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 RAFEQI Design and Implementation of a 
Cost-Effective Personal Assistant Robot 

 ABSTRACT

This paper introduces RAFEQI, an Artificial Intelligence (AI)-driven personal assistant robot designed for 
seamless human-robot interaction. RAFEQI features an advanced vision system for real-time object 
detection, age and gender classification, emotion recognition, and sign language interpretation. Its 
auditory system operates both online and offline, utilizing a rule-based chatbot for offline interactions 
and an AI-powered language model for real-time responses. The robot is equipped with a mapping 
and localization system that ensures efficient navigation and obstacle avoidance. A user-friendly 
touchscreen Graphical User Interface (GUI) enhances accessibility and interaction. Additionally, a 
mechanical upgrade allows the use of a high-quality feedback servo motor at a lower cost, improving 
efficiency without compromising performance. Built with 3D-printed materials, RAFEQI offers an 
affordable yet advanced robotic solution for applications in education, research, and commercial 
environments.
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I.	 INTRODUCTION

The integration of AI and robotics is 
increasingly shaping modern industries, 
with humanoid robots playing vital roles in 
healthcare, education, customer service, and 
home assistance. The demand for intelligent, 
userfriendly robotic solutions has driven the 
development of robots such as Nao [1], Pepper 
[2], Poppy [3], and Reachy [4]. 

Nao, developed by SoftBank Robotics, is widely 
used in research and education for its speech 
recognition and programmable behavior [1]. 
Pepper, also from SoftBank Robotics, specializes 
in social interaction and is deployed in retail, 

hospitality, and customer service settings [2]. 
Poppy, an open-source humanoid, supports 
education and research with its modular, 
customizable design [3]. Reachy, created by 
Pollen Robotics, serves as a personal assistant, 
performing object manipulation and visitor 
interactions [4]. 

This paper introduces RAFEQI, an AI-powered 
personal assistant robot that integrates key 
functionalities of existing humanoid robots 
while introducing enhanced capabilities. Unlike 
its predecessors, RAFEQI features AI-driven 
interaction, real-time mapping, and intuitive 
user engagement via an accessible GUI. 

Copyright © 2025, authors
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RAFEQI’s upper body adopts Poppy’s modular 
framework for adaptability, while its lower body 
incorporates Reachy’s mobility for efficient 
navigation. This hybrid design enhances agility 
and intelligence, making it more practical for 
real-world applications. Equipped with OpenAI’s 
ChatGPT-3.5 Turbo, RAFEQI provides accurate, 
context-aware responses in real time. Its vision 
system, powered by deep learning and a Stereo 
Vision System (SVS), enables gender, age, and 
emotion recognition, as well as sign language 
interpretation for improved accessibility. 

The robot employs Simultaneous Localization 
and Mapping (SLAM) for efficient navigation in 
dynamic environments. A mechanical upgrade 
introduces high-quality feedback servo 
motors at a lower cost, optimizing efficiency 
without compromising performance. These 
enhancements make RAFEQI a versatile and 
cost-effective solution for education, research, 
and personal assistance.

II.	 LITERATURE REVIEW 

The development of RAFEQI was inspired 
by existing humanoid robots designed for 
research, education, and personal assistance. 
Key influences include Nao, Pepper, Poppy, and 
Reachy, depicted in Fig. 1 and Fig. 2. 

Nao and Pepper, developed by SoftBank 
Robotics, are widely used in research and 
commercial applications. Nao is designed for 
education and programming, featuring 25 
degrees of freedom and advanced speech 
recognition [1]. Pepper is a socially interactive 
robot with voice recognition and an interactive 
tablet commonly used in customer service 
[2]. However, both are closed source, limiting 
hardware modifications. 

In contrast, Poppy and Reachy are open-
source platforms, offering modularity and 
customization. Poppy, developed by the Poppy 
Project, features 27 degrees of freedom and a 
flexible humanoid design, making it ideal for 
robotics research [3]. Reachy, created by Pollen 
Robotics, has 18 degrees of freedom, a wheeled 
base, and an advanced stereo vision system 
for interaction and object manipulation [4].

Figure 1. Pepper robot (left), Nao robot (right) [2] [1]

Figure 2. Reachy robot (left) Poppy robot (right) [3] [4]

RAFEQI integrates and improves upon 
the strengths of Poppy and Reachy while 
introducing key modifications for enhanced 
personal assistance. Its upper body is based 
on Poppy’s modular design, adapted with 
structural and mechanical enhancements 
such as optimized servo motors and adjusted 
dimensions for better efficiency. The lower 
body, inspired by Reachy’s mobility system, 
is redesigned for improved navigation and 
localization. 

