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 A Systematic Review: Computer Vision 
Algorithms in Drone Surveillance 

 ABSTRACT

Drones have emerged as advanced Cyber-Physical Systems (CPSs) with significant potential in 
data collection and environmental monitoring. Their ability to operate via wireless communication 
channels makes them integral to various IoT applications, such as surveillance, delivery services, 
traffic monitoring, and precision agriculture. Drones surpass traditional surveillance methods by 
offering better mobility and broader coverage, enabling efficient decision-making in diverse contexts; 
however; however, object detection in drone-captured images poses challenges due to varying spatial 
resolutions, a large number of objects, and their diverse sizes in aerial imagery. This paper provides 
a comprehensive review of drone-based surveillance techniques, focusing on object detection and 
tracking algorithms, relevant datasets, and exploration strategies. By analyzing current methods and 
identifying key trends, this study aims to highlight advancements and opportunities for improving the 
performance and reliability of drone-based surveillance systems.
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I.	 INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also called 
drones, are considered high-end Cyber-
Physical Systems (CPSs) that are used for data 
collection and environment monitoring [1], [2] 
This is because they can perform different 
tasks via wireless communication channels. 
UAVs can provide real-time data for different 
IoT applications and enable efficient decision-
making, such as surveillance, delivery services, 
traffic monitoring, and precise agriculture [3]–
[5]. Drones could be classified according to their 
speed, stability, hovering, and their targeted 

flying environment. Moreover, they could also 
be classified according to the autonomy and 
the type of their wings.

There is a high demand for intelligent drones 
for surveil- lance in contrast to fixed cameras 
as they provide higher mobility and a bigger 
surveillance scope. However, object detection 
is a challenging task when performed on 
drone-captured images;  this is due to spatial 
sensor resolutions in addition to the large 
number and diverse sizes of objects in aerial 
images [6]–[11].

Copyright © 2025, authors
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The surveillance task could be described as 
monitoring a specific target, for example,, 
environmental phenomena, buildings, people, 
certain behaviors, or activities [12]. Compared 
to traditional surveillance methods, drones 
provide more sustainable solutions; they can 
perform more complex tasks and can cover 
larger and harder-to-access areas in a a short 
time, see Figure 1. The optimization objectives 
in target tracking based UAV surveillance are:

•	 To maximize the number of targets for 
surveillance

•	 To maximize the quality of Surveillance 
(QoS) for surveillance

•	 To minimize the cost of surveillance.

Multiple review studies have addressed 
different aspects of drone operations, 
challenges, and applications:

•	 Surveillance application [13]–[16]

•	 object detection [17]

•	 traffic management [17]

•	 disaster management [15], [17]

•	 Most commonly, UAV platforms [16], [18]

This paper presents a comprehensive review 
of the different surveillance techniques 
performed by drones, including objects 
detection and tracking algorithms, datasets, 
and exploration algorithms.

II.	 DATASETS

A.	 Mini Drone Video (MDV)

The mini-drone video (MDV) dataset [19] was 
initially proposed in order to design privacy 
filtering methods. It includes scenes of three 
different types: normal, suspicious, and 
abnormal. Therefore, it is used in anomaly 
detection methods. Later, it was annotated 
using the ViPEr-GT [20] tool, describing the 
different objects in each frame, along with 
their Position; this made the dataset suitable 
for object detection and tracking methods. This 
dataset has 38 videos; each is 16-24 seconds. It 
is recorded by a drone flying at a low altitude. 

It is divided into a training set of 15 videos and a 
test set of 23 videos.

Figure 1. UAV Infrastructure Inspection Based Surveillance. [16]

TABLE I. DIFFERENT ACTIONS ANNOTATED IN THE MDV DATASET

Category Action

Normal walking, standing, talking, nothing, 
parking, parked, moving, stopping

Suspicious loitering

Abnormal fighting, picking up, attacking, stealing, 
cycling, running, falling, repairing

Scene categories are identified by the type 
of actions people perform in a scene, as 
shown in Table I. For example, normal scenes 
include people doing normal activities, such as 
walking, talking, or parking their cars. Abnormal 
scenes include illicit situations such as 
fighting. Suspicious scenes contain non-illicit 
scenes but would draw the surveillance staff’s 
attention. Moreover, it also includes videos 
with anomalies made by objects other than 
human actions, such as cars parking outside 
parking spots. Finally, the videos are recorded 
at different times of the day; therefore, the 
videos have different luminosity levels. The 
MDV dataset is considered a complex dataset 
as it includes diverse conditions under which 
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the videos were recorded.

