The role of computational intelligence techniques in the advancements of solar photovoltaic systems for sustainable development: a review

Ranganai Tawanda Moyo, Mendon Dewa

Abstract


The use of computational intelligence (CI) in solar photovoltaic (SPV) systems has been on the rise due to the increasing computational power, advancements in power electronics and the availability of data generation tools. CI techniques have the potential to reduce energy losses, lower energy costs, and facilitate and accelerate the global adoption of solar energy. In this context, this review paper aims to investigate the role of CI techniques in the advancements of SPV systems. The study includes the involvement of CI techniques for parameter identification of solar cells, PV system sizing, maximum power point tracking (MPPT), forecasting, fault detection and diagnosis, inverter control and solar tracking systems. A performance comparison between CI techniques and conventional methods is also carried out to prove the importance of CI in SPV systems. The findings confirmed the superiority of CI techniques over conventional methods for every application studied and it can be concluded that the continuous improvements and involvement of these techniques can revolutionize the SPV industry and significantly increase the adoption of solar energy.

 

Received: 02 November 2022

Accepted: 25 November 2022

Published: 05 December 2022


Keywords


Solar photovoltaic systems, Computational Intelligence,Maximum power point tracking, Fault detection and diagnosis .

Full Text:

PDF

References


A. Fleming, R. M. Wise, H. Hansen, and

L. Sams, "The sustainable development goals: A case study," Marine Policy, vol. 86, pp. 94-103, December 2017, doi: 10.1016/j. marpol.2017.09.019.

A. Hassan, S. Z. Ilyas, A. Jalil, and Z. Ullah, “Monetization of the environmental damage caused by fossil fuels,” Environmental Science and Pollution Research, vol. 28, no. 17, 2021, doi: 10.1007/s11356-020-12205-w.

V. Sugumaran, T. v. Geetha, D. Manjula, and

H. Gopal, “Guest Editorial: Computational Intelligence and Applications,” Information Systems Frontiers, vol. 19, no. 5. 2017. doi: 10.1007/s10796-017-9794-7.

L. Vanneschi and M. Castelli, "Multilayer Perceptrons," in Encyclopedia of Bioinformatics and Computational Biology, S. Ranganathan, M. Gribskov, K. Nakai, and C. Schönbach Eds. Oxford: Academic Press, 2019, pp. 612-620.

S. A. Kalogirou, "Artificial neural networks in energy applications in buildings," International Journal of Low-Carbon Technologies, vol. 1, issue 3, pp. 201-216, July 2006, doi: 10.1093/ijlct/1.3.201.

T. P. Lillicrap, D. Cownden, D. B. Tweed, and

C. J. Akerman, “Random synaptic feedback weights support error backpropagation for deep learning,” Nat Commun, vol. 7, 2016, doi: 10.1038/ncomms13276.

E. M. Sharma, “A Survey in fuzzy Logic: An Introduction,” in The National Seminar on Recent Advanced in wireless Networks and Communication (NWNC), Ajmer, India, 2014.

M. Kochen, "APPLICATIONS OF FUZZY SETS IN PSYCHOLOGY," in Fuzzy Sets and their Applications to Cognitive and Decision Processes, L. A. Zadeh, K.-S. Fu, K. Tanaka, and

M. Shimura Eds. California: Academic Press, 1975, pp. 395-408.

A. Zardecki, “Fuzzy control for forecasting and pattern recognition in a time series,” in IEEE International Conference on Fuzzy Systems, 1994, vol. 3. doi: 10.1109/fuzzy.1994.343584.

S. X. Yang, H. Li, M. Q. H. Meng, and P. X. Liu, “An embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, 2004, doi: 10.1109/TFUZZ.2004.832524.

O. Castillo, L. Cervantes, J. Soria, M. Sanchez, and J. R. Castro, “A generalized type-2 fuzzy granular approach with applications to aerospace,” Inf Sci (N Y), vol. 354, 2016, doi: 10.1016/j.ins.2016.03.001.

Kaveh, P. Rahmani, and A. D. Eslamlou, “An efficient hybrid approach based on Harris Hawks optimization and imperialist competitive algorithm for structural optimization,” Eng Comput, vol. 38, 2022, doi: 10.1007/s00366-020-01258-7.

M. Mijwil, "Genetic Algorithm Optimization by Natural Selection," Masters, Department of Computer Scince, Baghdad University, Baghdad, Iraq, 2016.

