Influence of temperature and substrate composition on anaerobic biogas production in a pilot-scale reactor

Balasubramanian K, Sivakumar K

Abstract


 

The research investigates how temperature and substrate composition impact anaerobic biogas production in a pilot-scale reactor. Anaerobic digestion is a vital process for converting organic substrates into biogas, mainly composed of methane and carbon dioxide. Temperature plays a crucial role in influencing this process. The experiment was conducted under mesophilic (35°C), thermophilic (55°C), and hyper thermophilic (80°C) conditions, using a pilot-scale reactor with a capacity of 50 liters and an effective volume of 40 liters. Key parameters, including biogas production, carbon and nitrogen content, carbon-to-nitrogen (C:N) ratios, pH levels, and biomass concentrations, were monitored throughout a 60-day operational period. The highest biogas production, reaching 6398 ml/d, occurred under mesophilic conditions. Scanning electron microscopy (SEM) and phylogenetic analysis were performed, revealing the presence of Methanococcus aeolicus species in the treated sludge.

 

Received: 25 June 2024

Accepted: 31 July 2024

Published: 25 August 2024


Keywords


Organic waste, Temperature, Biogas yield, Microbial identification.

Full Text:

PDF

References


S. Roy, P. K. Dikshit, K. C. Sherpa, A. Singh, S. Jacob, and R. Chandra Rajak, “Recent nanobiotechnological advancements in lignocellulosic biomass valorization: A review,” J Environ Manage, vol. 297, 2021, doi: 10.1016/j.jenvman.2021.113422.

S. Sutaryo, A. J. Ward, and H. B. Møller, “The effect of mixed-enzyme addition in anaerobic digestion on methane yield of dairy cattle manure,” Environmental Technology (United Kingdom), vol. 35, no. 19, 2014, doi: 10.1080/09593330.2014.911356.

V. P. Aravani et al., “Agricultural and livestock sector’s residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production,” 2022. doi: 10.1016/j.rser.2021.111821.

E. S. Gaballah et al., “Enhancement of biogas production from rape straw using different co-pretreatment techniques and anaerobic co-digestion with cattle manure,” Bioresour Technol, vol. 309, 2020, doi: 10.1016/j.biortech.2020.123311.

A. K. Mathew et al., “Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion,” Clean Technol Environ Policy, vol. 17, no. 6, 2015, doi: 10.1007/s10098-014-0877-6.

C. Mao, Y. Feng, X. Wang, and G. Ren, “Review on research achievements of biogas from anaerobic digestion,” 2015. doi: 10.1016/j.rser.2015.02.032.

E. Bruni, A. P. Jensen, and I. Angelidaki, “Steam treatment of digested biofibers for increasing biogas production,” Bioresour Technol, vol. 101, no. 19, 2010, doi: 10.1016/j.biortech.2010.04.064.

S. Yossan, S. O-Thong, and P. Prasertsan, “Effect of initial pH, nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities,” in International Journal of Hydrogen Energy, 2012. doi: 10.1016/j.ijhydene.2012.03.151.

G. Antonopoulou, H. N. Gavala, I. V. Skiadas, K. Angelopoulos, and G. Lyberatos, “Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass,” Bioresour Technol, vol. 99, no. 1, 2008, doi: 10.1016/j.biortech.2006.11.048.

L. Matsakas, U. Rova, and P. Christakopoulos, “Evaluation of dried sweet sorghum stalks as raw material for methane production,” Biomed Res Int, vol. 2014, 2014, doi: 10.1155/2014/731731.

H. Ma, Y. Hu, T. Kobayashi, and K. Q. Xu, “The role of rice husk biochar addition in anaerobic digestion for sweet sorghum under high loading condition,” Biotechnology Reports, vol. 27, 2020, doi: 10.1016/j.btre.2020.e00515.

B. Nozari, S. Mirmohamadsadeghi, and K. Karimi, “Bioenergy production from sweet sorghum stalks via a biorefinery perspective,” Appl Microbiol Biotechnol, vol. 102, no. 7, 2018, doi: 10.1007/s00253-018-8833-8.

M. A. Dareioti, A. I. Vavouraki, K. Tsigkou, and M. Kornaros, “Assessment of single-vs. Two-stage process for the anaerobic digestion of liquid cow manure and cheese whey,” Energies (Basel), vol. 14, no. 17, 2021, doi: 10.3390/en14175423.

A. Giuliano, D. Bolzonella, P. Pavan, C. Cavinato, and F. Cecchi, “Co-digestion of livestock effluents, energy crops and agro-waste: Feeding and process optimization in mesophilic and thermophilic conditions,” Bioresour Technol, vol. 128, 2013, doi: 10.1016/j.biortech.2012.11.002.

K. Tsigkou, M. Sakarika, and M. Kornaros, “Inoculum origin and waste solid content influence the biochemical methane potential of olive mill wastewater under mesophilic and thermophilic conditions,” Biochem Eng J, vol. 151, 2019, doi: 10.1016/j.bej.2019.107301.

K. Tsigkou, N. Sivolapenko, and M. Kornaros, “Thermophilic Dark Fermentation of Olive Mill Wastewater in Batch Reactors: Effect of pH and Organic Loading,” Applied Sciences (Switzerland), vol. 12, no. 6, 2022, doi: 10.3390/app12062881.

K. Tsigkou, P. Tsafrakidou, S. Athanasopoulou, C. Zafiri, and M. Kornaros, “Effect of pH on the Anaerobic Fermentation of Fruit/Vegetables and Disposable Nappies Hydrolysate for Bio-hydrogen Production,” Waste Biomass Valorization, vol. 11, no. 2, 2020, doi: 10.1007/s12649-019-00854-z.

