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 Reinforcement Learning for Autonomous 
Underwater Vehicles (AUVs): Navigating 

Challenges in Dynamic 
and Energy-Constrained Environments 

 ABSTRACT

Autonomous Underwater Vehicles (AUVs) are essential for underwater exploration, inspection, and 
environmental surveillance. Nevertheless, navigation, obstacle avoidance, and energy efficiency are 
greatly hindered by the ever-changing underwater environments. Reinforcement Learning (RL) has 
arisen as a revolutionary method for tackling these challenges. This paper examines significant progress 
in reinforcement learning algorithms, emphasizing their application in the training of autonomous 
underwater vehicles in both simulated and real-world environments. The review synthesizes findings 
from multiple studies, identifies gaps in existing research, and highlights the potential of algorithms 
such as Deep Deterministic Policy Gradient (DDPG) for continuous control tasks. This review offers an 
extensive examination of current methodologies, their constraints, and avenues for future investigation.

Key-words: Autonomous Underwater Vehicles, AUVs, Reinforcement Learning, RL, 
Navigation, Obstacle Avoidance, Energy Efficiency

Mohab M. Eweda 1, and Karim A. ElNaggar 2

1 Department of Electrical Engineering Upgrading Studies, Institute of Maritime 
Upgrading Studies, AASTMT Abukir Campus, Egypt.

2 Department of Electrical & Control Engineering, College of Engineering 
and Technology, AASTMT Abukir Campus, Egypt. 

 
mohabeweda@live.com, karimelnaggar726@yahoo.com

I.	 INTRODUCTION

Autonomous Underwater Vehicle (AUV) 
navigation is just one example of the complicated 
control problems that reinforcement learning 
(RL) has the potential to solve. Autonomous 
underwater vehicles (AUVs) play an essential 
role in many fields, such as oceanography, 
underwater infrastructure inspection, and 
search and rescue. However, there are 
certain obstacles specific to the underwater 
domain, such as energy limitations, poor 
communication, and unpredictable currents. 
When faced with such changing conditions, 

traditional control methods frequently fall short.  
In this literature review, the researchers look 
at how Deep Deterministic Policy Gradient 
(DDPG) and other RL algorithms have been 
applied to underwater robotics. The purpose 
of this review is to show how RL is useful for 
underwater navigation, point out where more 
research is needed, and fill in any gaps in the 
current literature. It is structured thematically 
and discusses topics such as RL theory 
foundations, AUV navigation applications, 
difficulties in dynamic environments, and 
potential future research directions.
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A.	 Related Work

A major development in reinforcement 
learning for continuous control tasks, Lillicrap et 
al. (2015) propose the DDPG algorithm [1]. Their 
actor-critic framework sets the foundation 
for its use in robotics by allowing RL agents to 
effectively operate in high-dimensional action 
spaces. Emphasizing the value of trial-and-
error learning for decision-making procedures 
[6], Sutton and Barto (1998) offer basic insights 
into RL. Building on these ideas, Zhang et al. 
(2021) use DDPG for underwater navigation to 
show its potential for exact control in virtual 
environments [7].

Other noteworthy contributions include 
the robotic arms and aerial drones using 
Q-learning and policy gradient techniques. 
For robotic manipulation, Levine et al. (2016), 
for example, present end-to-end training of 
visuomotor policies, so demonstrating the 
capacity of RL to solve challenging tasks [11]. 
Emphasizing its ability for handling continuous 
and high-dimensional control spaces, these 
studies prepared the groundwork for using RL 
in underwater robotics.

A safe and controlled environment is provided 
by simulated environments for the purpose 
of training AUVs with RL. To facilitate obstacle 
avoidance in AUVs, Smith et al. (2018) 
implement reward mechanisms [2]. Their 
research underscores the significance of 
reward functions that are well-designed for the 
purpose of facilitating the learning of policies. 
In the same vein, Garcia and Torres (2019) 
implement policies that are based on deep 
learning to improve the trajectory planning 
of AUVs [10]. Although these methods are 
successful in structured environments, they 
encounter difficulty in generalizing to dynamic 
and unpredictable underwater conditions.

The development of realistic underwater 
environments has been significantly facilitated 
by simulation tools like Gazebo and Unity. These 
platforms enable researchers to integrate 
physical factors such as turbulence, drag, 
and buoyancy, thereby rendering the training 
process more akin to real-world conditions. 
Nevertheless, the “sim-to-real” problem, which 
is frequently used to describe the disparity 

between simulation and reality, continues to 
be a significant obstacle.