By leveraging open-source flexibility, RAFEQI 
provides a cost-effective and customizable 
alternative to closed-source robots like Nao 
and Pepper. Its AI-driven interaction, advanced 
vision system, and adaptable framework make 
it a versatile solution for research and real-
world applications. 
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III.	 DESIGN AND HARDWARE 
MODIFICATIONS 

The development of RAFEQI involved an 
extensive evaluation of various robotic 
platforms to identify the optimal combination 
of features. Once the key design elements were 
selected, modifications were implemented to 
enhance efficiency, reduce costs, and improve 
overall functionality. The design is divided 

into two main components: the Upper Body 
and Head Design and the Lower Body and 
Locomotion System.  

The first prototype of RAFEQI was 3D printed 
using polylactic acid (PLA) material, as shown 
in Fig. 3 on the left side. Later iterations adopted 
resin-based 3D printing to enhance structural 
integrity and refine the finer details of the 
design, as shown on the right side of the image. 

Figure 3. PLA material (left), Resin material (right)

A.	 Upper Body and Head Design 

The upper body of RAFEQI houses twelve 
actuators, compared to thirteen actuators 
in Poppy, along with a vision system, an 
interactive screen, and a head assembly, 
contributing to a total weight of approximately 
2 kg as shown in Fig. 4, on the right side, RAFEQI 

with the arrow pointing to the motor that was 
removed, motor abs_z(33), which appears 
in the full Poppy motor diagram shown on 
the left side. Selecting suitable motors was 
a critical design decision to ensure efficient 
movement, real-time feedback capabilities, 
and cost-effectiveness without compromising 
performance.  

 

Figure 4.  Poppy actuators  (left), RAFEQI actuators (right) [4]
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The Poppy robot originally used 8× Robotis 
Dynamixel MX28-AT [5] motors and 3× Robotis 
Dynamixel MX64-AT motors [6]. While these 
actuators offer high-precision movement and 
real-time feedback, they significantly increase 
the overall cost. To optimize affordability 
without sacrificing essential features, RAFEQI 
employs Waveshare ST3215-HS servo motors 
[7], which offer comparable functionality at a 
fraction of the cost. Fig. 5 illustrates a direct 
comparison between the Dynamixel MX-28AT 
motor (left) used in Poppy and the Waveshare 
ST3215-HS motor (right) used in RAFEQI.

Figure 5. MX-28AT motor (left), ST3215-HS motor (right) [5] [7]

A key factor in motor selection is the baud 
rate, which determines the speed of data 
transmission in a communication system. 
The MX-28AT motors operate via RS-485 or 
TTL (UART), supporting high-speed multi-drop 
networking and allowing multiple servos to 
communicate over the same bus. The ST3215-
HS operates using UART communication, which, 
while slightly slower, is sufficient for RAFEQI’s 
movement requirements. The differences 
between the two motors are shown in Table I.

TABLE I. PRESENTS A DETAILED COMPARISON OF THE ORIGINAL AND 
MODIFIED MOTOR CONFIGURATIONS

Feature Robotis Dynamixel 
MX-28AT 

Waveshare 
ST3215-HS 

Communication 
Protocol RS-485 or TTL (UART) UART 

Baud Rate 4.5M bps ( bits per 
second) 1M bps 

Feedback 
Mechanism 

High-resolution 
encoder 

360° magnetic 
encoder 

Positional 
Accuracy ±0.5° ±0.5° to ±1° 

Control Interface Advanced control via 
RS-485/TTL 

UART 
communication 

Real-Time 
Feedback 

Position, Speed, 
Temperature, Voltage, 

Torque, Current 

Position, Speed, 
Load, Voltage 

Cost per Motor $290 $22 

Since the dimensions and mounting interfaces 
of the ST3215-HS motors differ from the 
original Dynamixel MX-28AT, modifications 
were required to the Poppy-inspired upper 
body to ensure proper integration. The servo 
mounts were redesigned to accommodate 
the different shaft positioning and housing 
dimensions of the new motors. Additionally, 
structural adjustments were made to maintain 
joint alignment and articulation, ensuring that 
the robot’s arms retain their intended range of 
motion. Furthermore, because the ST3215-HS 
motors have different torque characteristics, 
slight reinforcements were added to key load-
bearing areas of the upper body to maintain 
mechanical stability during movement. These 
modifications allowed seamless integration 
of the cost-effective motors while preserving 
the humanoid aesthetics and functionality of 
RAFEQI. 

By implementing these modifications, RAFEQI 
achieved a 90% cost reduction in actuator 
selection, making it more accessible for 
research and development while maintaining 
essential motor functions such as position 
tracking, movement error calculation, and 
smooth servo control. 

