling contactless facility access, and supporting some
medical applications. With the advances in autonomous vehicles, speaker verification has become
an essential feature that provides security, access control, personalization, command authentication,
driver monitoring, and compliance. Recent technological advancements have led to the rise of voice-
based authentication systems, which are considered a more convenient alternative to traditional
security systems.However,improving the accuracy is still an ongoing research aim.In this research, four
different models were proposed and compared with previous work on speaker verification. The models
are combinations of using two networks (BiLSTM and Transformer) with two different loss functions
(Triplet and Quadruplet loss functions). The models are trained and tested on the LibriSpeech dataset.
The results show improvements in equal error rate of the four proposed models over the previous
models that used the Librispeech dataset with 0.068 compared to 0.11.

Key-words: Spesker Verification, TranFormer Network, Driver

Personalization, Command Authentication

BiLSTM Networm,

have required artificial intelligence such as
digital twins, swarm intelligence, and data

Speaker verification (SV) is the act of
authenticating an individual’'s claimed identity
by comparing their recorded voice samples
to their test speech signals. It has various
applications, including verifying customer
identities in call centers, enabling contactless
facility access, and providing support for
medical applications to recognize and perform
operator's commands to fully automate the
system as presented in [1; 2; 3: 4]. As one lives
in the age of information, several applications

fusion [5; 6]. All these applications require
more security as a layer for protection [7; 8; 9].
Recent technological advancements have led
to the rise in popularity of automatic speaker
verification systems, which are now considered
a more convenient alternative to traditional
security systems [10; 11]. SV has become an
essential technology in numerous real-world
applications, such as biometric authentication
and security systems [12]. While significant
advancements have been made, challenges
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remain in optimizing system performance
under varying conditions. Recent research
has largely focused on improving SV systems
by experimenting with various loss functions,
pooling methods, and network architecture
designs, aiming to better capture speaker
characteristics and improve robustness [13;
14; 15]. However, despite these efforts, there
is still room for innovation, particularly in
exploring novel combinations of network
architectures and loss functions that can push
the boundaries of current SV systems.

SV can be classified into two types: Text-
Dependent (TD) and Text-Independent (T1) SV.
TD-SV requires that the spoken content of the
test utterance and the enrollment utterance

Method Strengths
e  Easy implementation
LPC
e  Stable representation
LPCC e Decorrelated feature components
e Behaves like human ear
MFCC e  Captures the main characteristics of phones in speeches .

with low complexity

In this research, the researchers propose four
novel different models for SV. The significant
outcomes are:

1. Four novel models have been developed
for SV. Two models use BiLSTM networks,
theothertwousetheTransformerNetwork.
Eachnetworkhasbeen evaluated through
different loss functions. The combination
between the networks and the loss
functions produces the four proposed
models.

2. A novel adaptation of the Siamese
network.

The human voice is universally used for
exchanging information between individual
speaker recognition that involves identifying

be the same, while TI-SV has no restrictions on
the spoken content [16;17].

SV has contributed heavily to automation in
vehicles. Nowadays a passenger can voice
activate an access control system [18; 19; 20;
21]. SV can be used to personalize passenger
settings, for example, based on the driver's
identity the vehicle can adjust the setting
autonomously such as a seat and mirror
osition which improves the driving experience
22: 23]. In terms of safety, SV can be used to
monitor the driver and his compliance, which
leads to monitoring driver attentiveness by
recognizing voice patterns that indicate
fatigue or stress [24; 25; 26; 27; 28].

Weaknesses

* Noise-sensitive
e Hightime and computational cost
e Inconsistency with human hearing

e Quantisation noise-sensitive
¢ Insufficient order causes performance
degradation

e Lowrobustness
Fixed time-frequency resolution

individuals  based on unique  vocal
characteristics. This field has gained significant
researchattentionduetoitsbroadapplications.
Speaker recognition is the automatic process
of identifying a speaker based on their speech
signal. It can be divided into six categories:
speaker identification, speaker verification,
speaker detection, speaker segmentation,
speaker clustering, and speaker diarization.
[29] Speech signals carry speaker-specific
features that can be extracted and used by
Machine Learning (ML) algorithms to recognize
specific patterns [30].

The basic concept of feature extraction is to
extract a set of features for each segment of
the input signal, based on the idea that short-
time segments are sufficiently stationary for
improved modeling [31]. Feature extraction
captures relevant and crucial information from
the speech signal while discarding irrelevant
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and redundant data [32; 33; 34]. This step is
essential for the subsequent modeling process.
The speaker signal, as part of a dependent
speech system, is analyzed to reduce variability
and enhance the extraction of discriminative
features by converting the speech signal into
parametric values [35). Various techniques,
such as Linear Prediction Coding (LPC), Linear
Prediction Cepstral Coefficients (LPCCs), and
Mel-Frequency Cepstral Coefficients (MFCCs),
[32; 36] can be used to extract speech features
in the form of coefficients. Table | presents a
comprehensive comparison between the well-
known feature extraction methods [29].

