A review on solar dryers to evaluate the performance and drying characteristics for agricultural products
Abstract
In this paper, an attempt has been made to review the various researches on drying agricultural products using solar radiation in a self-consistent means in the areas of performance analysis, energy, and exergy analysis, experimental investigation, and optimization of solar dryers. Various simulation models to estimate the thermal performance and drying characteristics of different types of solar collectors have been presented. Some of the recent developments in solar drying systems are presented. Further, it is found that the dryers are classified as integral type, distributed type, and mixed-mode. Previous research by different authors proved that the drying period of agricultural products was considerably decreased by solar drying. It is concluded that this paper will be very much supportive for the researchers, academicians, scientists, and policymakers in the area of solar dryers. It is also suggested that a standard test should be developed for solar drying systems.
Received: 30 September 2024
Accepted: 07 January 2025
Published: 19 January 2025
Keywords
Full Text:
PDFReferences
O. V. Ekechukwu, “Review of solar-energy drying systems I: an overview of drying principles and theory,” Energy Convers Manag, vol. 40, no. 6, pp. 593–613, Apr. 1999, doi: 10.1016/S0196-8904(98)00092-2.
A. R. Womac, F. D. Tompkins, and K. E. DeBusk, “Evaluation of solar air heaters for crop drying,” Energy in Agriculture, vol. 4, no. C, 1985, doi: 10.1016/0167-5826(85)90013-0.
V. K. Sharma, S. Sharma, R. A. Ray, and H. P. Garg, “Design and performance studies of a solar dryer suitable for rural applications,” Energy Convers Manag, vol. 26, no. 1, 1986, doi: 10.1016/0196-8904(86)90040-3.
R. Henriksson and G. Gustafsson, “Use of solar collectors for drying agricultural crops and for heating farm buildings,” Energy in Agriculture, vol. 5, no. 2, 1986, doi: 10.1016/0167-5826(86)90014-8.
G. O. I. Ezeike, “Development and performance of a triple-pass solar collector and dryer system,” Energy in Agriculture, vol. 5, no. 1, 1986, doi: 10.1016/0167-5826(86)90002-1.
S. K. Das and Y. Kumar, “Design and performance of a solar dryer with vertical collector chimney suitable for rural application,” Energy Convers Manag, vol. 29, no. 2, 1989, doi: 10.1016/0196-8904(89)90021-6.
S. A. Lawrence, A. Pole, and G. N. Tiwari, “Performance of a solar crop dryer under PNG climatic conditions,” Energy Convers Manag, vol. 30, no. 4, 1990, doi: 10.1016/0196-8904(90)90035-W.
S. Sharma, V. K. Sharma, R. Jha, and R. A. Ray, “Evaluation of the performance of a cabinet type solar dryer,” Energy Convers Manag, vol. 30, no. 2, 1990, doi: 10.1016/0196-8904(90)90016-R.
A. Arata and V. K. Sharma, “Performance evaluation of solar assisted dryers for low temperature drying applications-I. Plants description,” Renew Energy, vol. 1, no. 5–6, 1991, doi: 10.1016/0960-1481(91)90020-P.
V. K. Sharma, A. Colangelo, and G. Spagna, “Investigation of an indirect type multi-shelf solar fruit and vegetable dryer,” Renew Energy, vol. 2, no. 6, 1992, doi: 10.1016/0960-1481(92)90021-T.
M. W. Bassey, P. H. Oosthuizen, and J. Sarr, “Using heated chimneys and reduced collector air gap height to improve the performance of indirect passive solar dryers,” Renew Energy, vol. 4, no. 2, 1994, doi: 10.1016/0960-1481(94)90002-7.
V. K. Sharma, A. Colangelo, and G. Spagna, “Experimental investigation of different solar dryers suitable for fruit and vegetable drying,” Renew Energy, vol. 6, no. 4, 1995, doi: 10.1016/0960-1481(94)00075-H.
C. Tiris, M. Tiris, and I. Dincer, “Investigation of the thermal efficiencies of a solar dryer,” Energy Convers Manag, vol. 36, no. 3, 1995, doi: 10.1016/0196-8904(94)00051-Z.
O. V. Ekechukwu and B. Norton, “Design and measured performance of a solar chimney for natural-circulation solar-energy dryers,” Renew Energy, vol. 10, no. 1, 1997, doi: 10.1016/0960-1481(96)00005-5.
O. V. Ekechukwu and B. Norton, “Effects of seasonal weather variations on the measured performance of a natural-circulation solar-energy tropical crop dryer,” Energy Convers Manag, vol. 39, no. 12, 1998, doi: 10.1016/S0196-8904(97)10057-7.
D. B. Ampratwum and A. S. S. Dorvlo, “Evaluation of a Solar Cabinet Dryer as an Air-Heating System,” Appl Energy, vol. 59, no. 1, 1998, doi: 10.1016/S0306-2619(97)00043-3.
M. Condorí and L. Saravia, “The performance of forced convection greenhouse driers,” Renew Energy, vol. 13, no. 4, 1998, doi: 10.1016/S0960-1481(98)00030-5.
K. S. Ong, “Solar dryers in the Asia-Pacific region,” Renew Energy, vol. 16, no. 1–4, 1999, doi: 10.1016/s0960-1481(98)00279-1.