B.	 UAVid Dataset

The UAVid dataset [21] is a high-resolution 
aerial video dataset designed for semantic 
segmentation tasks focusing on urban scenes. 
It comprises 8 object categories: Buildings, 
roads, static cars, trees, low vegetation, 

people, moving cars, and background clutter. 
The dataset addresses challenges unique 
to UAV imagery, such as different altitudes, 
perspectives, and object sizes,, making it 
suitable for designing computer vision solutions 
in real-time urban monitoring and surveillance 
applications. A sample of the UAVid dataset is 
shown in Figure 2.

Figure 2. A sample of the UAVid dataset [21]

C.	 Stanford Drone Dataset

The Stanford Drone Dataset (SDD) [22] is 
a large-scale dataset that is designed for 
studying human and object interaction in 
public outdoor environments. This dataset was 
captured by drones over the Stanford University 
campus. It comprises scenes such as walking 
paths, intersections, and plazas. It consists 
of 20,000 annotated trajectories for various 
object classes, including pedestrians, bicycles, 
skateboards, cars, buses, and golf cars. SSD is 
widely used for trajectory prediction, object 
tracking, and activity analysis. A sample of the 
dataset is shown in Figure 3.

Figure 3. A sample of the Stanford drone dataset [22]
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D.	 Drone Face Dataset

In 2019, Hwai-Jung Hsu et al.et al. [23] presented 
the DroneFace dataset,, which is used in 
testing face recognition for drones. DroneFace 
contains images of facial features having 
a combinations of different distances and 
heights for finding out how a face recognition 
technique works identifying faces from a high 
altitude. The dataset consists of 2,057 images, 
3,680x2,760 resolution, and the altitude of the 
images were taken from 1.5, 3, 4, and 5 meters 
high.

E.	 Drone Surf Dataset

In 2019, Isha Kalra et. al. [24] presented  
Drone SURF, which is implemented for face 
recognition, containing 200 videos of 58 
subjects from 411,0000 frames, which contains 
786,000 facial expressions. The dataset shows 
different situations across surveillance cases:: 
active and passive, two different locations, 
and two different times. DroneSURF sums up 
difficult challenges due to motion, different 
poses, illumination, background, height, and 
quality (resolution).

F.	 VisDrone

The VisDrone [25] has been collected for visual 
analysis tasks involving UAVs. It comprises of 
400 videos containing 265K frames captured by 
drones flying over different urban and suburban 
environments. It includes annotations for mul- 
tiple object categories with precise bounding 
boxes (2.6M bounding boxes) and tracking 
data. It also addresses challenges facing aerial 
imagery, such as small object sizes, occlusions, 
and cluttered background.

G.	 Okutama-Action Dataset

The Okutama-Action Dataset [26] is a drone-
based benchmark designed for action 
detection in aerial videos. It consists of 43 
annotated video sequences recording 
frames of 3840 x 2160 pixels. It was captured 
from a low-altitude UAV. The dataset contains 
12 action categories, such as walking, running, 
carrying, opening a vehicle, and talking. It 
addressed challenges such as small objects, 
motion blur, and different perspectives. A 
sample is shown in Figure 4.

H.	 UIT-Aerial Drone Dataset

In 2023, Tung Minh Tran et al. [28] proposed the 
UIT- ADrone dataset, which seeks to resolve 
the abnormality identification in urban traffic 
scenarios, specifically on roundabouts in Ho 
Chi Minh City, Vietnam. It contains 51 videos 
with close to 6.5 hours of traffic video material 
recorded over 206,000 frames and includes 
ten categories of abnormal activities. This 
broad dataset has been taken from drones 
to fill up the gap of resources for unusual event 
detection in troubled traffic dynamics. The 
report also inspects the performance of some 
advanced anomaly detection algorithms and 
offers preliminary experimental results and 
their bearing in relation to the other benchmark 
datasets. Table II shows the actions done by 
detected objects that were not supposed 
to happen. Figure 5 shows a sample of this 
dataset.