MFCC features have been widely used
in different research addressing specific
challenges, such as noise robustness systems
[37; 38], dysarthric speaker verification [39],
twins’ voice identification [40]. Moreover,
Numerous studies have asserted that MFCC
effectively boosts speaker recognition. For
example, Singh et al. [41] evaluated three
features for automatic speech recognition,
including MFCC, dynamic time wrapping,
and fast Fourier transform. It was proven
that MFCC improves the performance of the
model. Moreover, Abdul et al. [42] have shown
that MFCC features could efficiently be fed to
Convolutional Neural Networks (CNNs) to train it
to distinguish between speakers. However, Faek
et al. [43] have shown that speaker recognition
using MFCC and k-NN is negatively affected
in noisy environments; which encouraged
the inclusion of a denoising step. Additionally,
Jahangir et al. [44] proposed a novel fusion
of Mel frequency cepstral coefficients (MFCC)
and time-based features (MFCCT) to identify
speakers using a hierarchical classification
approach. The approach was implemented in
acascading style,where the firstlevel identified
the speaker's gender, and the second level
identified the specific speaker’s identity. The
study used five machine learning algorithms
and a deep learning-based Deep Neural
Networks (DNN) to classify speaker gender
and Speaker ID (SID). The model was trained
and tested on the LibriSpeech corpus dataset
[45]. The results showed an overall accuracy
of 83.5%-93%.

Balipa et al. [40] proposed a method for
twins’ voice identification and verification. The
proposed method involves using a Siamese

Neural Network (SNN) to extract features from
thevoicedatasetandcalculatetherelationship
between audio signals and linguistic units that
make up speech. The proposed method was
evaluated on the twin dataset and the results
were compadred with a corpus of similarly
obtained data from unrelated individuals. The
testing results showed an accuracy of about
78% with a loss of 0.10. To identify speakers
in this scenario, the system complied with
the given testing regimen and yielded an
accuracy of approximately 78% with a loss of
0.10. Despite being commonly used in image
processing, SNN was utilized to compare the
voices of twins in this study.

Niu et al. [46] presented a pseudo-phoneme
label (PPL) loss value for the function of a
network with delay over time domain based on
TI-SR (text-independent speaker recognition).
The PPL loss combines content array losses
at the frame level and segment level into a
combined network through multi-task learning.
Various methods of PPL loss were compared
and their effects on the ending system
execution were explored. Model 1 uses multi-
task learning to train the model, while Model 2
trains the vocabulary parts and assigns factors
for pseudo-phoneme tags. Model 3 calculates
the PPLloss at frame 4 layer using an attention
mechanism. By the last result the values of all
models are averaged. The model was trained
and tested on the VoxCeleb dataset [47].

Zheng et al. [48] aimed to enhance
the effectiveness of extracting speaker
embedding by developing a multi-scale
residual aggregation network (MSRANet). This
new approach utilizes the triplet loss function
to increase the similarity and the difference
of interclass, resulting in better performance.
Experimental results using three datasets
(VoxCelebl, VoxCeleb2, and LibriSpeech)
showed that MSRANet outperformed previous
approaches and achieved state-of-the-
art performance, demonstrating its cross-
scenario adaptability. However, there are some
limitations to this approach, such as potential
information redundancy caused by multiscale
fusion.

Singh and Mahesh [49] evaluated the
performance of different feature extraction
approaches: MFCC, and Multiban Spectral
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Entropy (MSE). They were integrated with
different machine learning algorithms, such
as K-NN, Random Forest, DNNs, and Decision
Trees. Their work achieved competitive results.

Existing work on SV often faces challenges
related to running time, especially in real-time
applications. Common shortcomings include:

. High computational Cost: Complex
models like DNN or speaker embeddings
(eg. x-vectors) require significant
processing power, leading to longer
inference times.

. Hardware dependency: Many models
require specialized hardware (e.g. GPUs)
to perform efficiently, limiting accessibility
for broader applications.

. Resource-intensive training: Some
approaches require extensive pre-
training, which consumes time and
resources. Fine-tuning these models for
different environments or languages
adds to the running time, making rapid
deployment challenging.

These shortcomings highlight the need for
more efficient models that balance accuracy
and speed, as well asmethods that can
streamline real-time performance without
sacrificing verification quality.

In this section, four models are proposed to
achieve speaker verification with enhanced

accuracy.The main backbone for the proposed
models is the Siamese Neural Network (SNN).
In the context of data processing and feature
extraction, the MFCC algorithm has been used
to represent the spectral characteristics of
audio signals. After feature extraction, the
data are either processed through the BiLSTM
(Models 1 and 2) or transformer networks
(Models 3 and 4). Data are then processed
through a loss function; the triplet loss function
(Models 1 and 3), and the Quadruplet loss
function (Models 2 and 4).

Siamese networks are widely used to perform
similarity comparisons that can be applied
to complex data samples with features
having different dimensionality and types. A
Siamese network has two equivalent artificial
neural networks, each qualified to learn the
covered representation of an input vector.
Both networks are feed-forward perceptrons
and can detect error back-propagation
while training; they work concurrently and
analyze their outputs, usually through a cosine
similarity [50; 6]. Siamese Networks are tied
networks that take in pairs of input vectors and
minimize or maximize a distance depending
on whether a pair comes from the same or
different classes [51].