S. Öztekin, A. Başçetinçelik, and Y. Soysal, “Crop drying programme in Turkey,” Renew Energy, vol. 16, no. 1-4–4 pt 2, 1999, doi: 10.1016/S0960-1481(98)00282-1.
S. I. Anwar and G. N. Tiwari, “Evaluation of convective heat transfer coefficient in crop drying under open sun drying conditions,” Energy Convers Manag, vol. 42, no. 5, 2001, doi: 10.1016/S0196-8904(00)00065-0.
N. Rahman and S. Kumar, “Evaluation of convective heat transfer coefficient during drying of shrinking bodies,” Energy Convers Manag, vol. 47, no. 15–16, 2006, doi: 10.1016/j.enconman.2005.10.025.
A. Sreekumar, P. E. Manikantan, and K. P. Vijayakumar, “Performance of indirect solar cabinet dryer,” Energy Convers Manag, vol. 49, no. 6, 2008, doi: 10.1016/j.enconman.2008.01.005.
B. M. A. Amer, M. A. Hossain, and K. Gottschalk, “Design and performance evaluation of a new hybrid solar dryer for banana,” Energy Convers Manag, vol. 51, no. 4, 2010, doi: 10.1016/j.enconman.2009.11.016.
J. Stiling et al., “Performance evaluation of an enhanced fruit solar dryer using concentrating panels,” Energy for Sustainable Development, vol. 16, no. 2, 2012, doi: 10.1016/j.esd.2012.01.002.
W. Chramsa-Ard, S. Jindaruksa, C. Sirisumpunwong, and S. Sonsaree, “Performance evaluation of the desiccant bed solar dryer,” Energy Procedia, vol. 34, 2013, doi: 10.1016/j.egypro.2013.06.747.
A. K. Srivastava, S. K. Shukla, and S. Mishra, “Evaluation of solar dryer/air heater performance and the accuracy of the result,” in Energy Procedia, 2014. doi: 10.1016/j.egypro.2014.10.244.
A. Fudholi, K. Sopian, M. A. Alghoul, M. H. Ruslan, and M. Y. Othman, “Performances and improvement potential of solar drying system for palm oil fronds,” Renew Energy, vol. 78, 2015, doi: 10.1016/j.renene.2015.01.050.
S. Misha, S. Mat, M. H. Ruslan, E. Salleh, and K. Sopian, “Performance of a solar assisted solid desiccant dryer for kenaf core fiber drying under low solar radiation,” Solar Energy, vol. 112, 2015, doi: 10.1016/j.solener.2014.11.029.
D. Jain and P. Tewari, “Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage,” Renew Energy, vol. 80, 2015, doi: 10.1016/j.renene.2015.02.012.
S. Misha, S. Mat, M. H. Ruslan, E. Salleh, and K. Sopian, “Performance of a solar-assisted solid desiccant dryer for oil palm fronds drying,” Solar Energy, vol. 132, 2016, doi: 10.1016/j.solener.2016.03.041.
M. Condorí, G. Duran, R. Echazú, and F. Altobelli, “Semi-industrial drying of vegetables using an array of large solar air collectors,” Energy for Sustainable Development, vol. 37, 2017, doi: 10.1016/j.esd.2016.11.004.
V. Tomar, G. N. Tiwari, and B. Norton, “Solar dryers for tropical food preservation: Thermophysics of crops, systems and components,” Solar Energy, vol. 154, 2017, doi: 10.1016/j.solener.2017.05.066.
K. Natarajan, S. S. Thokchom, T. N. Verma, and P. Nashine, “Convective solar drying of Vitis vinifera & Momordica charantia using thermal storage materials,” Renew Energy, vol. 113, 2017, doi: 10.1016/j.renene.2017.06.096.
M. W. Kareem, K. Habib, M. H. Ruslan, and B. B. Saha, “Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa),” Renew Energy, vol. 113, 2017, doi: 10.1016/j.renene.2016.12.099.
D. V. N. Lakshmi, P. Muthukumar, A. Layek, and P. K. Nayak, “Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage,” Renew Energy, vol. 120, 2018, doi: 10.1016/j.renene.2017.12.053.
M. Islam, M. I. Islam, M. Tusar, and A. H. Limon, “Effect of cover design on moisture removal rate of a cabinet type solar dryer for food drying application,” in Energy Procedia, 2019. doi: 10.1016/j.egypro.2019.02.181.
Y. Bahammou, H. Lamsyehe, M. Kouhila, A. Lamharrar, A. Idlimam, and N. Abdenouri, “Valorization of co-products of sardine waste by physical treatment under natural and forced convection solar drying,” Renew Energy, vol. 142, 2019, doi: 10.1016/j.renene.2019.04.012.
L. V. Erick César, C. M. Ana Lilia, G. V. Octavio, P. F. Isaac, and B. O. Rogelio, “Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum),” Renew Energy, vol. 147, 2020, doi: 10.1016/j.renene.2019.09.018.
M. R. Nukulwar and V. B. Tungikar, “A review on performance evaluation of solar dryer and its material for drying agricultural products,” in Materials Today: Proceedings, 2021. doi: 10.1016/j.matpr.2020.08.354.