L. G. Caldas and L. K. Norford, "A design optimization tool based on a genetic algorithm," Automation in construction, vol. 11, issue 2, pp.

- 184, February 2002, doi: 10.1016/S0926-5805(00)00096-0

L. Tian and C. Collins, “An effective robot trajectory planning method using a genetic algorithm,” Mechatronics, vol. 14, no. 5, 2004, doi: 10.1016/j.mechatronics.2003.10.001.

P. Y. Tabakov and S. Moyo, “A comparative analysis of evolutionary algorithms in the design of laminated composite structures,” Science and Engineering of Composite Materials, vol. 24, no. 1, 2017, doi: 10.1515/secm-2014-0385.

U. A. Salaria, M. I. Menhas, and S. Manzoor, “Quasi oppositional population based global particle swarm optimizer with inertial weights (qpgpso-w) for solving economic load dispatch problem,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3116066.

M. Jahandideh-Tehrani, O. Bozorg-Haddad, and H. A. Loáiciga, “Application of particle swarm optimization to water management: an introduction and overview,” Environmental Monitoring and Assessment, vol. 192, no. 5. 2020. doi: 10.1007/s10661-020-8228-z.

L. Jia and X. Zhao, “An Improved Particle Swarm Optimization (PSO) Optimized Integral Separation PID and its Application on Central Position Control System,” IEEE Sens J, vol. 19, no. 16, 2019, doi: 10.1109/JSEN.2019.2912849.

G. Rossides, B. Metcalfe, and A. Hunter, “Particle swarm optimization-an adaptation for the control of robotic swarms,” Robotics, vol. 10, no. 2, 2021, doi: 10.3390/robotics10020058.

B. Morales-Castañeda, D. Zaldívar, E. Cuevas, O. Maciel-Castillo, I. Aranguren, and F. Fausto, “An improved Simulated Annealing algorithm based on ancient metallurgy techniques,” Applied Soft Computing Journal, vol. 84, 2019, doi: 10.1016/j. asoc.2019.105761.

B. Rabbouch, F. Saâdaoui, and R. Mraihi, “Empirical-type simulated annealing for solving the capacitated vehicle routing problem,” Journal of Experimental and Theoretical Artificial Intelligence, vol. 32, no. 3, 2020, doi: 10.1080/0952813X.2019.1652356.

K. Yang and K. Cho, “Simulated annealing algorithm for wind farm layout optimization: A benchmark study,” Energies (Basel), vol. 12, no. 23, 2019, doi: 10.3390/en12234403.

M. Abd Elaziz, A. H. Elsheikh, D. Oliva, L. Abualigah, S. Lu, and A. A. Ewees, “Advanced Metaheuristic Techniques for Mechanical Design Problems: Review,” Archives of Computational Methods in Engineering, vol. 29, no. 1, 2022, doi: 10.1007/s11831-021-09589-4.

A. K. Abdulrazzaq, G. Bognár, and B. Plesz, "Accurate method for PV solar cells and modules parameters extraction using I–V curves," Journal of King Saud University - Engineering Sciences, July 2020, doi: https://doi.org/10.1016/j.jksues.2020.07.008.

M. Hejri, H. Mokhtari, M. R. Azizian, M. Ghandhari, and L. Söder, “On the parameter extraction of a five-parameter double-diode model of photovoltaic cells and modules,” IEEE J Photovolt, vol. 4, no. 3, 2014, doi: 10.1109/JPHOTOV.2014.2307161.

Laudani, F. Riganti Fulginei, and A. Salvini, “High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms,” Solar Energy, vol. 103, 2014, doi: 10.1016/j. solener.2014.02.014.

M. Hejri, H. Mokhtari, M. R. Azizian, and L. Söder, “An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules,” International Journal of Sustainable Energy, vol. 35, no. 4, 2016, doi: 10.1080/14786451.2013.863886.

P. J. Gnetchejo et al., “A Self-adaptive Algorithm with Newton Raphson Method for Parameters Identification of Photovoltaic Modules and Array,” Transactions on Electrical and Electronic Materials, vol. 22, no. 6, 2021, doi: 10.1007/s42341-021-00312-5.

N. Hamid, R. Abounacer, M. Idali Oumhand,

M. Feddaoui, and D. Agliz, “Parameters identification of photovoltaic solar cells and module using the genetic algorithm with convex combination crossover,” International Journal of Ambient Energy, vol. 40, no. 5, 2019, doi: 10.1080/01430750.2017.1421577.