Significant difficulties arise for AUV navigation 
in dynamic environments due to the presence 
of stochastic disturbances and unpredictable 
obstacles. In their study, Chen and Wang 
(2020) investigate how RL can be adjusted 
to suit actual oceanic circumstances, 
considering random environmental 
perturbations like turbulence and ocean 
currents [3]. Their research demonstrates the 
critical importance of stable policies that can 
withstand changing conditions over the long 
term. Regardless of these developments, their 
approaches are computationally heavy and 
necessitate a large amount of training data, 
neither of which is necessarily accessible.  
The use of adaptive reward systems to 
strengthen policies has been the subject of 
further research. To achieve a better balance 
between navigation efficiency and energy 
conservation, Singh et al. (2021) create a 
multi-objective RL framework. This framework 
showed improves adaptability in dynamic 
conditions [12]. Nevertheless, the question of 
how to achieve adaptation in real-time is still 
unanswered. 

For prolonged missions, AUVs must emphasize 
energy efficiency. Kumar et al. (2019) [4] 
concentrate on energy-efficient reinforcement 
learning policies for prolonged AUV missions. 
Their strategy markedly enhances operational 
efficiency by prioritizing energy consumption 
within the reward function. Their reliance on 
oversimplified energy models, however, renders 
them ineffective in practical applications. 
Brown et al. (2017) find that heuristic-based 
reward systems are not as effective as possible 
in addressing complex navigation tasks [9].  
Recent advancements in energy modeling 
have enabled more accurate predictions of 
battery efficiency and power consumption. 
The operational model of AUV is enhanced 
for energy efficiency via RL-based scheduling 
[13] following the integration of renewable 
energy sources, such as solar panels, by 
Zhang et al. (2022). These innovations 
demonstrate the potential for reinforcement 
learning to collaborate with advanced energy 
management systems. 
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A comparative analysis of reinforcement 
learning algorithms employed in autonomous 
underwater vehicle research uncovers 
significant trends and constraints. Zhang et 
al. (2021) emphasize the benefits of DDPG 
for continuous control, whereas Lee et al. 
(2020) illustrate the adaptability of Proximal 
Policy Optimization (PPO) in multi-agent 
environments [8]. Conversely, heuristic-based 
approaches, such as those suggested by 
Brown et al. (2017), are easier to implement 
but demonstrated insufficient adaptability 
to varied underwater conditions. Garcia and 
Torres (2019) underscore the significance of 
amalgamating deep learning methodologies 
with reinforcement learning for enhanced 
policy acquisition [10].

Among AUV navigators, DDPG is a preferred 
choice mostly because of its capacity to 
manage continuous action environments. 
Zhang et al. (2021) use it to maximize paths 
[7], so stressing its adaptability in simulated 
environments. Chen and Wang (2020) 
show its resilience when combined with 
domain randomization approaches [3] so 
allowing one to generalize across several 
underwater conditions. The researchers still 
have a lot to learn, though, about how to 
combine DDPG with multi-sensor data fusion, 
so enhancing their capacity to perceive 
and make decisions in their surroundings.  
Apart from navigation, DDPG has proved 
useful for environmental monitoring and 
object retrieval—two more AUV chores. Liu 
et al. (2022) notably improve coverage   
and   energy efficiency by bestocating 
underwater sensors with DDPG [14]. These 
applications show how adaptable   the 
method is   and    how    more    generally     
it  could  be  used in underwater robotics.  
DDPG and other algorithms have shown 
promise in addressing continuous control 
problems; hence, this review highlights the 
growing application of RL in AUV navigation. 
Two main gaps are poor policies for dynamic 
environments and insufficient connection with 
actual oceanic conditions. The aim of this work 
is to fill in these voids by using RL developments, 
hence more adaptive and efficient AUV 
navigation systems are sought for. 

II.	 METHODOLOGY

A.	 Problem Formulation

AUVs have become indispensable 
instruments in various marine activities, 
such as environmental assessment, search 
and rescue operations, and underwater 
investigation. These applications necessitate 
AUVs to autonomously navigate in dynamic, 
complex, and frequently hostile underwater 
environments. The autonomy of AUVs is 
impeded by several substantial challenges, 
including dynamic obstacles (e.g., moving 
objects and unpredictable ocean currents), 
energy constraints from onboard batteries, 
and the necessity for accurate goal-directed 
navigation in three-dimensional environments.