M. Leilayi, A. Arabhosseini, M. H. Kianmehr, and H. Amiri, “Design, construction and performance evaluation of paddy rice solar drum dryer equipped with perforated drum,” Clean Energy, vol. 7, no. 2, 2023, doi: 10.1093/ce/zkac074.
V. Goel et al., “Solar drying systems for Domestic/Industrial Purposes: A State-of-Art review on topical progress and feasibility assessments,” 2024. doi: 10.1016/j.solener.2023.112210.
S. Nayak and G. N. Tiwari, “Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse,” Energy Build, vol. 40, no. 11, 2008, doi: 10.1016/j.enbuild.2008.05.007.
A. Akbulut and A. Durmuş, “Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer,” Energy, vol. 35, no. 4, 2010, doi: 10.1016/j.energy.2009.12.028.
T. Y. Tunde-Akintunde and G. O. Ogunlakin, “Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin,” Energy Convers Manag, vol. 52, no. 2, 2011, doi: 10.1016/j.enconman.2010.09.005.
A. Boulemtafes-Boukadoum and A. Benzaoui, “Energy and exergy analysis of solar drying process of mint,” in Energy Procedia, 2011. doi: 10.1016/j.egypro.2011.05.067.
A. Fudholi, K. Sopian, M. Y. Othman, and M. H. Ruslan, “Energy and exergy analyses of solar drying system of red seaweed,” Energy Build, vol. 68, no. PARTA, 2014, doi: 10.1016/j.enbuild.2013.07.072.
A. El Khadraoui, S. Bouadila, S. Kooli, A. Farhat, and A. Guizani, “Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM,” J Clean Prod, vol. 148, 2017, doi: 10.1016/j.jclepro.2017.01.149.
M. C. Ndukwu, L. Bennamoun, F. I. Abam, A. B. Eke, and D. Ukoha, “Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium,” Renew Energy, vol. 113, 2017, doi: 10.1016/j.renene.2017.06.097.
M. Aktaş, A. Khanlari, A. Amini, and S. Şevik, “Performance analysis of heat pump and infrared–heat pump drying of grated carrot using energy-exergy methodology,” Energy Convers Manag, vol. 132, 2017, doi: 10.1016/j.enconman.2016.11.027.
S. Tiwari and G. N. Tiwari, “Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector,” Energy, vol. 128, 2017, doi: 10.1016/j.energy.2017.04.022.
A. K. Karthikeyan and S. Murugavelh, “Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer,” Renew Energy, vol. 128, 2018, doi: 10.1016/j.renene.2018.05.061.
D. Yogendrasasidhar and Y. Pydi Setty, “Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer,” Energy, vol. 151, 2018, doi: 10.1016/j.energy.2018.03.089.
P. S. Chauhan, A. Kumar, and C. Nuntadusit, “Heat transfer analysis of PV integrated modified greenhouse dryer,” Renew Energy, vol. 121, 2018, doi: 10.1016/j.renene.2018.01.017.
C. Tunckal and İ. Doymaz, “Performance analysis and mathematical modelling of banana slices in a heat pump drying system,” Renew Energy, vol. 150, 2020, doi: 10.1016/j.renene.2020.01.040.
V. Reddy Mugi and V. P. Chandramohan, “Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: A comparative assessment of forced and natural convection,” Thermal Science and Engineering Progress, vol. 24, 2021, doi: 10.1016/j.tsep.2021.100950.
P. Dutta, P. Pratim, and P. Kalita, “Energy and exergy study of a novel multi-mode solar dryer without and with sensible heat storage for Garcinia pedunculata,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 45, no. 3, 2023, doi: 10.1080/15567036.2023.2234325.
V. K. Sharma, A. Colangelo, and G. Spagna, “Experimental performance of an indirect type solar fruit and vegetable dryer,” Energy Convers Manag, vol. 34, no. 4, 1993, doi: 10.1016/0196-8904(93)90114-P.
V. K. Sharma, A. Colangelo, and G. Spagna, “Experimental investigation of different solar dryers suitable for fruit and vegetable drying,” Renew Energy, vol. 6, no. 4, pp. 413–424, Jun. 1995, doi: 10.1016/0960-1481(94)00075-H.
P. Schirmer, S. Janjai, A. Esper, R. Smitabhindu, and W. Mühlbauer, “Experimental investigation of the performance of the solar tunnel dryer for drying bananas,” Renew Energy, vol. 7, no. 2, 1996, doi: 10.1016/0960-1481(95)00138-7.
O. V. Ekechukwu and B. Norton, “Experimental studies of integral-type natural-circulation solar-energy tropical crop dryers,” Energy Convers Manag, vol. 38, no. 14, 1997, doi: 10.1016/S0196-8904(96)00102-1.
A. Hachemi, B. Abed, and A. Asnoun, “Theoretical and experimental study of solar dryer,” Renew Energy, vol. 13, no. 4, 1998, doi: 10.1016/S0960-1481(98)00022-6.
A. Esper and W. Mühlbauer, “Solar drying - An effective means of food preservation,” Renew Energy, vol. 15, no. 1–4, 1998, doi: 10.1016/s0960-1481(98)00143-8.
S. I. Anwar and G. N. Tiwari, “Convective heat transfer coefficient of crops in forced convection drying - An experimental study,” Energy Convers Manag, vol. 42, no. 14, 2001, doi: 10.1016/S0196-8904(00)00160-6.