R. ben Messaoud, “Extraction of uncertain parameters of single and double diode model of a photovoltaic panel using Salp Swarm algorithm,” Measurement (Lond), vol. 154, 2020, doi: 10.1016/j.measurement.2019.107446.

K. Yu, J. J. Liang, B. Y. Qu, X. Chen, and H. Wang, “Parameters identification of photovoltaic models using an improved JAYA optimization algorithm,” Energy Convers Manag, vol. 150, 2017, doi: 10.1016/j.enconman.2017.08.063.

K. M. El-Naggar, M. R. AlRashidi, M. F. AlHajri, and A. K. Al-Othman, “Simulated Annealing algorithm for photovoltaic parameters identification,” Solar Energy, vol. 86, no. 1, 2012, doi: 10.1016/j.solener.2011.09.032.

Askarzadeh and A. Rezazadeh, “Artificial bee swarm optimization algorithm for parameters identification of solar cell models,” Appl Energy, vol. 102, 2013, doi: 10.1016/j. apenergy.2012.09.052.

H. G. G. Nunes, J. A. N. Pombo, S. J. P. S. Mariano,

M. R. A. Calado, and J. A. M. Felippe de Souza, “A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization,” Appl Energy, vol. 211, 2018, doi: 10.1016/j.apenergy.2017.11.078.

M. Karamirad, M. Omid, R. Alimardani, H. Mousazadeh, and S. N. Heidari, “ANN based simulation and experimental verification of analytical four- and five-parameters models of PV modules,” Simul Model Pract Theory, vol. 34, 2013, doi: 10.1016/j.simpat.2013.02.001.

H. Chen, S. Jiao, M. Wang, A. A. Heidari, and X. Zhao, “Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts,” J Clean Prod, vol. 244, 2020, doi: 10.1016/j. jclepro.2019.118778.

F. Dkhichi, B. Oukarfi, A. Fakkar, and N. Belbounaguia, “Parameter identification of solar cell model using Levenberg-Marquardt algorithm combined with simulated annealing,” Solar Energy, vol. 110, 2014, doi: 10.1016/j. solener.2014.09.033.

M. A. Mughal, Q. Ma, and C. Xiao, “Photovoltaic cell parameter estimation using hybrid particle swarm optimization and simulated annealing,” Energies (Basel), vol. 10, no. 8, 2017, doi: 10.3390/en10081213.

E. Kaplani and S. Kaplanis, “A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations,” Appl Energy, vol. 97, 2012, doi: 10.1016/j. apenergy.2011.12.016.

C. V. T. Cabral, D. O. Filho, A. S. A. C. Diniz, J. H. Martins, O. M. Toledo, and L. de V. B. Machado Neto, “A stochastic method for stand-alone photovoltaic system sizing,” Solar Energy, vol. 84, no. 9, 2010, doi: 10.1016/j.solener.2010.06.006.

Mellit, S. A. Kalogirou, and M. Drif, “Application of neural networks and genetic algorithms for sizing of photovoltaic systems,” Renew Energy, vol. 35, no. 12, 2010, doi: 10.1016/j. renene.2010.04.017.

M. Benghanem and A. Mellit, “Radial Basis Function Network-based prediction of global solar radiation data: Application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia,” Energy, vol. 35, no. 9, 2010, doi: 10.1016/j.energy.2010.05.024.

S. Salman, X. Ai, and Z. Wu, “Design of a P-&-O algorithm based MPPT charge controller for a stand-alone 200W PV system,” Protection and Control of Modern Power Systems, vol. 3, no. 1, 2018, doi: 10.1186/s41601-018-0099-8.

M. Abdel-Salam, M. T. El-Mohandes, and M. Goda, “An improved perturb-and-observe based MPPT method for PV systems under varying irradiation levels,” Solar Energy, vol. 171, 2018, doi: 10.1016/j.solener.2018.06.080.

V. R. Kota and M. N. Bhukya, “A novel linear tangents based P&O scheme for MPPT of a PV system,” Renewable and Sustainable Energy Reviews, vol. 71. 2017. doi: 10.1016/j. rser.2016.12.054.

J. S. Kumari, D. C. S. Babu, and A. K. Babu, “Design and analysis of P&O and IP&O MPPT techniques for photovoltaic system,” International Journal of Modern Engineering Research, vol. 2, no. 4, 2012.