Due to the presence of noise in audio signals,
raw audio signals cannot be directly used
as input to the SV models. Therefore, better
performance could be achieved when
extracting features from audio signals. MFCC
is the most widely used technique for feature
extraction from audio signals.

e
|Q+ Audio ifp lPre-emphasis

Framing and Mel
Windowing ’lFFT | Filterbank

: MFCC
j—b Logarithm J—)l DCT }_)lFeatures}_’O

Start

The MFCC technique is shown in Figure 1 [52].
The process begins with an audio signal,
typically saompled at 16KHz to capture the
important frequencies for human hearing.
Moreover, the pre-emphasis process filters the
audio signal to emphasize higher frequencies.
This step makes use of the fact that human
hearing is more sensitive to lower frequencies.

End

Next, framing is performed in order to divide
the continuous signal into small, overlapping
frames. This is because speech and audio
signals are quasi-stationary, meaning that
their characteristics are relatively constant
over short durations. Each frame is multiplied
by a window function to minimize the signal
discontinuities at the edges of the frame.
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Next, Fast Fourier Transform (FF) is applied to
each windowed frame to convert the time-
domain signal into the frequency domain,
this step produces a spectrum that shows the
magnitude of different frequency components
in the signal. Afterward, the linear frequency
spectrum is converted into the Mel scale, which
mimics the human ear’s sensitivity to different
frequencies. The next step is taking the
logarithm of the resulting filter bank energies
to make the features more closely related to
how many humans perceive sound intensity
and emphasize the relative differences
between frequency components. Discrete
Cosine Transform (DCT) is applied to the log
filter bank energies to decorrelate the features
and compress the information to generate the
Mel-Frequency Cepstral Coefficients (MFCCs),
which represent the audio signal in a compact
form by retaining the most useful information
for tasks like speech recognition.

The Long Short-Term Memory (LSTM)
architecture is originally designed to address
the limitations of Recurrent Neural Networks
(RNNs) in capturing long-term dependencies
in sequential data. LSTM networks are o
specific type of RNNs. While RNNs are designed
to process sequential data by maintaining
a hidden state that captures information
from previous time steps, they suffer from
issues like vanishing and exploding gradients,
which limit their ability to capture long-term
dependencies. LSTM networks were introduced
as an extension of RNNs to overcome these
limitations. By incorporating specialized gating
mechanisms, LSTMs can maintain and update
information overlonger sequences, addressing
the challenges present in traditional RNNs.

LSTMs incorporate a memory cell and three
types of gates: Input, forget, and output gates.
These gates regulate the flow of information
and selectively retain or discard relevant
information at each time step. Based on the
same concept, Bidirectional LSTMs (BIiLSTMs)
introduce two separate LSTM layers. The first

layer processes the sequence in the forward
direction and the second one processes in the
backward direction. By combining the outputs
of both layers, BiLSTMs effectively capture
dependencies from both past and future
contexts. The base architecture of BiLSTM is as
follows [53]:

. Input sequence: The sequential input
data are divided into individual time steps

. Forward LSTM layer: It processes the
input sequence from the beginning to
the end, capturing information about the
past context at each time step.

. Backward LSTM layer: It processes
the input sequence in reverse order,
capturing information about the future
context at each time step.

. Concatenation: The outputs of both
forward and backward LSTM layers
are concatenated at each time step,
combining the information from the
past and future contexts into a single
representation.

Similar to BILSTM, transformers process
sequential input data, however, they process
the entire data at once. They produce a
sequence of hidden representations that
capture the contextual information of each
token in the sequence. The benefit of an
encoding layer in a transformer is capturing
contextual information. The encoding layer
uses self-attention mechanisms to attend
to all positions in the input sequence and
generate a context-aware representation for
each token. This allows the model to capture
the relationships between different tokens
and their contextual information and residual
connections to preserve the original input
information in the hidden representations. This
ensures that the model can learn the relevant
features while still retaining the important
information from the original input sequence.
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The self-attention mechanism used in the
encoding layer allows a transformer model
to attend to different parts of the same input
sequence. This allows the model to understand
the relationships between different elements
in the input and output sequences and
make more accurate predictions, [54]. In the
proposed models, the transformer network
used consists of two encoding layers and one
decoding layer.

In models 1 and 3 triplet-loss is implemented,
to minimize the distance between the positive
and anchor samples while increasing the
space between the negative and anchor
samples, with the margin term ensuring
that the negative and positive samples are
[suffiiciently far apart, as shown in equation (1)
55].

(1)

where A is the anchor, P is the positive sample,
and N is the negative sample.

L(A,P,N) = max(0,d(A,P) — d(4,N) + m)

In models 2 and 4 quadruplet loss function is
used, it takes four input samples: an anchor
sample, a positive sample (similar to the
anchor), a negative sample (different from
the anchor), and a second negative sample
(different to the anchor and first negative
sample). It aims to increase the distance

between the anchor and the negative samples
while decreasing the distance between the
anchor and the positive sample. The formula
fo[r tr]we quadruplet-loss is defined in equation
2 [56].

L(A,P,N1,N2) = max(0,d(A,P)—
d(A,N1)+ m) + max(0,d(A, P)
— d(A,N2)+ m

)

where A is the anchor, P is the positive sample,
NI is the first negative sample, and N2 is the
second negative sample.

A. Proposed Models

Raw audio signals are first pre-processed
by converting them into a mono channel
(frequency= 16 kHz). In the four proposed
models, SNNs have been adopted. Moreover,
the MFCC technique has been used to perform
feature extraction from raw audio signals,
and 40 coefficients are extracted. Afterward,
the employment of transformers and BILSTM
networks were interchanged, as well as the
employment of triple loss and quadruplet loss
functions in order to manifest their effect on
the SV performance.