A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, and H. G. El-Gohary, “Experimental investigation of an indirect type natural convection solar dryer,” Energy Convers Manag, vol. 43, no. 16, 2002, doi: 10.1016/S0196-8904(01)00152-2.
S. Janjai, N. Srisittipokakun, and B. K. Bala, “Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices,” Energy, vol. 33, no. 1, 2008, doi: 10.1016/j.energy.2007.08.009.
J. K. Afriyie, M. A. A. Nazha, H. Rajakaruna, and F. K. Forson, “Experimental investigations of a chimney-dependent solar crop dryer,” Renew Energy, vol. 34, no. 1, 2009, doi: 10.1016/j.renene.2008.04.010.
S. Manaa, M. Younsi, and N. Moummi, “Solar drying of tomato in the arid area of TOUAT (Adrar, Algeria),” in Energy Procedia, 2013. doi: 10.1016/j.egypro.2013.07.058.
S. Chouicha, A. Boubekri, D. Mennouche, and M. H. Berrbeuh, “Solar drying of sliced potatoes.an experimental investigation,” in Energy Procedia, 2013. doi: 10.1016/j.egypro.2013.07.144.
A. A. El-Sebaii and S. M. Shalaby, “Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint,” Energy Convers Manag, vol. 74, 2013, doi: 10.1016/j.enconman.2013.05.006.
D. Gudiño-Ayala and Á. Calderón-Topete, “Pineapple drying using a new solar hybrid dryer,” in Energy Procedia, 2014. doi: 10.1016/j.egypro.2014.10.155.
S. Şevik, “Experimental investigation of a new design solar-heat pump dryer under the different climatic conditions and drying behavior of selected products,” Solar Energy, vol. 105, 2014, doi: 10.1016/j.solener.2014.03.037.
S. Chouicha et al., “Valorization study of treated deglet-nour dates by solar drying using three different solar driers,” in Energy Procedia, 2014. doi: 10.1016/j.egypro.2014.06.109.
A. ELkhadraoui, S. Kooli, I. Hamdi, and A. Farhat, “Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape,” Renew Energy, vol. 77, 2015, doi: 10.1016/j.renene.2014.11.090.
C. K. K. Sekyere, F. K. Forson, and F. W. Adam, “Experimental investigation of the drying characteristics of a mixed mode natural convection solar crop dryer with back up heater,” Renew Energy, vol. 92, 2016, doi: 10.1016/j.renene.2016.02.020.
S. Nabnean, S. Janjai, S. Thepa, K. Sudaprasert, R. Songprakorp, and B. K. Bala, “Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes,” Renew Energy, vol. 94, 2016, doi: 10.1016/j.renene.2016.03.013.
R. Daghigh and A. Shafieian, “An experimental study of a heat pipe evacuated tube solar dryer with heat recovery system,” Renew Energy, vol. 96, 2016, doi: 10.1016/j.renene.2016.05.025.
T. A. Yassen and H. H. Al-Kayiem, “Experimental investigation and evaluation of hybrid solar/thermal dryer combined with supplementary recovery dryer,” Solar Energy, vol. 134, 2016, doi: 10.1016/j.solener.2016.05.011.
A. Labed, N. Moummi, K. Aoues, and A. Benchabane, “Solar drying of henna (Lawsonia inermis) using different models of solar flat plate collectors: An experimental investigation in the region of Biskra (Algeria),” J Clean Prod, vol. 112, 2016, doi: 10.1016/j.jclepro.2015.10.058.
F. Gulcimen, H. Karakaya, and A. Durmus, “Drying of sweet basil with solar air collectors,” Renew Energy, vol. 93, 2016, doi: 10.1016/j.renene.2016.02.033.
E. Baniasadi, S. Ranjbar, and O. Boostanipour, “Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage,” Renew Energy, vol. 112, 2017, doi: 10.1016/j.renene.2017.05.043.
M. W. Kareem, K. Habib, K. Sopian, and M. H. Ruslan, “Multi-pass solar air heating collector system for drying of screw-pine leaf (Pandanus tectorius),” Renew Energy, vol. 112, 2017, doi: 10.1016/j.renene.2017.04.069.
M. Fterich, H. Chouikhi, H. Bentaher, and A. Maalej, “Experimental parametric study of a mixed-mode forced convection solar dryer equipped with a PV/T air collector,” Solar Energy, vol. 171, 2018, doi: 10.1016/j.solener.2018.06.051.
M. Chandrasekar, T. Senthilkumar, B. Kumaragurubaran, and J. P. Fernandes, “Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate,” Renew Energy, vol. 122, 2018, doi: 10.1016/j.renene.2018.01.109.
A. Fadhel, K. Charfi, M. Balghouthi, and S. Kooli, “Experimental investigation of the solar drying of Tunisian phosphate under different conditions,” Renew Energy, vol. 116, 2018, doi: 10.1016/j.renene.2017.10.025.
S. Soodmand-Moghaddam, M. Sharifi, and H. Zareiforoush, “Investigation of fuel consumption and essential oil content in drying process of lemon verbena leaves using a continuous flow dryer equipped with a solar pre-heating system,” J Clean Prod, vol. 233, 2019, doi: 10.1016/j.jclepro.2019.06.083.