A summary of the aerial dataset for drone 
object detection and tracking is shown in Table 
III.

Figure 4. Frame captured from Okutama-Action dataset 
detecting objects [27]
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Figure 5. Movement caused by objects captured from the UIT-
ADrone dataset [28]

III.	 SURVEILLANCE ALGORITHMS

In 2009 Axel Bu¨rkle [29] created an architecture 
of a multi-agent system for the realization of 
team collaboration in UAVs, where software 
agents model entities of the UAV team. 
Thus, the agents mimic the properties and 
behaviors of their physical forms while their 
autonomous and context--

TABLE II. COUNT OF ABNORMAL EVENTS IN THE UIT-ADRONE 
DATASET

Types of abnormal events Number of actions

Crossing the road at the wrong line 80

Walking under the street 344

Driving the wrong roundabout 636

Driving on the sidewalk 145

Illegal left or right turn 28

Illegal parking on the street 225

Carrying bulky goods 144

Parking on the sidewalk 68

Driving in the opposite direction 214

Falling off motorcycles 1

TABLE III. A SUMMARY OF THE AERIAL DATASET FOR DRONE OBJECT 
DETECTION AND TRACKING

Dataset 
Name Objects

Number 
of 

Samples
Resolution

UMN human 7738 320 x 240

Drone Face human face 620 3680 x 2760

Drone Surf human face 411.5k 1280 x 720

Okutama-
Action

human 
actions 77.4k 3840 x 1260

VisDrone Vehicles 10,209 2000 x 1500

UIT-Drone
vehicles, 

pedestrians, 
and roads

2,000 1280 x 720

Stanford 
Drone 

Dataset

Skateboard, 
cart, 

Pedestrian, 
Bicyclist, bus, 

and car

929.5k 1400 x 1904

Mini Drone 
Video

human 
actions in the 
parking area

23.3k 1920 x 1080

TABLE IV. AGENTS USED IN AXEL BU¨ RKLE’S ARCHITECTURE [29]

Agents
Primary/

Secondary 
agents

Brief Description

Teamleader 
Agent primary

Manages a group of 
agents, coordinates tasks, 
assigns subtasks, and racks 
team members’ positions 
and capabilities

Copter Agent Primary

Individual copters 
are represented and 
quadcopter features 
are modeled, and status 
information is shared with 
the assigned team leader

Sensor Agent Primary

Represents sensors and 
their properties, assigned 
to a copter agent. These 
agents can be combined in 
particular applications

IRCameraCopter 
Agent Secondary

Could integrate a copter 
agent and a sensor agent 
to enable infrared imaging

Communication 
Agent Secondary

Handles protocols and 
network configurations 
concerning inter-agent 
communication

Aware functionality is ensured. A multi-
agent system is ideal for realizing intelligent 
UAV swarms because agents perceive an 
environment, act independently, and can 
achieve certain design goals. The system’s 
architecture is based on primary/ secondary 
agent classes, as shown in Table IV.

In 2015, the Naval Postgraduate School’s (NPS) 
[30] Advanced Robotic Laboratory Systems 
Engineering flew 50 autonomous drones 
all at once. This demonstration proved that 
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autonomous drone swarm technology is 
evolving at a daunting control. As academia, 
industry, and defense sectors are continuing 
to miniaturize sensors and improve swarm 
operating systems [31], the transition from 
demonstrations to tactical employment will 
be rapid. Authors in [30] comprehensively 
elaborated on drone swarm use in support 
of a marine infantry company. Simulations 
showed that the drone swarms allow the fire 
support team to engage and take on twice as 
many enemy fighters compared to today’s ISR 
drone available at the company level. For the 
hierarchical swarm, this amounts to up to 50% 
fewer casualties. Table V summarizes swarm 
technology related to drones.