Model 1 ( Figure 2) uses a three-layer BiLSTM

network to extract the encoding of each
speaker, afterwards, the result is applied to
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a triplet loss function. Model 2 (Figure 3) also
utilizes a BILSTM network, however, a quadruplet
loss function is used instead of the triplet-loss
function. On the other hand, Model 3 (Figure 4)
utilizes a transformer to extract the encoding

of each speaker with 32 dimensions in the
model's hidden state and the embeddings.
Also, this number represents the number of
features in the input to the encoder layers.

SNN
1
Feature Loss
Extraction Function
Neural Network \ / \

BiLSTM ]—[ BiLSTM J —

64

64
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Afterward, the information is decoded using a
decoding layer. Moreover, an optimized triplet
loss function is used to enable the Siamese
network to produce feature representations
that are invariant to the input data while
capturing the similarity between different

samples. Lastly, Model 4 (Figure 5) extracts
features from the speech signal using the
MFCC technique; 40 coefficients are extracted.
Then, a transformer is used to extract the
encoding of each speaker, 2 sub encoding
layers are used in addition to one decoding
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layer. Finally, a quadruplet loss function is used
to capture the variation of the input. All four
models have two audio inputs, one of them is

the input audio of the person to be verified and
the other is the stored audio.

SNN
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Figure 5. Model 4 - Transformer with quadruplet loss

TABLE Il. INFORMATION ABOUT DATASETS USED

Datasets Speaker Num utt. Num. Average Speaker Utt. Average Utt. Length
Libri-train 251 28,531 na 10
Libri-test 40 2,620 - -

TABLE lll. INFORMATION ABOUT TRAINING AND INFERENCE TIME OF PROPOSED METHODS

Model Training Time in hours Inference Time in sec
Model 1 4469 0.183
Model 2 327 0.1795
Model 3 29.646 0176
Model 4 25.9 0.1805

B. Experiments

This section describes the dataset and its
configuration followed by the experimentation
setup and the evaluationmetrics.

1.  Dataset and configuration

LibriSpeech train-clean-100 dataset (a subset
of LibriSpeech corpus) [45] was used for
training the proposed models. It consists of
100 hours of clean speech from the LibriVox

project. The audio files are provided in
16kHz, 16-bit, and mono WAV formats. The
dataset contains speech recordings from 251
different English (male and femqle% speakers.
Those speakers come from a variety of age
groups and backgrounds. Each speaker has
contributed between 2 and 5 hours of speech,
and the speakers are identified by a unique
speaker ID and contain approximately 285,000
utterances.
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For testing the proposed models, the
LibriSpeech test-clean dataset was used,
which consists of 40 hours of clean speech
from the LibriVox project, it includes speech

Model Learning rate Num of Heads
Model 1 0.001 -
Model 2 0.001 -
Model 3 0.0001 8
Model 4 0.001 8
1.0 A ’
td
— [’
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2. Experimentation setup

The four models were trained and tested on
a PC equipped with GeForce GTX 1660 Nvidia
graphics card. ADAM optimizer algorithm was
used with a learning rate of 0.0001. The meta-
parameters used are shown in Table 4. The
training and inference times are shown in
Table lll. Training of the four proposed models
is shown in Figures [2,3.4,5].

3. Evaluate metrics

The experimental findings are evaluated
using the Equal Error Rate (EER) [48; 57]. The
EER combines the False Acceptance Rate
(FAR) and the False Rejection Rate (FRR). FRR
represents the rate at which genuine instances
are incorrectly rejected, while FAR represents
the rate at which impostor instances are
incorrectly accepted, they can be defined as
follows:

FN

FRR = ———
FN +TN

(3

recordings from 40 different speakers, [45].
Statistics of the training and testing data are
shown in Il.

Num of Encoder Layer Batch Size Num of steps
- 8 100000
- 8 100000
2 8 100000
2 8 100000

And
EP
FP+ TP

(4)

FAR =

Therefore, the EER can be defined as follows:

FAR + FRR
EER = —

(5)

The proposed approach was evaluated by
comparing the results with state-of-the-
art models, as shown in Table V. These
comparisons were made on LibriSpeech
datasets as part of control experiments to
assess the accuracy of the proposed models.
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The model proposed by [40] adapted SNNs
with a CNN layer and triplet loss. The model in
[44] used MFCCT features and used a deep
neural network consisting of 7 layers. Finally,
the proposed models have been evaluated
over 1000 examples on test data (LibriSpeech
test-clean), and the results are summarized
as follows:

. Model 1: The results show Model 1 has
scored an EER of 0.0685 (see Figure 6 for
more details), while having an inference
time of 0183 seconds. This model
demonstrates a significant improvement
in accuracy compared to previous
models, making it a promising approach
for future research.

Model
Model 1- BiLSTM with Triplet Loss
Model 2 - BiLSTM with Quadruplet Loss
Model 3 - Transformer with Triplet Loss
Model 4 - Transformer with Quadruplet Loss
Previous Model 1[44]
Previous Model 2 [40]

. Model 4: Model 4 scored an EER of 0.09
(see Figure 9 for more details), while
having an inference time of 01805
seconds. Despite having the highest
EER among the proposed models, it still
outperforms several state-of-the-art
models in terms of inference time.