S. Mehran, M. Nikian, M. Ghazi, H. Zareiforoush, and I. Bagheri, “Experimental investigation and energy analysis of a solar-assisted fluidized-bed dryer including solar water heater and solar-powered infrared lamp for paddy grains drying,” Solar Energy, vol. 190, 2019, doi: 10.1016/j.solener.2019.08.002.
T. Seerangurayar, A. M. Al-Ismaili, L. H. Janitha Jeewantha, and A. Al-Nabhani, “Experimental investigation of shrinkage and microstructural properties of date fruits at three solar drying methods,” Solar Energy, vol. 180, 2019, doi: 10.1016/j.solener.2019.01.047.
Z. Azaizia, S. Kooli, I. Hamdi, W. Elkhal, and A. A. Guizani, “Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper,” Renew Energy, vol. 145, 2020, doi: 10.1016/j.renene.2019.07.055.
N. S. Baghel and N. Chander, “Performance comparison of mono and polycrystalline silicon solar photovoltaic modules under tropical wet and dry climatic conditions in east-central India,” Clean Energy, vol. 6, no. 1, 2022, doi: 10.1093/ce/zkac001.
R. Bartali et al., “Study on carnauba wax as phase-change material integrated in evacuated-tube collector for solar-thermal heat production,” Clean Energy, vol. 7, no. 3, 2023, doi: 10.1093/ce/zkac088.
V. K. Sharma, S. Sharma, and H. P. Garg, “Mathematical modelling and experimental evaluation of a natural convection type solar cabinet dryer,” Energy Convers Manag, vol. 31, no. 1, 1991, doi: 10.1016/0196-8904(91)90106-S.
S. Janjai, A. Esper, and W. Mühlbauer, “A procedure for determining the optimum collector area for a solar paddy drying system,” Renew Energy, vol. 4, no. 4, 1994, doi: 10.1016/0960-1481(94)90048-5.
S. O. Onyegegbu, J. Morhenne, and B. Norton, “Second law optimization of integral type natural circulation solar energy crop dryers,” Energy Convers Manag, vol. 35, no. 11, 1994, doi: 10.1016/0196-8904(94)90028-0.
G. N. Tiwari, P. S. Bhatia, A. K. Singh, and R. F. Sutar, “Design parameters of a shallow bed solar crop dryer with reflector,” Energy Convers Manag, vol. 35, no. 6, 1994, doi: 10.1016/0196-8904(94)90094-9.
V. K. Sharma, A. Colangelo, G. Spagna, and F. Pistocchi, “Preliminary economic appraisal of solar air heating system used for drying of agricultural products,” Energy Convers Manag, vol. 35, no. 2, 1994, doi: 10.1016/0196-8904(94)90069-8.
G. J. Schoenau, E. A. Arinze, and S. Sokhansanj, “Simulation and optimization of energy systems for in-bin drying of canola grain (rapeseed),” Energy Convers Manag, vol. 36, no. 1, 1995, doi: 10.1016/0196-8904(94)00038-2.
J. Mumba, “Economic analysis of a photovoltaic, forced-convection, solar grain drier,” Energy, vol. 20, no. 9, 1995, doi: 10.1016/0360-5442(95)00037-H.
G. N. Tiwari, P. S. Bhatia, A. K. Singh, and R. K. Goyal, “Analytical studies of crop drying cum water heating system,” Energy Convers Manag, vol. 38, no. 8, 1997, doi: 10.1016/S0196-8904(96)00083-0.
D. A. Balladin, O. Headley, I. Chang-Yen, and D. McGaw, “Extraction and evaluation of the main pungent principles of solar dried West Indian ginger (Zingiber officinale Roscoe) rhizome,” Renew Energy, vol. 12, no. 2, 1997, doi: 10.1016/S0960-1481(97)00033-5.
I. A. McDoom, R. Ramsaroop, R. Saunders, and A. Tang Kai, “Optimization of solar crop drying,” Renew Energy, vol. 16, no. 1-4–4 pt 2, 1999, doi: 10.1016/S0960-1481(98)00271-7.
R. K. Goyal and G. N. Tiwari, “Performance of a reverse flat plate absorber cabinet dryer: A new concept,” Energy Convers Manag, vol. 40, no. 4, 1999, doi: 10.1016/S0196-8904(98)00123-X.
R. Hodali and J. Bougard, “Integration of a desiccant unit in crops solar drying installation: Optimization by numerical simulation,” Energy Convers Manag, vol. 42, no. 13, 2001, doi: 10.1016/S0196-8904(00)00159-X.
D. Ivanova and K. Andonov, “Analytical and experimental study of combined fruit and vegetable dryer,” Energy Convers Manag, vol. 42, no. 8, 2001, doi: 10.1016/S0196-8904(00)00108-4.
O. Yaldiz, C. Ertekin, and H. I. Uzun, “Mathematical modeling of thin layer solar drying of sultana grapes,” Energy, vol. 26, no. 5, 2001, doi: 10.1016/S0360-5442(01)00018-4.
D. Jain and G. N. Tiwari, “Effect of greenhouse on crop drying under natural and forced convection II. Thermal modeling and experimental validation,” Energy Convers Manag, vol. 45, no. 17, 2004, doi: 10.1016/j.enconman.2003.12.011.