In 2020 J Zhang et al. [32] proposed the following 
strategies: (1) Stage One, Generating Waypoints, 
this phase estimates the minimum number of 
needed waypoints for surveil- lance, (2) Stage 
Two, UAV Path Planning, the objective of path 
planning is to find an efficient trajectory for 
UAVs to visit waypoints while minimizing travel 
time in the presence of kinematic constraints. 
This work represents a variant of

TABLE V. SUMMARY TABLE DESCRIBING SWARM TECHNOLOGY     
AND ITS APPLICATIONS [30]

Aspects Description

Evolution of Swarm 
Technology

Enabled en masse deployment, 
rapid advancements in sensors 

and operating systems

Research Methods
Agent-based simulation, advanced 

experimental design, and parallel 
computing

Scenario

Focused clearance operation 
involving a marine infantry 

company fighting a peer adversary 
in rugged terrain

Findings

Fire support teams engaged twice 
as many enemies, Hierarchical 
swarms reduced U.S. casualties 

by up to 50%, Swarm volume and 
sensor overlap reduced sensor 

requirements

The Traveling Salesman Problem by using 
a clustered spiral-alternating algorithm 
combined with Be´zier curves for smooth 
paths. This method shortens the path and is 
appropriate for low-altitude surveillance.

In 2018 Carlos Paucar et al. [33] performed 

the Pre- Experimental “One Group Pre-test, 
Post-test” design to model the algorithm for 
communication in a system and the detection 
and tracking of a Parrot Bebop 2 drone. It 
utilizes Visual Servoing, popularly known as 
Vision-Based Robot Control, to track the 
movement of the drone with the help of 
a camera that feeds spatial data to perform 
an action. It is based on the methodology of 
Image-Based Visual Servoing, which estimates 
the error between current and desired image 
features, such as visual coordinates, lines, or 
regional moments. For precise target tracking 
using the Bebop 2 quad-copter, the sequence 
of operations in this process involves the 
following:

•	 Image acquisition

•	 Image pre-processing

•	 Noise reduction

•	 Segmentation

•	 Feature extraction

•	 Recognition and interpretation

In 2022, H Gupta et. al. [34]  conducted  research to  
evaluate and optimize DL-based approaches 
for traffic surveillance and monitoring of aerial 
imagery. To handle some existing problems 
such as model generalizability and high-class 
imbalance in datasets. Traditional object 
detection techniques such as background 
subtraction, frame difference, and SVMs are 
fast but poorly generalized. Deep Learning 
(DL), particularly with Convolutional Neural 
Networks (CNNs), has been shown to be highly 
effective in the detection of complex objects. 
Examples include SSD for human detection, 
YOLOv2 for high voltage line detection, YOLOv3 
for small object detection, Faster R- CNN, 
and YOLOv3 for vehicle detection. Although 
DL has shown excellent performance in UAV-
based traffic monitoring, challenges persist. 
For example, the performance of pre-trained 
models is poor on aerial data, which decreases 
practical applications. Also, existing models 
focus on detecting single components (e.g., 
cars), and complexity escalates significantly 
when detecting multiple components (e.g., 
pedestrians, vans, trucks, bicycles).
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In 2020 Dilshad et al. [17] proposed a strong 
framework underpinning Real-time moving 
object detection, tracking, and classification 
from UAV video streams. This model uses 
SqueezeNet, a lightweight and efficient DL 
network. The proposed model is more robust in 
challenging situations with higher accuracy in 
detection.

In 2018,  Chang et. al. [35] came up with a 
system for drone localization and tracking 
using acoustic arrays. The Localization Methods 
include the following:

•	 DOA: signal subspace decomposition 
techniques that are employed are 
multiple signal classification (MUSIC) and 
the incoherent signal-subspace method. 
However, they are susceptible to noise.

•	 Received Signal Strength (RSS): It is not 
that common for drone acoustic signals 
because the RSS values cannot be known 
beforehand during passive localization 
and also because environmental 
interference greatly affects the accuracy.

•	 Time Difference of Arrival (TDOA): 
It is calculated by the generalized 
cross-correlation function; it has low 
computational complexity and high 
accuracy and robustness. However, it 
suffers from (1) multi-path caused by the 
reflection of a signal and (2) poor Signal 
to Noise (SNR) due to the weak strength 
of drone acoustic signals.