The head assembly underwent significant 
modifications to accommodate the stereo 
vision camera and interactive touchscreen 
display. These upgrades enhance both 
the computer vision capabilities and user 
interaction. The original Poppy and Reachy 
robots used simpler vision setups with a single 
Raspberry Pi (RPI) camera positioned at the 
center of the head. However, during testing, 
this placement was found to be suboptimal 
for depth perception and object detection 
accuracy. To improve performance, the 
camera was relocated to the top of the head, 
optimizing the field of view and recognition 
accuracy. 
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RAFEQI replaces the standard raspberry pi (RPI) 
camera on the left [8] with an OpenCV AI Kit-D 
(OAK-D) Pro [9]  stereo vision system on the 
right, as shown in Fig. 6, significantly enhancing 
depth perception, object detection, and facial 
recognition capabilities. This upgrade allows 
the robot to track faces, interpret sign language, 
and estimate user age and emotions more 
accurately.

 

Figure 6.  RPI camera (left), OAK-D PRO (right) [8] [9]

The screen size was increased from 3 inches 
to 5 inches, enhancing the (graphical user 
interface) GUI’s visibility and improving user 
experience. Since the screen serves as RAFEQI’s 
interface, this upgrade improves interaction 
by making visual feedback more expressive 
and accessible. Fig. 7 provides a comparison 
between the original Poppy head on the left 
design and the modified RAFEQI head on the 
right, highlighting the structural and functional 
enhancements made to accommodate the 
upgraded vision system and larger display.

Figure 7.  shows the Poppy head design (left) while the RAFEQI 
head design (right) [7]

B.	 Lower Body and Locomotion System 

RAFEQI’s lower body is designed for stable and 
efficient mobility while optimizing space for 
electronic components. Inspired by Reachy 
and Pepper, it adopts a 4WD omnidirectional 
wheel system instead of a bipedal design, which 
enhances stability, navigation, and localization. 
Unlike bipedal locomotion, Omni wheels enable 
seamless movement in any direction without 
rotation, improving maneuverability, response 
time, and weight distribution while simplifying 
path planning. 

The base integrates essential components in 
a compact and ergonomic layout. It includes 
an emergency stop button, four sonar sensors 
for obstacle detection, a reset button, and 
a charging port for battery recharging. A 
real-time power monitoring screen displays 
system voltage and current draw, ensuring 
continuous diagnostics. Fig. 8 illustrates the 
wheel configuration (left) and component 
placement within the base (right), showcasing 
its accessible and compact design. 

  

Figure 8. shows the wheel configuration (left) and base-level design (right) 
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Designing RAFEQI’s lower body required 
integrating all electronic components while 
ensuring structural integrity and balance. To 
optimize space and prevent overheating, the 
internal structure is divided into three isolated 
levels, each serving a distinct function. 

The first level houses the microcontroller and 
motor driver, enabling real-time motor control 
for smooth movement. The second level 
contains the Battery Management System 
(BMS) and a 2P3S-configured lithium-ion (Li-
ion) battery pack. This setup consists of six 3.7V 
8000mAh 65C cells, providing a final output of 
11.1V 16000mAh. Power distribution boards and 
step-down voltage converters ensure stable 
power delivery to the robot’s subsystems. 

The third level includes the Jetson Nano [10], an 
edge tensor processing unit (TPU) [11], and an 
emergency stop system for safety. An A2 LiDAR 
[12] mounted on the base enables real-time 
mapping and localization, while four MB1020 LV-
MaxSonar-EZ2 ultrasonic sensors [13] enhance 
obstacle detection, improving navigation in 
dynamic environments. 

To enhance safety and minimize 
electromagnetic interference, the battery 
pack and controller components are housed 
in isolated compartments. This design reduces 
power fluctuations, thermal buildup, and noise 
interference, ensuring stable system operation.  

The multi-layered structure optimizes space 
efficiency, power distribution, and real-time 
processing, enhancing RAFEQI’s performance. 
This integration enables seamless movement, 
navigation, and interaction, making RAFEQI a 
versatile and efficient personal assistant robot. 

IV.	 KINEMATICS AND MOTION 
CONTROL OF RAFEQI 

The kinematics and motion control system of 
RAFEQI is designed to ensure precise, smooth, 
and adaptive movements for both its upper 
body and mobile base. The upper body 
kinematics governs the robot’s ability to interact 
with users and objects, while the mobile base 
kinematics enables efficient omnidirectional 
movement in dynamic environments. The 
control strategies integrate forward and 
inverse kinematics models, Proportional-

Integral-Derivative (PID) controllers, and 
trajectory optimization algorithms to maintain 
stability, accuracy, and efficiency in real-time 
operations. 