Due to high latency, limited communication 
bandwidth, and the difficulty in sensing 
accurate positional information, these 
challenges are made even worse in 
underwater environments. Robust control 
mechanisms and adaptive strategies are 
required to guarantee safe and efficient 
navigation due to these constraints. In order 
to make AUVs more efficient and dependable 
in real-world scenarios, it is essential to solve 
these problems. To teach AUVs to navigate 
autonomously, optimize energy consumption, 
and avoid obstacles in these types of settings, 
this research suggests an RL framework that 
makes use of the Deep Deterministic Policy 
Gradient (DDPG) algorithm.

B.	 Mathematical Representation

1.	 State space
The AUV state at any time ( t ), denoted as              
(st ∈ R7), is a multidimensional vector defined as:

                (1)

where ((x, y, z)) represents the AUV position in 
a 3D coordinate system. The orientation of the 
AUV is described by (roll, pitch, yaw) , and the 
battery level indicates the remaining energy. 
This state vector encapsulates the critical 
information required for navigation and 
decision-making.
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Additional environmental data include:

1.	 Positions of dynamic obstacles, 
represented as  , ( N ) where  is 
the number of obstacles.

2.	 Environmental disturbances, such as 
water currents, modeled as random 
forces acting on the AUV.

2.	 Action space
The action (at ∈ R6)  is  a continuous control input 
defined as:

  (2)

where (fx,fy,fz) represent the thrust 
forces in three spatial directions, and                                                                                
(roll_change, pitch_change, yaw_change) correspond 
to rotational adjustments in orientation. These 
actions are constrained to the physical limits 
of the AUV thrusters and rotational capabilities.

3.	 Transition function
The dynamics of the AUV, as implemented 
in the simulation environment, govern the 
transition from the current state ( st  ) to the next 
state . The transitions are described as:

                                         (3)

                                        (4)

                                         (5)

                                      (6)

                                (7)

                                      (8)

   (9)

4.	 Reward function
The reward function is designed to incentivize 
efficient and goal-oriented navigation while 
penalizing unsafe or inefficient behavior. It is 
expressed as:

                          (10)

where:

The parameters ( α = 10, β = 5, γ = 3, δ = 50, η = 2,         
λ = 8 ) are empirically tuned.

5.	 Objective
The reward function is designed to incentivize 
efficient and goal-oriented navigation while 
penalizing unsafe or inefficient behavior. It is 
expressed as:

                                                      (11)

where (γ ∈ (0,1))  is the discount factor, and ( T )  
is the episode length.

The objective of the reinforcement learning 
problem is to maximize the expected 
cumulative discounted reward:

                                                     (12)

where (γ ∈ (0,1))  is the discount factor, and ( T )  
is the episode length.

C.	 Proposed Model

The Deep Deterministic Policy Gradient (DDPG) 
algorithm is employed as the RL framework. 
DDPG is a model-free, off-policy algorithm that 
is well-suited for environments with continuous 
action spaces, such as AUV control. It combines 
actor-critic methods, where the actor learns a 
deterministic policy, and the critic evaluates 
the policy using a Q-value function.

1.	 Actor network
The actor network is a neural network that 
maps the current state (st ) to a continuous 
action (at ) . It comprises:

•	 Input: State vector (st ) .

•	 Hidden layers: Two fully connected layers 
with 256 units each and ReLU activation.
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•	 Output  layer: A tanh activation function 
to constrain actions within defined 
bounds.

2.	 Critic Network
The critic network estimates the Q-value              
(Q (st, at  )), which represents the expected return 
for a given state-action pair. It comprises:

•	 Inputs: State (st ) and action (at ).

•	 Hidden layers: Two fully connected layers 
with 256 units each and ReLU activation.

•	 Output layer: A linear activation to 
produce the scalar Q-value.

3.	 Training process
The training procedure involves episodic 
interactions between the AUV and the 
environment. The agent explores the 
environment using Ornstein-Uhlenbeck noise 
to encourage diverse actions. Parameter 
updates are based on the following rules:

 (13) 

III.	 RESULTS AND DISCUSSION

A.	 Training Performance

The training performance of the AUV is 
evaluated over multiple episodes, with key 
metrics such as episode rewards, position, 
orientation, and battery usage recorded. The 
following sections analyze the results obtained.