. Model 2: Model 2 scored an EER of 0.074
(see Figure 7 for more details), while
having an inference time of 0.1795
seconds. Although the EER is slightly
higher than Model 1, the inference time is
marginally better, indicating a trade-off
between accuracy and speed.

. Model 3: Model 3 scored an EER of 0.073
(see Figure 8 for more details), while
having aninference time of 0.176 seconds.
This model strikes a balance between
accuracy and inference time, making it a
viable option for real-time applications.

1.0 4 #
&
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= e
g e
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g e EER=0.09
L 0.4 -
15}
a8
a
f_I_E 0.2_
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0.00 025 050 075 1.00
False Accept Rate (FAR)
EER
0.0685
0.074
0.073
0.09
on
o
The results indicate that the proposed
models outperform several state-of-the-

art models in terms of both accuracy and
inference time. Model 1, in particular, shows
the best performance with the lowest EER and
competitive inference time. These findings
suggest that the proposed approach is
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effective and can be further optimized for real-
world applications.

V. DISCUSSION

Model 1 (BiLSTM with triplet loss) training shows
low loss and fast convergence due to the
simplicity of triplet loss combined with BILSTM's
sequential processing( see Figure 10 for more
information). The model presented stability
and effectiveness for sequential speech data,
leveraging BiLSTM’s ability to capture temporall
patterns.

Model 2 (BiLSTM with quadruplet loss) training
shows potential for lower loss, but quadruplet
loss increases training difficulty, leading to
slower results compared to triplet loss %see
Figure Tl for more information). The training was
stable as well but slightly slower to converge.
Quadruplet loss enforces better separation
between embeddings but adds complexity.

Model 3 (transformer with triplet loss) performs
better than BILSTM with quadruplet loss due
to more powerful global feature learning,
resulting in better embedding separation and
lower loss despite the simpler triplet loss (see
Figure 12 for more information). The training
was more complex and sensitive to tuning,
but the global attention mechanism captures
richer, more complex patterns.

Model 4 (transformer with quadruplet
loss) shows higher loss compared to
transformer with triplet loss, as the added
complexity of quadruplet loss does not
always translate into significantly  better
performance in transformers (see Figure
13 for more information). The training was
more challenging due to the combination

of complex transformer architecture and
quadruplet loss.

0.125 1

0.100 A

loss

0.075 4

0.050

0.025 A

0.000 -

T T T T
40000 60000 80000 100000

step

T T
0 20000

Figure 10. Training for Model 1- BiLSTM with triplet loss

0.20 A

loss

0.10 1

0.05 A

0.00 A

0 20000 40000 60000 80000 100000

step

Figure 11. Training for Model 2 - BiLSTM with quadruplet loss

The result for Model 1 is shown in Figure 6.
The X-Axis expresses False Acceptance Rate
(FAR) which represents the rate of incorrectly
accepting impostors as genuine. While Y-Axis
expresses False Rejection Rate (FRR) - Which
represents the rate of incorrectly rejecting
enuine speakers. The results show lowest EER
Error Equal Rate) of 0.0685 due to effective
temporal processing and stable training. This
model achieves a strong balance between FRR
and FAR.
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The result for Model 2 is shown in Figure 7.
The same plotting as Model 1. The results
show a slightly higher (0.74) than Model 1 but
still competitive. The added complexity of
quadruplet loss improves separation but with
slow convergence.

The result for Model 3 is shown in Figure 8. The
results show a Moderate EER of 0.073, better
than Model 2 (BILSTM with quadruplet loss). The
model benefits from attention mechanisms,
capturing more complex patterns effectively.
The result for Model 4 is shown in Figure 9. The
results show a Moderate EER 0.09, better than
Model 2 (BIiLSTM with quadruplet loss). The
model benefits from attention mechanisms,
capturing more complex patterns effectively.

40000 60000 80000 100000

step

0 20000

Figure 12. Training for Model 3 - transformer with triplet loss

0.20 4

loss

0.10 1

0.05 1

T T T T
40000 60000 80000 100000

step

T T
0 20000

Figure 13. Training for Model 4 - transformer with quadruplet
loss

VI. CONCLUSION AND FUTURE
WORK

In this study, the researchers proposed and
evaluated four models for speaker verification
using the LibriSpeech dataset. The proposed
models were compared with state-of-the-art
models to assess their accuracy and efficiency.
The results demonstrated that the proposed
models, particularly Model 1 (BiLSTM with triplet
loss), achieved significant improvements in
terms of Equal Error Rate (EER) and inference
time.

Model 1 exhibited the lowest EER of 0.0685 and
a competitive inference time of 0.183 seconds,
highlighting its effectiveness in capturing
temporal patterns and providing stable
training. Model 2 (BiLSTM with quadruplet
loss) showed potential for lower loss but
faced challenges in training complexity and
convergence speed. Model 3 (transformer with
triplet loss) outperformed Model 2 due to its
powerful global feature learning capabilities,
resulting in better embedding separation
and lower loss. Model 4 (transformer with
quadruplet loss) demonstrated higher loss
compared to Model 3, indicating that the
added complexity of quadruplet loss does not
always translate into better performance in
transformers.

Overall, the proposed models outperformed
several state-of-the-art models in terms
of both accuracy and inference time. The
findings suggest that the proposed approach
is effective and can be further optimized for
real-world applications. Future work will focus
onrefining the models and exploring additional
techniques to enhance their performance and
applicability in various speech recognition
tasks.