RAFEQI’s upper body consists of 12 actuated 
joints, which provide controlled movements 
for the arms, head, and interactive screen. The 
kinematics follows a serial-link manipulator 
configuration, allowing the robot to perform 
gestures such as pointing, waving, and head 
tilting. The Forward Kinematics (FK) of the 
upper body determines the end-effector 
position (e.g., the hand or screen) given a set 
of joint angles [14]. The transformation matrix 
T from the base frame to the end-effector is 
computed using Denavit-Hartenberg (DH) 
parameters as shown in (1): 

      (1) 

                
The joint angles θi govern rotational motion, 
while di, ai, and αi define link offsets, lengths, and 
twist angles, shaping the robotic arm’s spatial 
configuration. Rz and Rx represent rotations 
about the z-axis and x-axis, influencing joint 
orientation, while Tz and Tx define translations 
along these axes for precise link positioning. 
Together, these parameters establish RAFEQI’s 
upper body kinematics, ensuring accurate 
end-effector control in both position and 
orientation. 

For Inverse Kinematics (IK), an iterative 
numerical approach is employed due to the 
non-linear nature of multi-DOF arm motion. The 
Levenberg–Marquardt optimization method is 
used to compute joint angles required to reach 
a given Cartesian target while minimizing 
joint stress and motion constraints. The upper 
body motion is controlled via a Proportional-
Integral-Derivative (PID) controller, ensuring 
smooth and precise trajectory execution. The 
control law for each joint is shown in (2): 

        (2)

 
The error ei(t) represents the difference 
between the desired and actual joint position, 
enabling precise motion correction. Kp, Ki, and 
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Kd are the proportional, integral, and derivative 
gains that dynamically adjust control effort 
to regulate position errors. The control signal 
ui(t) drives the actuator, ensuring smooth joint 
adjustments while maintaining stability and 
minimizing oscillations. To enhance motion 
fluidity, a velocity profiling strategy prevents 
abrupt accelerations, particularly during 
interaction-based gestures. 

RAFEQI’s mobile base employs a 4WD omni-
wheel drive system, enabling holonomic 
motion, which allows movement in any 
direction without conducting rotation first. 
This design is particularly beneficial for 
maneuvering in confined spaces. The velocity 
kinematics of RAFEQI’s base follows the 
standard Mecanum wheel inverse kinematics 
model. The relationship between global velocity 
(Vx, Vy) and angular velocity (ω) is shown in (3): 

     (3) 

                

Where r represents the wheel radius, which 
influences the robot’s movement efficiency 
and speed, the parameters L and W denote 
the base length and width, respectively, which 
define the robot’s physical dimensions and 
affect its stability and maneuverability. Lastly, 
ω1, ω2, ω3, and ω4 correspond to the four individual 
wheel speeds, controlling the motion dynamics 
and enabling omnidirectional movement 
through precise velocity adjustments.  

This configuration allows RAFEQI to achieve 
Linear motion (forward, backward, left, right), 
Diagonal motion, Rotational motion (on-
the-spot turns), and Complex curvilinear 
trajectories. The base movement is controlled 
using a closed-loop PID velocity controller, 
ensuring smooth acceleration and precise 
stopping. The control system dynamically 
adjusts individual wheel velocities to maintain 
trajectory stability. The velocity control 
equation is shown in (4): 

                      (4) 

                

The desired wheel speed ωi defines the 
rotational velocity for the robot’s motion, while 
ev represents the velocity error—the difference 
between desired and actual speed—used 
for motor control adjustments. The Kp, Ki, 
and Kd PID parameters ensure precise 
velocity regulation, minimizing overshoot and 
stabilizing movement. 

For path execution, RAFEQI employs an A* 
search algorithm for path planning, as shown 
in Fig. 9 [15], whereas the Dynamic Window 
Approach (DWA) for real-time obstacle 
avoidance is shown in  Fig. 10 [16].

Figure 9.  A* search algorithm [15]

Figure 10. Dynamic Window Approach [16]

V.	 ARTIFICIAL INTELLIGENCE 
ARCHITECTURE AND SYSTEMS 

A.	 Vision System 

The vision system of RAFEQI is designed to 
enable depth perception, object recognition, 
emotion detection, and sign language 
interpretation using a stereo vision camera 
setup. The system incorporates the OAK-D Pro 
stereo vision camera, which leverages DepthAI 
models and libraries trained on platforms such 
as Roboflow. 
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This vision architecture is responsible for two 
primary tasks: depth estimation and high-level 
image processing, both of which are essential 
for robotic navigation, human interaction, and 
object manipulation. 

To achieve efficient real-time inference, 
RAFEQI’s vision system is powered by a Jetson 
Nano, which is equipped with an Edge Tensor 
Processing Unit (TPU) accelerator. This hardware 
configuration optimizes computational 
efficiency, enabling low-latency processing 
of deep learning models for age and gender 
classification, emotion recognition, object 
detection, and sign language interpretation. 
The integration of the Edge TPU accelerators 
enhances inference speed and energy 
efficiency, ensuring that RAFEQI operates with 
high accuracy and minimal latency in real-
world applications. 

1.	 Age and gender classification model 
The age and gender classification model is 
deployed on the OAK-D Pro camera, leveraging 
the DepthAI framework built on Intel’s OpenVINO 
toolkit. The model is a lightweight deep 
convolutional neural network (CNN) optimized 

for real-time inference on edge devices. It is 
based on a ResNet-50 backbone trained on 
large-scale datasets, including Adience and 
IMDB-WIKI, containing diverse facial images 
labeled with age and gender [17]. 

The gender classification task is treated as a 
binary classification problem (male/female), 
with the model achieving an accuracy of 95.3% 
on the Adience dataset. The age estimation 
task is handled as a multi-class classification 
problem. The model achieves a Mean Absolute 
Error (MAE) of 4.2, meaning that the predicted 
age is, on average, within 4.2 years of the actual 
age. 

The model was optimized for deployment 
on edge TPU accelerators by quantizing the 
weights to INT8, reducing computational 
complexity while maintaining accuracy. 
The inference latency on the OAK-D Pro is 7.2 
milliseconds per frame, ensuring real-time 
processing capabilities. Fig. 11 shows the real-
time output for gender and age estimation, 
displaying the detected faces along with 
predicted labels and age values.

Figure 11. Real-time output for gender and age DepthAI model

2.	 Object detection and emotion 
recognition model

For object detection, RAFEQI utilizes a YOLOv8n 
(You Only Look Once version 8 - nano variant) 
model, optimized for low-latency real-time 
inference on edge devices. The model was 
trained on a custom dataset containing 60 
object classes relevant to RAFEQI’s interaction 
environment, including human faces, everyday 
objects, and obstacles. The final trained model 

achieved a mean average precision (mAP) of 
92.1% at Intersection over Union (IoU)=0.5. The 
inference time on the OAK-D Pro camera is 6.8 
milliseconds per frame, enabling high-speed 
object detection [18]. Some of the images used 
during model training are shown on the left side 
of Fig. 12, while the right side of the Figure shows 
YOLOv8n  object detection test images where 
objects in the scene are labeled accordingly.
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Figure 12. Images from the training dataset (left) and the 
YOLOv8n output (right) 

For emotion detection, RAFEQI employs a fine-
tuned EfficientNet-B3 model, trained on the 
Facial Expression Recognition 2013 (FER-2013) 
dataset, which consists of 35,887 grayscale 

facial images labeled with seven emotion 
classes (anger, disgust, fear, happiness, 
sadness, surprise, and neutrality). The model 
was trained using transfer learning, with the 
final trained version achieving an accuracy of 
87.5% on the test set [19]. To enhance robustness 
to lighting variations and occlusions, the Multi-
Task Cascaded Convolutional Network (MTCNN) 
is used as a preprocessing step to align and 
crop faces before emotion classification. This 
ensures that the model processes only relevant 
facial regions, reducing false predictions. The 
average inference time for emotion detection is 
11.6 milliseconds per frame, enabling near real-
time facial expression analysis. Fig. 13 illustrates 
the robot’s output for emotion recognition, 
where detected faces are annotated with 
predicted emotions.

Figure 13. Real-time emotion detection on RAFEQI’s screen

3.	 Depth estimation model 
RAFEQI’s depth estimation utilizes the OAK-D 
Pro stereo vision system with DepthAI’s stereo 
depth estimation framework. Unlike monocular 
depth estimation, which relies on learned priors, 
stereo vision computes depth from disparity 
measurements, ensuring higher accuracy and 
robustness. The system applies semi-global 
matching (SGM) and depth post-processing 
techniques such as median filtering, bilateral 
filtering, and temporal disparity filtering to 
enhance precision and reduce noise. 

For object grasping, real-time depth perception 
enables accurate positioning and stable 
manipulation. The OAK-D Pro achieves an 
absolute depth error below 2% for distances up 
to 4 meters, enhancing spatial awareness for 
grasping tasks. Subpixel disparity refinement 

improves fine-detail reconstruction, which 
is particularly useful for small or partially 
occluded objects. Fig. 14 illustrates depth 
estimation accuracy across distances and 
presents depth maps overlaid on the camera 
feed, demonstrating scene understanding and 
precision [20].

Figure 14. Depth estimation accuracy [20]
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To ensure real-time performance, the system 
processes stereo images at 30 FPS, employing 
confidence thresholding and edge-aware 
filtering to minimize disparity inconsistencies. 
Point cloud processing further refines depth 
data, enhancing object recognition and 
grasp planning. This stereo-vision system 
significantly improves 3D spatial awareness, 

allowing adaptive grasping strategies based 
on environmental conditions. By integrating 
stereo vision, depth refinement algorithms, 
and real-time grasping techniques, RAFEQI 
achieves precise, stable, and adaptive 
manipulation in dynamic environments. Fig. 
15 illustrates depth estimation output where 
depth maps overlaid on the camera feed.

Figure 15. Depth estimation results

4.	 Sign language recognition and pose 
estimation

To enable sign language recognition, RAFEQI 
employs a hybrid model combining YOLOv8-
Pose and MediaPipe Hand Tracking. The 
YOLOv8-Pose model, optimized for real-
time keypoint detection, is used to track full-
body poses and detect 17 skeletal key points, 
including hand and finger positions. The model 
was trained on the OpenSign dataset, which 
contains labeled pose sequences for American 
Sign Language (ASL). 

For hand gesture recognition, RAFEQI integrates 
MediaPipe Hand Tracking, which detects 21 
hand landmarks per hand using a combination 
of a palm detection model and a regression-
based landmark estimation model. The real-
time inference speed of the MediaPipe model 

is 19.3 milliseconds per frame, ensuring efficient 
tracking of complex hand movements. 

The YOLOv8-Pose model achieves a mean 
Average Precision (mAP) of 73.7% for full-body 
pose estimation, while the MediaPipe-based 
sign recognition system achieves an accuracy 
of 93.4% when tested on ASL gestures. The 
combined system allows RAFEQI to interpret 
sign language, recognize human postures, and 
facilitate non-verbal communication, making 
it more accessible to individuals with hearing 
impairments. 

[18][19]. Fig. 16 demonstrates the robot’s ability 
to recognize hand signs, highlighting detected 
gestures with corresponding classification 
labels in real time.

Figure 16. Hand signs real-time detection
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B.	 Auditory System 

Effective communication between humans 
and robots remains one of the most critical 
challenges in artificial intelligence and robotics. 
To achieve better user engagement, the robot’s 
ability to comprehend natural language and 
generate meaningful responses must be of 
high quality. This is particularly crucial for 
RAFEQI, which functions as a personal assistant 
robot where natural language understanding 
(NLU) and response generation are essential 
for human interaction. The effectiveness of a 
conversational AI system directly influences 
user engagement, trust, and the overall 
usability of the robot. When users perceive 
the robot’s comprehension as reliable and 
accurate, they are more likely to interact with it, 
exploring its features and utilizing its interface. 

To achieve robust and adaptable speech 
interaction, RAFEQI integrates two language 
models: an offline model for local processing 
and an online model for cloud-based 
advanced conversational AI. This dual-model 
setup ensures uninterrupted natural language 
processing (NLP) capabilities, even in cases 
where network connectivity is unavailable. 

1.	 Offline conversational AI model 
RAFEQI includes an offline language model, 
ensuring continuous functionality even when 
an internet connection is unavailable. This 
model is based on the ChatterBot library, an NLP 
framework designed for local conversational AI. 
The model was trained on a dataset of Twitter 
dialogues and other public conversational 
corpora, making it robust in handling basic 
human interactions. 

The ChatterBot model was further fine-tuned 
with domain-specific JSON files, incorporating 
customized responses tailored to RAFEQI’s 
operational context. These modifications 
improved the model’s coherence and response 
relevance, allowing it to effectively answer 
frequently asked questions, engage in small 
talk, and provide assistance in predefined 
scenarios. 

The offline model operates with an intent-
based architecture, where each query is 
matched to a predefined intent using TF-

IDF (Term Frequency-Inverse Document 
Frequency) vectorization. When a user inputs a 
query, the system selects the most appropriate 
response based on its trained similarity 
metrics. This approach allows for low-latency 
responses, making the robot’s conversational 
abilities function smoothly without internet 
dependency. The inference time for the 
ChatterBot-based model on RAFEQI’s hardware 
is 7.2 milliseconds per query, ensuring real-time 
interaction [21]. 

2.	 Online conversational AI model and 
Text-to-Speech (TTS) integration

To extend RAFEQI’s conversational capabilities 
beyond the offline model, the robot is also 
connected to the ChatGPT-3.5 Turbo API, a 
state-of-the-art cloud-based language model 
developed by OpenAI. The ChatGPT-3.5 Turbo 
model enables context-aware conversation, 
dynamic response generation, and the ability 
to handle open-domain interactions. Unlike 
intent-based systems, ChatGPT’s architecture 
is based on the Transformer model, which 
uses self-attention mechanisms to generate 
human-like responses. 

The  online  model  is  enhanced with GPT-
TTS1-HD, a fine-tuned Text-To-Speech (TTS) 
system that provides high-definition speech 
synthesis with customizable voice parameters. 
The TTS model offer an adaptive intonation 
and prosody, making the speech more 
natural, variable speech rate control, allowing 
adjustments based on user preference. 
Context-aware emphasis on handling 
comprehension of critical information [22]. 

RAFEQI’s speech pipeline follows a sequential 
process where user input is transcribed, 
processed, and responded to using either 
the offline or online model. The inference 
time for ChatGPT-3.5 Turbo is approximately 
16.4 milliseconds per query, allowing near-
instantaneous response generation. The TTS 
inference latency is 12.7 milliseconds, ensuring 
that RAFEQI’s spoken responses are delivered 
smoothly without noticeable delay[23]. 

To optimize cloud interaction and reduce 
latency, RAFEQI’s auditory system caches 
frequently used responses, enabling localized 
retrieval of common dialogues. This hybrid 
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approach balances processing efficiency, 
network dependency, and conversational 
fluency. 

3.	 Hardware and audio processing 
pipeline 

RAFEQI’s auditory hardware setup includes a 
high-fidelity microphone array for accurate 
speech recognition and noise cancellation, 
dual stereo speakers. These settings provide 
a crisp, natural-sounding speech output, 
Digital Signal Processing (DSP) enhancement, 
improving voice clarity and background noise 
suppression. 

To enhance speech recognition accuracy, the 
Whisper Automatic Speech Recognition (ASR)  
model by OpenAI was integrated for robust 
voice-to-text conversion. The ASR model 
was fine-tuned using multispeaker datasets, 
achieving a Word Error Rate (WER) of 3.8% under 
real-world conditions. The end-to-end speech 
recognition pipeline allows for continuous 
listening, enabling hands-free interaction with 
the robot. 

Fig. 17 illustrates the complete pipeline for 
user interaction with RAFEQI’s large language 
models (LLMs), including speech recognition, 
NLP processing, and TTS synthesis. 

Figure 17. Natural language processing pipeline

VI.	 LOCALIZATION & MAPPING 

Localization and mapping are crucial for 
RAFEQI’s autonomous navigation, enabling 
precise environmental interaction and 
movement. To achieve high accuracy, RAFEQI 
integrates multiple sensors and advanced 
algorithms. 

RAFEQI is equipped with an A2 LiDAR, sonar 
sensors, and an Inertial Measurement Unit 
(IMU). The A2 LiDAR provides detailed spatial 
data for mapping and obstacle detection, while 
sonar sensors enhance low-lying obstacle 
detection with a range of 20–750 cm. The IMU 
contributes orientation and movement data, 
complemented by motor encoder feedback, 
which provides odometry data for speed and 

distance estimation. Sensor fusion improves 
localization and mapping accuracy for 
complex environments. 

For mapping, RAFEQI employs GMapping [24], 
a widely used Simultaneous Localization and 
Mapping (SLAM) algorithm. For localization, an 
improved Adaptive Monte Carlo Localization 
(AMCL) algorithm integrates 3D LiDAR, IMU, and 
odometry data to enhance indoor positioning 
accuracy [25]. 

The localization process begins with multi-
sensor fusion, where wheel odometry and 
IMU data are processed using an Extended 
Kalman Filter (EKF) to refine the motion model. 
AMCL then distributes a particle set based on 
estimated motion dynamics. 
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To further refine localization, the Point-to-Line 
Iterative Closest Point (PL-ICP) algorithm aligns 
the 3D laser point cloud using pose differences 
from AMCL. The Levenberg–Marquardt 
method then computes a high precision laser 
odometry estimate. Finally, the AMCL-based 
position estimate is corrected using refined 
laser odometry data, followed by particle 
re-weighting and resampling for improved 

stability. 

Simulation and real-world tests confirm that 
this enhanced AMCL framework significantly 
improves positioning accuracy in dynamic 
indoor environments. Fig. 18 illustrates the 
mapping, localization, and final map update 
steps, while Fig. 19 presents the map and 
localization outputs.

Figure 18. Mapping and Localization phases

Figure 19. Mapping and Localization Output

VII.	 HUMAN-ROBOT INTERACTION 
INTERFACE: GUI & WEB APPLICATION

Enhancing Accessibility and Human-Robot 

Interaction (HRI) was a key design objective for 
RAFEQI. Unlike traditional interaction models 
relying solely on facial expressions, RAFEQI 
features a Graphical User Interface (GUI) on 
its interactive touchscreen, complemented 
by a mobile-friendly web application. This 
hybrid approach enables multimodal 
communication, allowing both local and 
remote access to system functionalities. 
By integrating visual feedback, real-time 
diagnostics, and direct control mechanisms, 
RAFEQI ensures a seamless user experience, 
particularly in assistive and service robotics 
applications. 