M. Zakoura, A. Kopsahelis, K. Tsigkou, S. Ntougias, S. S. Ali, and M. Kornaros, “Performance evaluation of three mesophilic upflow anaerobic sludge blanket bioreactors treating olive mill wastewater: Flocculent and granular inocula tests, organic loading rate effect and anaerobic consortia structure,” Fuel, vol. 313, 2022, doi: 10.1016/j.fuel.2021.122951.

K. Tsigkou and M. Kornaros, “Development of a high-rate anaerobic thermophilic upflow packed bed reactor for efficient bioconversion of diluted three-phase olive mill wastewater into methane,” Fuel, vol. 310, 2022, doi: 10.1016/j.fuel.2021.122263.

K. Tsigkou et al., “Expired food products and used disposable adult nappies mesophilic anaerobic co-digestion: Biochemical methane potential, feedstock pretreatment and two-stage system performance,” Renew Energy, vol. 168, 2021, doi: 10.1016/j.renene.2020.12.062.

K. Tsigkou, P. Tsafrakidou, A. Kopsahelis, D. Zagklis, C. Zafiri, and M. Kornaros, “Used disposable nappies and expired food products valorisation through one- & two-stage anaerobic co-digestion,” Renew Energy, vol. 147, 2020, doi: 10.1016/j.renene.2019.09.028.

D. Zagklis, M. Papadionysiou, K. Tsigkou, P. Tsafrakidou, C. Zafiri, and M. Kornaros, “Effect of pH on the economic potential of dark fermentation products from used disposable nappies and expired food products,” Applied Sciences (Switzerland), vol. 11, no. 9, 2021, doi: 10.3390/app11094099.

G. Antonopoulou and G. Lyberatos, “Effect of pretreatment of sweet sorghum biomass on methane generation,” Waste Biomass Valorization, vol. 4, no. 3, 2013, doi: 10.1007/s12649-012-9183-x.

A. Giuliano, D. Bolzonella, P. Pavan, C. Cavinato, and F. Cecchi, “Co-digestion of livestock effluents, energy crops and agro-waste: Feeding and process optimization in mesophilic and thermophilic conditions,” Bioresour Technol, vol. 128, pp. 612–618, Jan. 2013, doi: 10.1016/j.biortech.2012.11.002.

M. A. Dareioti, A. I. Vavouraki, K. Tsigkou, and M. Kornaros, “Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey,” Energies (Basel), vol. 14, no. 17, p. 5423, Aug. 2021, doi: 10.3390/en14175423.

M. A. Dareioti, A. I. Vavouraki, K. Tsigkou, C. Zafiri, and M. Kornaros, “Dark fermentation of sweet sorghum stalks, cheese whey and cow manure mixture: Effect of PH, pretreatment and organic load,” Processes, vol. 9, no. 6, 2021, doi: 10.3390/pr9061017.

G. Antonopoulou, H. N. Gavala, I. V. Skiadas, K. Angelopoulos, and G. Lyberatos, “Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass,” Bioresour Technol, vol. 99, no. 1, pp. 110–119, Jan. 2008, doi: 10.1016/j.biortech.2006.11.048.

L. Matsakas, U. Rova, and P. Christakopoulos, “Evaluation of Dried Sweet Sorghum Stalks as Raw Material for Methane Production,” Biomed Res Int, vol. 2014, pp. 1–7, 2014, doi: 10.1155/2014/731731.

H. Ma, Y. Hu, T. Kobayashi, and K.-Q. Xu, “The role of rice husk biochar addition in anaerobic digestion for sweet sorghum under high loading condition,” Biotechnology Reports, vol. 27, p. e00515, Sep. 2020, doi: 10.1016/j.btre.2020.e00515.

B. Nozari, S. Mirmohamadsadeghi, and K. Karimi, “Bioenergy production from sweet sorghum stalks via a biorefinery perspective,” Appl Microbiol Biotechnol, vol. 102, no. 7, pp. 3425–3438, Apr. 2018, doi: 10.1007/s00253-018-8833-8.

M. Kimura, “A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences,” J Mol Evol, vol. 16, no. 2, 1980, doi: 10.1007/BF01731581.

N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees.,” Mol Biol Evol, vol. 4, no. 4, 1987, doi: 10.1093/oxfordjournals.molbev.a040454.

K. Tamura, J. Dudley, M. Nei, and S. Kumar, “MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0,” Mol Biol Evol, vol. 24, no. 8, 2007, doi: 10.1093/molbev/msm092.

Y. Liu et al., “Anaerobic co-digestion of Chinese cabbage waste and cow manure at mesophilic and thermophilic temperatures: Digestion performance, microbial community, and biogas slurry fertility,” Bioresour Technol, vol. 363, 2022, doi: 10.1016/j.biortech.2022.127976.

S. J. Smith, A. J. Satchwell, T. W. Kirchstetter, and C. D. Scown, “The implications of facility design and enabling policies on the economics of dry anaerobic digestion,” Waste Management, vol. 128, 2021, doi: 10.1016/j.wasman.2021.04.048.

H. Zhang et al., “A comprehensive review on food waste anaerobic co-digestion: Current situation and research prospect,” 2023. doi: 10.1016/j.psep.2023.09.030.




DOI: http://dx.doi.org/10.21622/resd.2024.10.2.906

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Balasubramanian K, Sivakumar K


Renewable Energy and Sustainable Development

E-ISSN: 2356-8569

P-ISSN: 2356-8518

 

Published by:

Academy Publishing Center (APC)

Arab Academy for Science, Technology and Maritime Transport (AASTMT)

Alexandria, Egypt

resd@aast.edu