N. E. Zakzouk, M. A. Elsaharty, A. K. Abdelsalam, A. A. Helal, and B. W. Williams, “Improved performance low-cost incremental conductance PV MPPT technique,” IET Renewable Power Generation, vol. 10, no. 4, 2016, doi: 10.1049/iet-rpg.2015.0203.

P. Sivakumar, A. Abdul Kader, Y. Kaliavaradhan, and M. Arutchelvi, “Analysis and enhancement of PV efficiency with incremental conductance MPPT technique under non-linear loading conditions,” Renew Energy, vol. 81, 2015, doi: 10.1016/j.renene.2015.03.062.

D. Baimel, R. Shkoury, L. Elbaz, S. Tapuchi, and N. Baimel, “Novel optimized method for maximum power point tracking in PV systems using Fractional Open Circuit Voltage technique,” in 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016, 2016. doi: 10.1109/SPEEDAM.2016.7525984.

Sandali, T. Oukhoya, and A. Cheriti, “Modeling and design of PV grid connected system using a modified fractional short-circuit current MPPT,” in Proceedings of 2014 International Renewable and Sustainable Energy Conference, IRSEC 2014, 2014. doi: 10.1109/IRSEC.2014.7059859.

U. Yilmaz, A. Kircay, and S. Borekci, “PV system fuzzy logic MPPT method and PI control as a charge controller,” Renewable and Sustainable Energy Reviews, vol. 81. 2018. doi: 10.1016/j. rser.2017.08.048.

C. L. Liu, J. H. Chen, Y. H. Liu, and Z. Z. Yang, “An asymmetrical fuzzy-logic-control-based MPPT algorithm for photovoltaic systems,” Energies (Basel), vol. 7, no. 4, 2014, doi: 10.3390/en7042177.

S. Ozdemir, N. Altin, and I. Sefa, “Fuzzy logic based MPPT controller for high conversion ratio quadratic boost converter,” Int J Hydrogen Energy, vol. 42, no. 28, 2017, doi: 10.1016/j. ijhydene.2017.02.191.

S. Chahar and D. Yadav, "Performance Analysis of Soft Computing ANN Based MPPT Technique for Solar PV Generator," in 2022 IEEE World Conference on Applied Intelligence and Computing (AIC), Sonbhadra, India, 2022: IEEE, pp. 98-102.

S. R. Kiran, C. H. Basha, V. P. Singh, C. Dhanamjayulu, B. R. Prusty, and B. Khan, "Reduced Simulative Performance Analysis of Variable Step Size ANN Based MPPT Techniques for Partially Shaded Solar PV Systems," IEEE Access, vol. 10, issue 1, pp. 48875-48889, 2022, doi: 10.1109/ACCESS.2022.3172322.

R. Divyasharon, R. Narmatha Banu, and D. Devaraj, “Artificial Neural Network based MPPT with CUK Converter Topology for PV Systems under Varying Climatic Conditions,” in IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, INCOS 2019, 2019. doi: 10.1109/INCOS45849.2019.8951321.

R. Ramaprabha, V. Gothandaraman, K. Kanimozhi, R. Divya, and B. L. Mathur, “Maximum power point tracking using GA-optimized artificial neural network for solar PV system,” in 2011 1st International Conference on Electrical Energy Systems, ICEES 2011, 2011. doi: 10.1109/ICEES.2011.5725340.

S. Mohanty, B. Subudhi, and P. K. Ray, "A grey wolf-assisted perturb & observe MPPT algorithm for a PV system," IEEE Transactions on Energy Conversion, vol. 32, issue. 1, pp. 340-347, December 2016, doi: 10.1109/TEC.2016.2633722.

R. T. Moyo, P. Y. Tabakov, and S. Moyo, "Comparative analysis of different computational intelligence techniques for maximum power point tracking of PV systems," Journal of Sustainable Energy, vol. 13, issue 1, pp. 12-22, June 2022, doi: 10.5281/ZENODO.7139169.

N. Priyadarshi, S. Padmanaban, J. B. Holm-Nielsen, F. Blaabjerg, and M. S. Bhaskar, “An Experimental Estimation of Hybrid ANFIS-PSO-Based MPPT for PV Grid Integration under Fluctuating Sun Irradiance,” IEEE Syst J, vol. 14, no. 1, 2020, doi: 10.1109/JSYST.2019.2949083.

S. Daraban, D. Petreus, and C. Morel, “A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading,” Energy, vol. 74, no. C, 2014, doi: 10.1016/j.energy.2014.07.001.

Bugała et al., “Short-term forecast of generation of electric energy in photovoltaic systems,” Renewable and Sustainable Energy Reviews, vol. 81. 2018. doi: 10.1016/j.rser.2017.07.032.

Z. Dong, D. Yang, T. Reindl, and W. M. Walsh, “Short-term solar irradiance forecasting using exponential smoothing state space model,” Energy, vol. 55, 2013, doi: 10.1016/j. energy.2013.04.027.

S. M. J. Jalali, S. Ahmadian, A. Kavousi-Fard,

A. Khosravi, and S. Nahavandi, “Automated Deep CNN-LSTM Architecture Design for Solar Irradiance Forecasting,” IEEE Trans Syst Man Cybern Syst, vol. 52, no. 1, 2022, doi: 10.1109/TSMC.2021.3093519.

Alzahrani, P. Shamsi, C. Dagli, and M. Ferdowsi, “Solar Irradiance Forecasting Using Deep Neural Networks,” in Procedia Computer Science, 2017, vol. 114. doi: 10.1016/j.procs.2017.09.045.

S. Ghimire, R. C. Deo, N. Raj, and J. Mi, “Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms,” Appl Energy, vol. 253, 2019, doi: 10.1016/j.apenergy.2019.113541.

K. P. Lin and P. F. Pai, “Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression,” J Clean Prod, vol. 134, no. Part B, 2016, doi: 10.1016/j.jclepro.2015.08.099.

D. P. Larson, L. Nonnenmacher, and C. F. M. Coimbra, “Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest,” Renew Energy, vol. 91, 2016, doi: 10.1016/j.renene.2016.01.039.

H. T. C. Pedro and C. F. M. Coimbra, “Assessment of forecasting techniques for solar power production with no exogenous inputs,” Solar Energy, vol. 86, no. 7, 2012, doi: 10.1016/j. solener.2012.04.004.

Dairi, F. Harrou, Y. Sun, and S. Khadraoui, “Short-term forecasting of photovoltaic solar power production using variational auto-encoder driven deep learning approach,” Applied Sciences (Switzerland), vol. 10, no. 23, 2020, doi: 10.3390/app10238400.

A. A. du Plessis, J. M. Strauss, and A. J. Rix, “Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour,” Appl Energy, vol. 285, 2021, doi: 10.1016/j.apenergy.2020.116395.

E. Garoudja, A. Chouder, K. Kara, and S. Silvestre, “An enhanced machine learning based approach for failures detection and diagnosis of PV systems,” Energy Convers Manag, vol. 151, 2017, doi: 10.1016/j.enconman.2017.09.019.

K. Dhibi, M. Mansouri, K. Bouzrara, H. Nounou, and M. Nounou, “An Enhanced Ensemble Learning-Based Fault Detection and Diagnosis for Grid-Connected PV Systems,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3128749.

M. Hajji et al., “Multivariate feature extraction based supervised machine learning for fault detection and diagnosis in photovoltaic systems,” Eur J Control, vol. 59, 2021, doi: 10.1016/j. ejcon.2020.03.004.

F. Harrou, Y. Sun, B. Taghezouit, A. Saidi, and M. E. Hamlati, “Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches,” Renew Energy, vol. 116, 2018, doi: 10.1016/j.renene.2017.09.048.

R. Benkercha and S. Moulahoum, "Fault detection and diagnosis based on C4. 5 decision tree algorithm for grid connected PV system," Solar Energy, vol. 173, issue 1, pp. 610-634, October 2018, doi: 10.1016/j.solener.2018.07.089.

C. B. Jones, J. S. Stein, S. Gonzalez, and B. H. King, “Photovoltaic system fault detection and diagnostics using Laterally Primed Adaptive Resonance Theory neural network,” in 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015, 2015. doi: 10.1109/PVSC.2015.7355834.

Dhoke, R. Sharma, and T. K. Saha, “An approach for fault detection and location in solar PV systems,” Solar Energy, vol. 194, 2019, doi: 10.1016/j.solener.2019.10.052.

S. R. Madeti and S. N. Singh, “Modeling of PV system based on experimental data for fault detection using kNN method,” Solar Energy, vol. 173, 2018, doi: 10.1016/j.solener.2018.07.038.