B.	 Episode Rewards

The episode rewards curve demonstrates 
the learning progression of the AUV. Initially, 
rewards fluctuate significantly, indicating 
exploration of the environment. Over time, the 
rewards stabilize, suggesting that the agent 
has learned a policy to navigate effectively 
while optimizing energy usage and avoiding 
obstacles.

Figure 1. Episode rewards over time

C.	 Trajectory Analysis

The trajectory of the AUV shows its path in 
the 3D environment, highlighting its ability to 
reach the target while avoiding obstacles. The 
trajectory demonstrates adaptive behavior in 
navigating through challenging configurations.

Figure 2. AUV trajectory and obstacles

D.	 Position and Orientation Analysis

The position and orientation plots provide 
insights into the control strategy adopted 
by the AUV. Smooth changes in position 
indicate efficient navigation, while orientation 
adjustments show precise control to maintain 
stability and alignment with the target 
direction.
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Figure 3. AUV position over time

Figure 4. AUV orientation over time

E.	  Battery Usage Analysis

The battery usage plot highlights the energy 
efficiency of the AUV. The gradual decrease 
in battery levels indicates optimized energy 
expenditure, with no sudden drops that would 
suggest inefficient or excessive actions.

Figure 5. AUV battery level over time

The  results demonstrate the effectiveness 
of the proposed reinforcement learning 
framework for AUV navigation. The agent 
successfully learned to balance goal-oriented 
navigation, obstacle avoidance, and energy 
optimization. Key strengths include the ability of 
the agent to adapt to dynamic environments 
and its efficient use of resources.

However, occasional deviations from optimal 
behavior, as indicated by spikes in the rewards, 
suggest areas for further improvement. Future 
work could explore alternative reward function 
designs and additional training scenarios to 
enhance robustness.

IV.	 CONCLUSION

This research illustrates the efficacy of 
reinforcement learning (RL), specifically 
the Deep Deterministic Policy Gradient 
(DDPG) algorithm, in tackling the obstacles 
of autonomous navigation for AUVs. The 
proposed approach effectively allowed 
the AUV to function in intricate, simulated 
underwater environments by concentrating on 
dynamic obstacle avoidance, energy-efficient 
path planning, and goal-oriented navigation.
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The findings underscore numerous significant 
accomplishments: 

The DDPG algorithm demonstrated 
significant efficacy in continuous control 
tasks, facilitating smooth, adaptive, 
and efficient trajectories for the AUV.  
The incorporation of a multi-objective reward 
function, which balances navigation, energy 
efficiency, and safety, markedly enhanced 
performance across various scenarios.  
The trained policy exhibited strong obstacle 
avoidance abilities and energy optimization, 
significantly decreasing collision rates 
and efficiently conserving battery usage.  
Notwithstanding these achievements, 
numerous limitations persist. The inconsistency 
of rewards and sporadic divergences from 
optimal trajectories suggest a necessity for 
enhanced refinement in the reward framework 
and training methodology. The sensitivity of 
the agent to environmental configurations 
indicates the necessity of integrating a 
broader range of training scenarios to enhance 
generalization. 

The ramifications of this research transcend 
simulated contexts. The framework establishes 
a basis for implementing RL-based navigation 
systems in practical AUVs, with prospective 
applications in environmental monitoring, 
underwater exploration, and search-and-
rescue operations. Nonetheless, closing the 
divide between simulation and reality is a 

vital focus for future research, necessitating 
progress in sim-to-real transfer techniques, 
resilient sensor integration, and adaptive 
policies proficient in managing real-time 
environmental disruptions. 

Prospective trajectories encompass: 

1.	 Evaluating and confirming the 
methodology in actual underwater 
settings to tackle practical issues 
like hardware limitations and sensor 
inaccuracies. 

2.	 Expanding the framework to encompass 
multi-agent systems for collaborative 
objectives. 

3.	 Implementing advanced energy 
management strategies, including 
renewable energy integration, to improve 
long-duration mission capabilities.

This study highlights the potential of 
reinforcement learning in enhancing the 
autonomy and operational efficiency of 
autonomous underwater vehicles, facilitating 
the development of more scalable and 
adaptive underwater robotics solutions. 
By overcoming current constraints and 
investigating prospective avenues, 
reinforcement learning can transform AUV 
navigation in both academia and the industry. 
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