Due to the shortcomings of TDOA estimation, 
an enhanced TDOA estimation has been 
proposed to enhance TDOA estimation by 
mitigating challenges such as multipath 
effects and low SNR. Moreover, a localization 
technique has been developed to accurately 
determine the position of a drone. Also, a 
drone tracking algorithm has been proposed 
to effectively track the drone and make proper 
predictions of its movement using Kalman 
Filter. Table VI summarizes the different drone 
localization and tracking algorithms used and 
proposed by Chang et al. [35]

IV.	 EXPLORATION ALGORITHMS

In 2019, J. Sa´nchez-Garc´ıa et al. [36] introduced 

the PSO-based algorithm in a study named 
dPSO-U for exploring disaster scenarios 
by UAVs integrated with a Delay-Tolerant 
Network (DTN) application. It was assessed by 
simulations to identify the effective settings and 
configurations to achieve the fastest search 
and find victims. The authors discovered that 
applying the dPSO-U algorithm was able to 
generate scenarios with varying numbers 
of victims and clusters and that the overall 
victim discovering rate was well over 79%. The 
algorithm was able to successfully converge 
multiple UAVs to victim clusters.

In 2022, Muhammad Arif Arshad et al. [37] 
presented the Drone-STM-ResNet architecture 
to improve the flight dynamics of drones in 
complex surroundings. It is based on the Split 
Transform Merge (STM), which is seamlessly 
embedded in a CNN. The authors focus on two 
main tasks: (1) predicting the current steering 
angle and (2) detecting an impending collision. 
The system produces 96.26% accuracy, 95.47% 
recall, and 91.95% F-score to develop precise 
predictions of steering angles and collision 
risks.

In 2024, Bilal Yousuf et al. [38] developed a 
new approach to identifying the number of 
fixed objects by a drone, which was unknown 
beforehand. The method unifies a multi-
target filter for target conditioning, the planner 
according to target exploration and target 
refinement, and the way to remove targets 
once they are identified. The system used is 
a quad-copter, the Parrot Mambo, equipped 
with an IMU, an ultrasound sensor, a height 
pressure sensor, and a downwards-facing 
camera for the estimation of optical flow, 
target detection, and localization. Real-time 
experiments showed that the drone was able 
to detect targets with moderately high RMSE of 
actual and estimated targets.

In 2024, Rupayan Das et al. [39] presented a 
novel Reinforcement Learning (RL) system for 
the autonomous drone delivery system. They 
used Unity’s ML-Agents toolkit to model a drone 
that flies around objects while picking targets. 
The training environment was designed with 
parameters for incentivizing drone actions: 
positive rewards for picking tar-gets and 
negative for hitting obstacles. The authors 
compared the performance of the curiosity-
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enhanced PPO algorithm with two baseline 
algorithms: standard PPO and DQN. The PPO 
with curiosity has a higher cumulative reward 
and a better exploration capacity than the 
other algorithms.

V.	 CONCLUSION

Drones have proven to be transformative 
tools in modern surveillance systems, 
offering unparalleled mobility, efficiency, and 
adaptability in comparison to traditional 
methods. Through this review paper, we 

analyzed existing survey papers, datasets, 
exploration, and surveillance techniques to 
provide a comprehensive understanding of 
the current state of drone-based surveillance. 
The findings reveal substantial advancements 
in object detection and tracking algorithms, 
which play a critical role in enhancing 
the performance of drones in diverse IoT 
applications. However, challenges such as 
varying spatial resolutions, object diversity, 
and scale in aerial imagery requires further 
research.

TABLE VI. SUMMARY OF DRONE LOCALIZATION AND TRACKING SYSTEM BY CHANG ET AL. [35]

Aspect Details

Methods for Localization

•	 DOA: Uses MUSIC; high accuracy, noise-prone.
Example: 
where Rn is the noise covariance matrix.

•	 RSS: Rarely used due to environmental interference and unknown 
RSS values.

•	 TDOA: Low complexity and robust.
∆tij = ti − tj,
where ∆tij is the time difference between receivers i and j.

Enhanced TDOA Estimation

•	 GCC-based a algorithm to enhance TDOA estimation:
 ,

where X1(f) and X2(f) are the Fourier transforms of the signals at two 
microphones.

Drone Localization
•	 Position determination using enhanced TDOA values:

p = arg minpΣ  i,j (||p − pi|| − ||p − pj|| − c∆tij )2,
where pi and pj are sensor positions, c is the speed of sound, and ∆tij 
is the TDOA.

Drone Tracking

•	 Kalman filter for refining positional estimates:
xk+1 = Axk + Buk + wk,
zk = Hxk + vk,
where xk is the state vector, zk is the measurement vector, and wk and vk are 
noise terms.
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