D. Jain and G. N. Tiwari, “Effect of greenhouse on crop drying under natural and forced convection I: Evaluation of convective mass transfer coefficient,” Energy Convers Manag, vol. 45, no. 5, 2004, doi: 10.1016/S0196-8904(03)00178-X.
S. Lahsasni, M. Kouhila, M. Mahrouz, A. Idlimam, and A. Jamali, “Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica),” Energy, vol. 29, no. 2, 2004, doi: 10.1016/j.energy.2003.08.009.
M. A. Hossain, J. L. Woods, and B. K. Bala, “Optimisation of solar tunnel drier for drying of chilli without color loss,” Renew Energy, vol. 30, no. 5, 2005, doi: 10.1016/j.renene.2004.01.005.
H. H. El-Ghetany, “Experimental investigation and empirical correlations of thin layer drying characteristics of seedless grapes,” Energy Convers Manag, vol. 47, no. 11–12, 2006, doi: 10.1016/j.enconman.2005.08.011.
E. K. Akpinar and Y. Bicer, “Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun,” Energy Convers Manag, vol. 49, no. 6, 2008, doi: 10.1016/j.enconman.2008.01.004.
K. B. Koua, W. F. Fassinou, P. Gbaha, and S. Toure, “Mathematical modelling of the thin layer solar drying of banana, mango and cassava,” Energy, vol. 34, no. 10, 2009, doi: 10.1016/j.energy.2009.07.005.
E. K. Akpinar, “Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses,” Energy Convers Manag, vol. 51, no. 12, 2010, doi: 10.1016/j.enconman.2010.05.005.
A. Kaleta and K. Górnicki, “Some remarks on evaluation of drying models of red beet particles,” Energy Convers Manag, vol. 51, no. 12, 2010, doi: 10.1016/j.enconman.2010.06.040.
A. O. Dissa, D. J. Bathiebo, H. Desmorieux, O. Coulibaly, and J. Koulidiati, “Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes,” Energy, vol. 36, no. 5, 2011, doi: 10.1016/j.energy.2011.01.044.
S. Janjai, P. Intawee, J. Kaewkiew, C. Sritus, and V. Khamvongsa, “A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic,” Renew Energy, vol. 36, no. 3, 2011, doi: 10.1016/j.renene.2010.09.008.
J. K. Afriyie, H. Rajakaruna, M. A. A. Nazha, and F. K. Forson, “Mathematical modelling and validation of the drying process in a Chimney-Dependent Solar Crop Dryer,” Energy Convers Manag, vol. 67, 2013, doi: 10.1016/j.enconman.2012.11.007.
S. Singh and S. Kumar, “Solar drying for different test conditions: Proposed framework for estimation of specific energy consumption and CO2 emissions mitigation,” Energy, vol. 51, 2013, doi: 10.1016/j.energy.2013.01.006.
A. Kouchakzadeh, “The effect of acoustic and solar energy on drying process of pistachios,” Energy Convers Manag, vol. 67, 2013, doi: 10.1016/j.enconman.2012.12.003.
W. Chen and M. Qu, “Analysis of the heat transfer and airflow in solar chimney drying system with porous absorber,” Renew Energy, vol. 63, 2014, doi: 10.1016/j.renene.2013.10.006.
F. Altobelli, M. Condorí, G. Duran, and C. Martinez, “Solar dryer efficiency considering the total drying potential. Application of this potential as a resource indicator in north-western Argentina,” Solar Energy, vol. 105, 2014, doi: 10.1016/j.solener.2014.04.029.
I. N. Ramos, T. R. S. Brandão, and C. L. M. Silva, “Simulation of solar drying of grapes using an integrated heat and mass transfer model,” Renew Energy, vol. 81, 2015, doi: 10.1016/j.renene.2015.04.011.
S. Tiwari and G. N. Tiwari, “Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer,” Solar Energy, vol. 138, 2016, doi: 10.1016/j.solener.2016.09.014.
S. Tiwari and G. N. Tiwari, “Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer,” Energy, vol. 114, 2016, doi: 10.1016/j.energy.2016.07.132.
Y. Qiu, M. Li, R. H. E. Hassanien, Y. Wang, X. Luo, and Q. Yu, “Performance and operation mode analysis of a heat recovery and thermal storage solar-assisted heat pump drying system,” Solar Energy, vol. 137, 2016, doi: 10.1016/j.solener.2016.08.016.
S. Tiwari, G. N. Tiwari, and I. M. Al-Helal, “Performance analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer,” Solar Energy, vol. 133, 2016, doi: 10.1016/j.solener.2016.04.033.
P. S. Chauhan and A. Kumar, “Heat transfer analysis of north wall insulated greenhouse dryer under natural convection mode,” Energy, vol. 118, 2017, doi: 10.1016/j.energy.2016.11.006.
C. B. Maia, A. G. Ferreira, L. Cabezas-Gómez, J. de Oliveira Castro Silva, and S. de Morais Hanriot, “Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil,” Renew Energy, vol. 114, 2017, doi: 10.1016/j.renene.2017.07.102.
V. Saini, S. Tiwari, and G. N. Tiwari, “Environ economic analysis of various types of photovoltaic technologies integrated with greenhouse solar drying system,” J Clean Prod, vol. 156, 2017, doi: 10.1016/j.jclepro.2017.04.044.