For future work, MFCCT and MSE methods could
be integrated with the models replacing MFCC
to analyze the accuracy versus the inference
time of the four models.
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Autonomous Underwater Vehicles (AUVs) are essential for underwater exploration, inspection, and
environmental surveillance. Nevertheless, navigation, obstacle avoidance, and energy efficiency are
greatly hindered by the ever-changing underwater environments. Reinforcement Learning (RL) has
arisen as arevolutionary method fortackling these challenges. This paper examines significant progress
in reinforcement learning algorithms, emphasizing their application in the training of autonomous
underwater vehicles in both simulated and real-world environments. The review synthesizes findings
from muiltiple studies, identifies gaps in existing research, and highlights the potential of algorithms
such as Deep Deterministic Policy Gradient (DDPG) for continuous control tasks. This review offers an
extensive examination of current methodologies, their constraints, and avenues for future investigation.

Key-words: Autonomous Underwater Vehicles, AUVs, ReinForcement Learning, RL,
Navigation, Obstacle Avoidance, Energy EffFiciency

I INTRODUCTION traditional control methods frequently fall short.

In this literature review, the researchers look

Autonomous Underwater Vehicle (AUV)
navigationisjustoneexampleofthecomplicated
control problems that reinforcement learning
(RL) has the potential to solve. Autonomous
underwater vehicles (AUVs) play an essential
role in many fields, such as oceanography,
underwater infrastructure inspection, and
search and rescue. However, there are
certain obstacles specific to the underwater
domain, such as energy limitations, poor
communication, and unpredictable currents.
When faced with such changing conditions,

at how Deep Deterministic Policy Gradient
(DDPG) and other RL algorithms have been
applied to underwater robotics. The purpose
of this review is to show how RL is useful for
underwater navigation, point out where more
research is needed, and fill in any gaps in the
current literature. It is structured thematically
and discusses topics such as RL theory
foundations, AUV navigation applications,
difficulties in dynamic environments, and
potential future research directions.
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A. Related Work

A  major development in reinforcement
learning for continuous control tasks, Lillicrap et
al. (2015) propose the DDPG algorithm [1]. Their
actor-critic framework sets the foundation
for its use in robotics by allowing RL agents to
effectively operate in high-dimensional action
spaces. Emphasizing the value of trial-and-
error learning for decision-making procedures
[6], Sutton and Barto (1998) offer basic insights
into RL. Building on these ideas, Zhang et al.
(2021) use DDPG for underwater navigation to
show its potential for exact control in virtual
environments [7].

Other noteworthy contributions include
the robotic arms and aerial drones using
Q-learning and policy gradient techniques.
For robotic manipulation, Levine et al. (2016),
for example, present end-to-end training of
visuomotor policies, so demonstrating the
capacity of RL to solve challenging tasks [11].
Emphasizing its ability for handling continuous
and high-dimensional control spaces, these
studies prepared the groundwork for using RL
in underwater robotics.

A safe and controlled environment is provided
by simulated environments for the purpose
of training AUVs with RL. To facilitate obstacle
avoidance in AUVs, Smith et al. (2018)
implement reward mechanisms [2]. Their
research underscores the significance of
reward functions that are well-designed for the
purpose of facilitating the learning of policies.
In the same vein, Garcia and Torres (2019)
implement policies that are based on deep
learning to improve the trajectory planning
of AUVs [I0]. Although these methods are
successful in structured environments, they
encounter difficulty in generalizing to dynamic
and unpredictable underwater conditions.

The development of realistic underwater
environments has been significantly facilitated
by simulation tools like Gazebo and Unity. These
platforms enable researchers to integrate
physical factors such as turbulence, drag,
and buoyancy, thereby rendering the training
process more akin to real-world conditions.
Nevertheless, the “sim-to-real” problem, which
is frequently used to describe the disparity

between simulation and reality, continues to
be a significant obstacle.

Significant difficulties arise for AUV navigation
in dynamic environments due to the presence
of stochastic disturbances and unpredictable
obstacles. In their study, Chen and Wang
(2020) investigate how RL can be adjusted
to suit actual oceanic circumstances,
considering random environmental
perturbations like turbulence and ocean
currents [3]. Their research demonstrates the
critical importance of stable policies that can
withstand changing conditions over the long
term. Regardless of these developments, their
approaches are computationally heavy and
necessitate a large amount of training data,
neither of which is necessarily accessible.
The use of adaptive reward systems to
strengthen policies has been the subject of
further research. To achieve a better balance
between navigation efficiency and energy
conservation, Singh et al. (2021) create a
multi-objective RL framework. This framework
showed improves adaptability in dynamic
conditions [12]. Nevertheless, the question of
how to achieve adaptation in real-time is still
unanswered.

For prolonged missions, AUVs must emphasize
energy efficiency. Kumar et al. (2019) [4]
concentrate on energy-efficient reinforcement
learning policies for prolonged AUV missions.
Their strategy markedly enhances operational
efficiency by prioritizing energy consumption
within the reward function. Their reliance on
oversimplifiedenergy models,however,renders
them ineffective in practical applications.
Brown et al. (2017) find that heuristic-based
reward systems dre not as effective as possible
in addressing complex navigation tasks [9].
Recent advancements in energy modeling
have enabled more accurate predictions of
battery efficiency and power consumption.
The operational model of AUV is enhanced
for energy efficiency via RL-based scheduling
[13] following the integration of renewable
energy sources, such as solar panels, by
Zhang et al. (2022). These innovations
demonstrate the potential for reinforcement
learning to collaborate with advanced energy
management systems.
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A comparative analysis of reinforcement
learning algorithms employed in autonomous
underwater vehicle research  uncovers
significant trends and constraints. Zhang et
al. (2021) emphasize the benefits of DDPG
for continuous control, whereas Lee et al
(2020) illustrate the adaptability of Proximal
Policy Optimization (PPO) in multi-agent
environments [8]. Conversely, heuristic-based
approaches, such as those suggested by
Brown et al. (2017), are easier to implement
but demonstrated insufficient adaptability
to varied underwater conditions. Garcia and
Torres (2019) underscore the significance of
amalgamating deep learning methodologies
with reinforcement learning for enhanced
policy acquisition [10].

Among AUV navigators, DDPG is a preferred
choice mostly because of its capacity to
manage continuous action environments.
Zhang et al. (2021) use it to maximize paths
[7], so stressing its adaptability in simulated
environments. Chen and Wang (2020)
show its resilience when combined with
domain randomization approaches [3] so
allowing one to generalize across several
underwater conditions. The researchers still
have a lot to learn, though, about how to
combine DDPG with multi-sensor data fusion,
so enhancing their capacity to perceive
and make decisions in their surroundings.
Apart from navigation, DDPG has proved
useful for environmental monitoring and
object retrieval—two more AUV chores. Liu
et al. (2022) notably improve coverage
and energy efficiency by bestocating
underwater sensors with DDPG [14]. These
applications show how adaptable the
method is and how more generally
it could be used in underwater robotics.
DDPG and other algorithms have shown
promise in addressing continuous control
problems; hence, this review highlights the
growing application of RL in AUV navigation.
Two main gaps are poor policies for dynamic
environments and insufficient connection with
actual oceanic conditions. The aim of this work
is to fillin these voids by using RL developments,
hence more adaptive and efficient AUV
navigation systems are sought for.

A. Problem Formulation

AUVs have become indispensable
instruments in various marine activities,
such as environmental assessment, search
and rescue operations, and underwater
investigation. These applications necessitate
AUVs to autonomously navigate in dynamic,
complex, and frequently hostile underwater
environments. The autonomy of AUVs is
impeded by several substantial challenges,
including dynamic obstacles (e.g. movin
objects and unpredictable ocean currents()y,
energy constraints from onboard batteries,
and the necessity for accurate goal-directed
navigation in three-dimensional environments.

Due to high latency, limited communication
bandwidth, and the difficulty in sensing

accurate  positional  information, these
challenges are made even worse in
underwater environments. Robust control

mechanisms and adaptive strategies are
required to guarantee safe and efficient
navigation due to these constraints. In order
to make AUVs more efficient and dependable
in real-world scenarios, it is essential to solve
these problems. To teach AUVs to navigate
autonomously, optimize energy consumption,
and avoid obstacles in these types of settings,
this research suggests an RL framework that
makes use of the Deep Deterministic Policy
Gradient (DDPG) algorithm.

B. Mathematical Representation

1. State space
The AUV state at any time ( t ), denoted as
(s,€ R’),is a multidimensional vector defined as:

[s, = [x, v, z,roll pitch,yaw,battery level], ] ()

where ((x, y, z)) represents the AUV position in
a 3D coordinate system. The orientation of the
AUV is described by (roll, pitch, yaw) , and the
battery level indicates the remaining energy.
This state vector encapsulates the critical
information required for navigation and
decision-making.
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Additional environmental data include:

1. Positions  of  dynamic  obstacles,
represented as ({o; € R*}¥,), (N) where is
the number of obstacles.

2. Environmental disturbances, such as
water currents, modeled ds random
forces acting on the AUV.

2. Actionspace
The action (a,€ R°) is a continuous control input
defined as:

la, = [f. fyr f..roll_change, pitch_change,yaw_change], ] (2)

where  (fff) represent the  thrust
forces in three spatial directions, and
(roll_change, pitch_change, yaw_change) correspond
to rotational adjustments in orientation. These
actions are constrained to the physical limits
of the AUV thrusters and rotational capabilities.

3. Transition function

The dynamics of the AUV, as implemented
in the simulation environment, govern the
transition from the current state (s, ) to the next
state (s:+1). The transitions are described as:

Xepq = Xp + A, + disturbance,, (3)
Vey1 = Ve + A, + disturbance,, (4)
Zppq = 2 + A, + disturbance, (5)
roll,,, = mod(roll, + a,y,360) (6)
pitch, ,; = mod(pitch, + @, 360) (7)
yaw,,, = mod(yaw, + a},m‘,,SGU] (8)

battery level,,, = max (0, battery level, — nY|a_t]) (9)

4. Reward function

The reward function is designed to incentivize
efficient and goal-oriented navigation while
penalizing unsafe or inefficient behavior. It is
expressed as:

[Fspa)=n+n+n-—n—n—1n] (10)
where:

(r; = o~ distance_reduction)

(r; = B - smooth_action)

(13 = v - battery_efficiency)

(1, = &/proximity to_obstacle)

(15 = n - excessive_action)

(1; = A - goal_deviation)

The parameters (a=10,=5y=3 6§ =50,n=2,
A =8) are empirically tuned.

5. Objective

The reward function is designed to incentivize
efficient and goal-oriented navigation while
penalizing unsafe or inefficient behavior. It is
expressed as:

T
Z'}’IT(SI: az)l; (‘”)
=0

where (y € (0,1)) is the discount factor, and (T)
is the episode length.

J=E

The objective of the reinforcement learning
problem is to maximize the expected
cumulative discounted reward:

T
ZYET(Srrar) : (]2)

where (y € (0,1)) is the discount factor,and (T)
is the episode length.

J=FE

C. Proposed Model

The Deep Deterministic Policy Gradient (DDPG)
algorithm is employed as the RL framework.
DDPG is a model-free, off-policy algorithm that
is well-suited for environments with continuous
action spaces, such as AUV control. It combines
actor-critic methods, where the actor learns a
deterministic policy, and the critic evaluates
the policy using a Q-value function.

1. Actor network

The actor network is a neural network that
maps the current state (s, ) to a continuous
action (a, ) . It comprises:

o Input: State vector (s, ).

. Hidden layers: Two fully connected layers
with 256 units each and RelU activation.
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. Output layer: A tanh activation function
to constrain actions within defined
bounds.

2. Critic Network

The critic network estimates the Q-value
(Q (s, a,)), which represents the expected return
for a given state-action pair. It comprises:

o Inputs: State (s, ) and action (a, ).

o Hidden layers: Two fully connected layers
with 256 units each and RelU activation.

. Output layer: A linear activation to
produce the scalar Q-value.

3. Training process
The

training procedure involves episodic
interactions between the AUV and the
environment. The agent explores the

environment using Ornstein-Uhlenbeck noise
to encourage diverse actions. Parameter
updates are based on the following rules:

[B, < 6o + aVBOE[T +vQ' (s 1'(s") — Q(s, a)],]
[eu A Bu + BvBMQ(s: U(S))]

(13)

A. Training Performance

The training performance of the AUV is
evaluated over multiple episodes, with key
metrics such as episode rewards, position,
orientation, and battery usage recorded. The
following sections analyze the results obtained.

B.  Episode Rewards

The episode rewards curve demonstrates
the learning progression of the AUV. Initially,
rewards fluctuate significantly, indicating
exploration of the environment. Over time, the
rewards stabilize, suggesting that the agent
has learned a policy to navigate effectively
while optimizing energy usage and avoiding
obstacles.
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C. Trajectory Analysis

The trajectory of the AUV shows its path in
the 3D environment, highlighting its ability to
reach the target while avoiding obstacles. The
trajectory demonstrates adaptive behavior in
navigating through challenging configurations.

AUV Trajectory and Obstacles
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D. Position and Orientation Analysis

The position and orientation plots provide
insights into the control strategy adopted
by the AUV. Smooth changes in position
indicate efficient navigation, while orientation
adjustments show precise control to maintain
stability and alignment with the target
direction.
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AUV Position Over Time
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E. Battery Usage Analysis

The battery usage plot highlights the energy
efficiency of the AUV. The gradual decrease
in battery levels indicates optimized energy
expenditure, with no sudden drops that would
suggest inefficient or excessive actions.

AUV Battery Level Over Time
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The results demonstrate the effectiveness
of the proposed reinforcement learning
framework for AUV navigation. The agent
successfully learned to balance goal-oriented
navigation, obstacle avoidance, and energy
optimization.Key strengths include the ability of
the agent to adapt to dynamic environments
and its efficient use of resources.

However, occasional deviations from optimal
behavior, as indicated by spikes in the rewards,
suggest areas for further improvement. Future
work could explore alternative reward function
designs and additional training scenarios to
enhance robustness.

This research illustrates the efficacy of
reinforcement  learning (RL), specifically
the Deep Deterministic Policy Gradient
(DDPG) algorithm, in tackling the obstacles
of autonomous navigation for AUVs. The
proposed approach effectively allowed
the AUV to function in intricate, simulated
underwater environments by concentrating on
dynamic obstacle avoidance, energy-efficient
path planning, and goal-oriented navigation.
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The findings underscore numerous significant
accomplishments:

The DDPG algorithm demonstrated
significant efficacy in continuous control
tasks, facilitating smooth, adaptive,
and efficient trajectories for the AUV.
The incorporation of a multi-objective reward
function, which balances navigation, energy
efficiency, and safety, markedly enhanced
performance across various scenarios.
The trained policy exhibited strong obstacle
avoidance abilities and energy optimization,
significantly  decreasing  collision  rates
and efficiently conserving battery usage.
Notwithstanding these achievements,
numerous limitations persist. The inconsistency
of rewards and sporadic divergences from
optimal trajectories suggest a necessity for
enhanced refinementin the reward framework
and training methodology. The sensitivity of
the agent to environmental configurations
indicates the necessity of integrating o
broader range of training scenarios toenhance
generalization.

The ramifications of this research transcend
simulated contexts. The framework establishes
a basis for implementing RL-based navigation
systems in practical AUVs, with prospective
applications in environmental monitoring,
underwater exploration, and search-and-
rescue operations. Nonetheless, closing the
divide between simulation and reality is a
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