The GUI and web application support real-
time data monitoring, system configuration, 
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and remote control. Both interfaces employ 
a multi-layered architecture, dynamically 
presenting sensor data, logs, and user settings 
for enhanced transparency and usability. 
Categorized menus allow users to adjust voice 
interaction settings, view object detection 
results, and manage navigation controls in real 
time. A feedback display provides continuous 
monitoring of performance metrics, battery 
status, and environmental updates for 
optimized interaction. 

Beyond the GUI, RAFEQI’s web application 
extends core functionalities, enabling multi-
device accessibility across smartphones, 
tablets, and PCs. Users can remotely control 
movements, configure the system, and 
manage AI-driven features. The analytics 
dashboard provides insights into battery 
performance, system diagnostics, and 
activity logs, ensuring efficient supervision.  
A key feature is live streaming of the robot’s 
vision system, allowing real-time situational 

awareness and decision-making. 

To enhance user engagement, the GUI and 
web interface integrate emotion-driven 
animations, delivering responsive interactions. 
Adaptive scaling techniques optimize 
readability under varying lighting conditions, 
while multi-touch support enables smooth 
scrolling, selection, and gesture-based 
navigation. The Jetson Nano-powered GUI 
employs hardware-accelerated rendering 
for low-latency performance, while the web 
app runs on an embedded server with secure 
encryption and authentication. 

RAFEQI’s modular GUI and web interface 
allow future expansions without hardware 
modifications, supporting AI-driven analytics, 
cloud-based control, and advanced 
collaboration tools. Fig. 20 illustrates the GUI 
layout, showcasing interactive elements 
and remote access features, including live-
streaming vision and control options.  

Figure 20. illustrates the GUI (left), WEB application control, and live streaming (right)

RAFEQI also supports predefined arm 
movements, as shown in Fig. 21, which users 
can activate via dedicated buttons for an 
interactive experience. The right-side interface 
includes buttons for advanced AI models 

across computer vision, natural language 
processing (NLP), and localization, enhancing 
task accuracy and efficiency. The user-friendly 
design ensures intuitive navigation, allowing 
users to fully explore RAFEQI’s capabilities. 
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Figure 21. Predefined body moves and AI models

VIII.	 CONCLUSION 

RAFEQI represents a significant advancement 
in personal assistant robotics, integrating AI-
driven interaction, vision-based perception, 
adaptive navigation, and remote accessibility. 
The robot’s multimodal  communication 
system, combining offline and online 
conversational AI models, ensures seamless 
human-robot interaction. The GUI and web 
application further enhance accessibility, 
allowing users to monitor system data, control 
movements, and configure settings remotely, 
expanding RAFEQI’s usability beyond physical 
interaction. 

A major contribution of RAFEQI lies in its vision 
system, which utilizes a stereo vision camera 
with deep learning models for age and gender 
classification, emotion detection, object 
recognition, and sign language interpretation. 
By leveraging edge AI processing on a Jetson 
Nano with an Edge TPU accelerator, the 
system achieves low latency and real-time 
performance, making it suitable for dynamic 
environments. 

For navigation, RAFEQI employs a hybrid 
localization and mapping system, integrating 
A2 LiDAR, sonar sensors, and an IMU. The robot 
utilizes GMapping SLAM for mapping, followed 
by an optimized AMCL algorithm with EKF and 
PL-ICP for precise localization. This approach 
enables autonomous navigation and obstacle 

avoidance in structured and unstructured 
environments.  

RAFEQI’s cost-efficient yet high-performance 
hardware design modifies the original Poppy 
and Reachy structures, enabling high-feedback 
servo motors while significantly reducing 
costs. The 4WD omni-wheel base enhances 
seamless omnidirectional movement, further 
improving mobility. 

The integration of a web application 
significantly extends RAFEQI’s usability, allowing 
remote supervision, teleoperation, and real-
time diagnostics. The expanded analytics 
dashboard provides insights into battery levels, 
performance metrics, and operational history, 
ensuring ease of management in various 
applications. 

Future work will focus on enhancing context 
awareness, multimodal learning, and 
reinforcement-based decision-making to 
expand RAFEQI’s capabilities in autonomous 
assistance and adaptive learning. The web 
application will continue evolving with AI-driven 
analytics and cloud-based collaboration tools, 
solidifying RAFEQI’s role as a next-generation 
AI-powered personal assistant. 
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