M. M. Morad, M. A. El-Shazly, K. I. Wasfy, and H. A. M. El-Maghawry, “Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants,” Renew Energy, vol. 101, 2017, doi: 10.1016/j.renene.2016.09.042.
H. Atalay, M. Turhan Çoban, and O. Kıncay, “Modeling of the drying process of apple slices: Application with a solar dryer and the thermal energy storage system,” Energy, vol. 134, 2017, doi: 10.1016/j.energy.2017.06.030.
L. Abhay, V. P. Chandramohan, and V. R. K. Raju, “Numerical analysis on solar air collector provided with artificial square shaped roughness for indirect type solar dryer,” J Clean Prod, vol. 190, 2018, doi: 10.1016/j.jclepro.2018.04.130.
P. S. Chauhan, A. Kumar, and C. Nuntadusit, “Thermo-environomical and drying kinetics of bitter gourd flakes drying under north wall insulated greenhouse dryer,” Solar Energy, vol. 162, 2018, doi: 10.1016/j.solener.2018.01.023.
S. Di Fraia, R. D. Figaj, N. Massarotti, and L. Vanoli, “An integrated system for sewage sludge drying through solar energy and a combined heat and power unit fuelled by biogas,” Energy Convers Manag, vol. 171, 2018, doi: 10.1016/j.enconman.2018.06.018.
W. Hao, Y. Lu, Y. Lai, H. Yu, and M. Lyu, “Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products,” Renew Energy, vol. 127, 2018, doi: 10.1016/j.renene.2018.05.021.
P. S. Chauhan, A. Kumar, C. Nuntadusit, and J. Banout, “Thermal modeling and drying kinetics of bitter gourd flakes drying in modified greenhouse dryer,” Renew Energy, vol. 118, 2018, doi: 10.1016/j.renene.2017.11.069.
M. A. Eltawil, M. M. Azam, and A. O. Alghannam, “Solar PV powered mixed-mode tunnel dryer for drying potato chips,” Renew Energy, vol. 116, 2018, doi: 10.1016/j.renene.2017.10.007.
B. M. A. Amer, K. Gottschalk, and M. A. Hossain, “Integrated hybrid solar drying system and its drying kinetics of chamomile,” Renew Energy, vol. 121, 2018, doi: 10.1016/j.renene.2018.01.055.
O. Badaoui, S. Hanini, A. Djebli, B. Haddad, and A. Benhamou, “Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models,” Renew Energy, vol. 133, 2019, doi: 10.1016/j.renene.2018.10.020.
A. Khouya and A. Draoui, “Computational drying model for solar kiln with latent heat energy storage: Case studies of thermal application,” Renew Energy, vol. 130, 2019, doi: 10.1016/j.renene.2018.06.090.
Y. Bahammou, Z. Tagnamas, A. Lamharrar, and A. Idlimam, “Thin-layer solar drying characteristics of Moroccan horehound leaves (Marrubium vulgare L.) under natural and forced convection solar drying,” Solar Energy, vol. 188, 2019, doi: 10.1016/j.solener.2019.07.003.
S. S. Kishk, R. A. ElGamal, and G. M. ElMasry, “Effectiveness of recyclable aluminum cans in fabricating an efficient solar collector for drying agricultural products,” Renew Energy, vol. 133, 2019, doi: 10.1016/j.renene.2018.10.028.
A. Arabhosseini, H. Samimi-Akhijahani, and M. Motehayyer, “Increasing the energy and exergy efficiencies of a collector using porous and recycling system,” Renew Energy, vol. 132, 2019, doi: 10.1016/j.renene.2018.07.132.
M. Kuan, Y. Shakir, M. Mohanraj, Y. Belyayev, S. Jayaraj, and A. Kaltayev, “Numerical simulation of a heat pump assisted solar dryer for continental climates,” Renew Energy, vol. 143, 2019, doi: 10.1016/j.renene.2019.04.119.
M. Motahayyer, A. Arabhosseini, and H. Samimi-Akhijahani, “Numerical analysis of thermal performance of a solar dryer and validated with experimental and thermo-graphical data,” Solar Energy, vol. 193, 2019, doi: 10.1016/j.solener.2019.10.001.
A. Djebli, S. Hanini, O. Badaoui, and M. Boumahdi, “A new approach to the thermodynamics study of drying tomatoes in mixed solar dryer,” Solar Energy, vol. 193, 2019, doi: 10.1016/j.solener.2019.09.057.
R. Ben Ali, S. Bouadila, and A. Mami, “Experimental validation of the dynamic thermal behavior of two types of agricultural greenhouses in the Mediterranean context,” Renew Energy, vol. 147, 2020, doi: 10.1016/j.renene.2019.08.129.
A. Djebli, S. Hanini, O. Badaoui, B. Haddad, and A. Benhamou, “Modeling and comparative analysis of solar drying behavior of potatoes,” Renew Energy, vol. 145, 2020, doi: 10.1016/j.renene.2019.07.083.
N. Divyangkumar, K. Sharma, N. L. Panwar, and G. Saichandhu, “Sustainability assessment of solar drying systems: a comparative life-cycle analysis of phase-change material-based vs. cylindrical solar dryers,” Clean Energy, vol. 8, no. 4, pp. 183–196, Aug. 2024, doi: 10.1093/ce/zkae049.