W. He, D. Yin, K. Zhang, X. Zhang, and J. Zheng, “Fault detection and diagnosis method of distributed photovoltaic array based on fine-tuning naive bayesian model,” Energies (Basel), vol. 14, no. 14, 2021, doi: 10.3390/en14144140.

M. Dhimish, V. Holmes, B. Mehrdadi, and M. Dales, “Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection,” Renew Energy, vol. 117, 2018, doi: 10.1016/j. renene.2017.10.066.

C. Cecati, F. Ciancetta, and P. Siano, “A multilevel inverter for photovoltaic systems with fuzzy logic control,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, 2010, doi: 10.1109/TIE.2010.2044119.

J. Gupta, M. K. Singla, P. Nijhawan, S. Ganguli, and S. S. Rajest, “An IoT-Based Controller Realization for PV System Monitoring and Control,” in EAI/Springer Innovations in Communication and Computing, 2020. doi: 10.1007/978-3-030-44407-5_13.

S. Ozdemir, N. Altin, and I. Sefa, “Single stage three level grid interactive MPPT inverter for PV systems,” Energy Convers Manag, vol. 80, 2014, doi: 10.1016/j.enconman.2014.01.048.

M. Shahparasti, A. Sadeghi Larijani, A. Fatemi,

A. Yazdian Varjani, and M. Mohammadian, “Quasi Z-source inverter for photovoltaic system connected to single phase AC grid,” in PEDSTC 2010 - 1st Power Electronics and Drive Systems and Technologies Conference, 2010. doi: 10.1109/PEDSTC.2010.5471773.

N. Kumar, T. K. Saha, and J. Dey, “Sliding-Mode Control of PWM Dual Inverter-Based Grid-Connected PV System: Modeling and Performance Analysis,” IEEE J Emerg Sel Top Power Electron, vol. 4, no. 2, 2016, doi: 10.1109/JESTPE.2015.2497900.

N. Mahmud, A. Zahedi, and A. Mahmud, “A Cooperative Operation of Novel PV Inverter Control Scheme and Storage Energy Management System Based on ANFIS for Voltage Regulation of Grid-Tied PV System,” IEEE Trans Industr Inform, vol. 13, no. 5, 2017, doi: 10.1109/TII.2017.2651111.

N. A. Rahim, K. Chaniago, and J. Selvaraj, “Single-phase seven-level grid-connected inverter for photovoltaic system,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, 2011, doi: 10.1109/TIE.2010.2064278.

N. Kumar, T. K. Saha, and J. Dey, “Multilevel Inverter (MLI)-Based Stand-Alone Photovoltaic System: Modeling, Analysis, and Control,” IEEE Syst J, vol. 14, no. 1, 2020, doi: 10.1109/JSYST.2019.2900485.

M. T. A. Khan, S. M. S. Tanzil, R. Rahman, and

S. M. S. Alam, “Design and construction of an automatic solar tracking system,” in ICECE 2010

- 6th International Conference on Electrical and Computer Engineering, 2010. doi: 10.1109/ICELCE.2010.5700694.

T. S. Zhan, W. M. Lin, M. H. Tsai, and G. S. Wang, “Design and implementation of the dual-axis solar tracking system,” in Proceedings

- International Computer Software and Applications Conference, 2013. doi: 10.1109/COMPSAC.2013.46.

C. Jamroen, C. Fongkerd, W. Krongpha,

P. Komkum, A. Pirayawaraporn, and N. Chindakham, “A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis,” Appl Energy, vol. 299, 2021, doi: 10.1016/j.apenergy.2021.117295.

C. H. Huang, H. Y. Pan, and K. C. Lin, “Development of intelligent fuzzy controller for a two-axis solar tracking system,” Applied Sciences, vol. 6, no. 5, 2016, doi: 10.3390/app6050130.

B. K. S. Vastav, S. Nema, P. Swarnkar, and D. Rajesh, “Automatic solar tracking system using DELTA PLC,” in International Conference on Electrical Power and Energy Systems, ICEPES 2016, 2017. doi: 10.1109/ICEPES.2016.7915899.




DOI: http://dx.doi.org/10.21622/resd.2022.08.2.052

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ranganai Tawanda Moyo, Mendon Dewa

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Renewable Energy and Sustainable Development

E-ISSN: 2356-8569

P-ISSN: 2356-8518

 

Published by:

Academy Publishing Center (APC)

Arab Academy for Science, Technology and Maritime Transport (AASTMT)

Alexandria, Egypt

resd@aast.edu