H. P. Garg, R. B. Mahajan, V. K. Sharma, and H. S. Acharya, “Design and development of a simple solar dehydrator for crop drying,” Energy Convers Manag, vol. 24, no. 3, 1984, doi: 10.1016/0196-8904(84)90040-2.
W. Mühlbauer, “Present status of solar crop drying,” Energy in Agriculture, vol. 5, no. 2, 1986, doi: 10.1016/0167-5826(86)90013-6.
K. P. Thanvi and P. C. Pande, “Development of a low-cost solar agricultural dryer for arid regions of India,” Energy in Agriculture, vol. 6, no. 1, 1987, doi: 10.1016/0167-5826(87)90020-9.
E. J. Amir, K. Grandegger, A. Esper, M. Sumarsono, C. Djaya, and W. Mühlbauer, “Development of a multi-purpose solar tunnel dryer for use in humid tropics,” Renew Energy, vol. 1, no. 2, 1991, doi: 10.1016/0960-1481(91)90072-W.
A. Chakraverty and S. K. Das, “Development of a two-directional air flow paddy dryer coupled with an integrated array of solar air heating modules,” Energy Convers Manag, vol. 33, no. 3, 1992, doi: 10.1016/0196-8904(92)90124-F.
M. Breymayer, T. Pass, W. Mühlbauer, E. J. Amir, and S. Mulato, “Solar-assisted smokehouse for the drying of natural rubber on small-scale Indonesian farms,” Renew Energy, vol. 3, no. 8, 1993, doi: 10.1016/0960-1481(93)90039-J.
J. Mumba, “Design and development of a solar grain dryer incorporating photovoltaic powered air circulation,” Energy Convers Manag, vol. 37, no. 5, 1996, doi: 10.1016/0196-8904(95)00205-7.
T. F. N. Thoruwa, J. E. Smith, A. D. Grant, and C. M. Johnstone, “Developments in solar drying using forced ventilation and solar regenerated desiccant materials,” Renew Energy, vol. 9, no. 1-4 SPEC. ISS., 1996, doi: 10.1016/0960-1481(96)88378-9.
O. V. Ekechukwu and B. Norton, “Review of solar-energy drying systems II: An overview of solar drying technology,” Energy Convers Manag, vol. 40, no. 6, 1999, doi: 10.1016/S0196-8904(98)00093-4.
G. Wisniewski, “Market development of the solar crops drying technologies in Poland and Europe,” Renew Energy, vol. 16, no. 1-4–4 pt 2, 1999, doi: 10.1016/S0960-1481(98)00517-5.
M. Y. H. Othman, K. Sopian, B. Yatim, and W. R. W. Daud, “Development of advanced solar assisted drying systems,” Renew Energy, vol. 31, no. 5, 2006, doi: 10.1016/j.renene.2005.09.004.
P. N. Sarsavadia, “Development of a solar-assisted dryer and evaluation of energy requirement for the drying of onion,” Renew Energy, vol. 32, no. 15, 2007, doi: 10.1016/j.renene.2006.12.019.
F. K. Forson, M. A. A. Nazha, F. O. Akuffo, and H. Rajakaruna, “Design of mixed-mode natural convection solar crop dryers: Application of principles and rules of thumb,” Renew Energy, vol. 32, no. 14, 2007, doi: 10.1016/j.renene.2006.12.003.
I. Montero, J. Blanco, T. Miranda, S. Rojas, and A. R. Celma, “Design, construction and performance testing of a solar dryer for agroindustrial by-products,” Energy Convers Manag, vol. 51, no. 7, 2010, doi: 10.1016/j.enconman.2010.02.009.
B. Ringeisen, D. M. Barrett, and P. Stroeve, “Concentrated solar drying of tomatoes,” Energy for Sustainable Development, vol. 19, no. 1, 2014, doi: 10.1016/j.esd.2013.11.006.
M. Yahya, A. Fudholi, H. Hafizh, and K. Sopian, “Comparison of solar dryer and solar-assisted heat pump dryer for cassava,” Solar Energy, vol. 136, 2016, doi: 10.1016/j.solener.2016.07.049.
S. Abubakar, S. Umaru, M. U. Kaisan, U. A. Umar, B. Ashok, and K. Nanthagopal, “Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage,” Renew Energy, vol. 128, 2018, doi: 10.1016/j.renene.2018.05.049.
P. Wang, D. Mohammed, P. Zhou, Z. Lou, P. Qian, and Q. Zhou, “Roof solar drying processes for sewage sludge within sandwich-like chamber bed,” Renew Energy, vol. 136, 2019, doi: 10.1016/j.renene.2018.09.081.
M. Sandali, A. Boubekri, D. Mennouche, and N. Gherraf, “Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study,” Renew Energy, vol. 135, 2019, doi: 10.1016/j.renene.2018.11.086.
W. Amjad et al., “Decentralized solar-powered cooling systems for fresh fruit and vegetables to reduce post-harvest losses in developing regions: A review,” 2023. doi: 10.1093/ce/zkad015.
DOI: http://dx.doi.org/10.21622/resd.2025.11.1.1039
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jebaraj S., Mohammed Yahaya Khan
Renewable Energy and Sustainable Development
E-ISSN: 2356-8569
P-ISSN: 2356-8518
Published by:
Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt