Experimental and computational analysis of air injection as a mitigation technique for silt erosion in hydro turbines
Abstract
Hydroelectric power plants play a critical role in renewable energy generation, but sediment-laden water leads to silt erosion in key components such as turbine blades and guide vanes, adversely affecting efficiency and operational longevity. This study introduces a novel air injection technique aimed at mitigating silt erosion on guide vane surfaces. The research involved both computational simulations and experimental testing, employing a specially designed rotating disc apparatus. Erosion tests were conducted on guide vanes both with and without air injections, using NACA 4412 hydrofoil profiles at a 10° angle of attack. The variable parameters in the study included air injection velocity (ranging from 7.5 m/s to 17.5 m/s), silt concentration (2500 ppm), and air injection angles (90°). The measured output includes erosion rate, material loss, and surface erosion patterns. Simulation results indicated an erosion reduction of approximately 40%, while experimental results showed an efficiency of 27% to 38%, with the optimum air injection velocity observed at 12.5 m/s. The novelty of this approach lies in the use of air injection as a protective layer over the guide vanes, creating a buffer zone that shields the surface from silt impact and reduces erosion. This method presents a significant improvement over traditional erosion mitigation techniques, such as material coatings and sediment chambers.
Received: 10 October 2024
Accepted: 06 November 2024
Published: 20 November 2024
Keywords
Full Text:
PDFReferences
V. Singh, S. Kumar, and S. K. Mohapatra, “Modeling of Erosion Wear of Sand Water Slurry Flow through Pipe Bend using CFD,” Journal of Applied Fluid Mechanics, vol. 12, no. 3, pp. 679–687, May 2019, doi: 10.29252/jafm.12.03.29199.
U. Dorji and R. Ghomashchi, “Hydro turbine failure mechanisms: An overview,” Eng Fail Anal, vol. 44, pp. 136–147, Sep. 2014, doi: 10.1016/j.engfailanal.2014.04.013.
S. Gautam, H. P. Neopane, N. Acharya, S. Chitrakar, B. S. Thapa, and B. Zhu, “Sediment erosion in low specific speed francis turbines: A case study on effects and causes,” Wear, vol. 442–443, p. 203152, Feb. 2020, doi: 10.1016/j.wear.2019.203152.
S. Sharma and B. K. Gandhi, “Assessment of erosion wear in low specific speed Francis turbine due to particulate flow,” Advanced Powder Technology, vol. 34, no. 9, p. 104065, Sep. 2023, doi: 10.1016/j.apt.2023.104065.
S. Chitrakar, H. P. Neopane, and O. G. Dahlhaug, “A Review on Sediment Erosion Challenges in Hydraulic Turbines,” in Sedimentation Engineering, InTech, 2018. doi: 10.5772/intechopen.70468.
C. Hauer et al., “State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review,” Renewable and Sustainable Energy Reviews, vol. 98, pp. 40–55, Dec. 2018, doi: 10.1016/j.rser.2018.08.031.
S. Mishra, S. K. Singal, and D. K. Khatod, “Design of desilting tank for small hydropower projects - a review,” 2011. [Online]. Available: www.IndianJournals.com
G. Singh and A. Kumar, “Performance evaluation of desilting basins of small hydropower projects,” ISH Journal of Hydraulic Engineering, vol. 22, no. 2, pp. 135–141, May 2016, doi: 10.1080/09715010.2015.1094750.
V. Almeida et al., “Approach to sediment monitoring in Hydro Power Plant,” IOP Conf Ser Earth Environ Sci, vol. 1079, no. 1, p. 012062, Sep. 2022, doi: 10.1088/1755-1315/1079/1/012062.
A. Kr. Rai and A. Kumar, “Sediment monitoring for hydro-abrasive erosion : A field study from Himalayas, India,” International Journal of Fluid Machinery and Systems, vol. 10, no. 2, pp. 146–153, Jun. 2017, doi: 10.5293/IJFMS.2017.10.2.146.
M. B. Bishwakarma and H. Støle, “Real-time sediment monitoring in hydropower plants,” Journal of Hydraulic Research, vol. 46, no. 2, pp. 282–288, Mar. 2008, doi: 10.1080/00221686.2008.9521862.
M. B. Bishwakarma, “Concept Paper for a Research on Optimum Sediment Handling in Run-Of-River Hydropower Plants,” in International Conference on Small Hydropower - Hydro Sri Lanka, 2007.
G. Prashar, H. Vasudev, and L. Thakur, “Performance of different coating materials against slurry erosion failure in hydrodynamic turbines: A review,” Eng Fail Anal, vol. 115, p. 104622, Sep. 2020, doi: 10.1016/j.engfailanal.2020.104622.
D. K. Goyal, H. Singh, and H. Kumar, “Characterization and Accelerated Erosion Testing of WC-Co-Cr- and CoNiCrAlY-Coated CA6NM Turbine Steel,” Journal of Thermal Spray Technology, vol. 28, no. 7, pp. 1363–1378, Oct. 2019, doi: 10.1007/s11666-019-00897-7.
K. Goyal, “Experimental investigations of mechanical properties and slurry erosion behaviour of high velocity oxy fuel and plasma sprayed Cr 2 O 3 –50%Al 2 O 3 coatings on CA6NM turbine steel under hydro accelerated conditions,” Tribology - Materials, Surfaces & Interfaces, vol. 12, no. 2, pp. 97–106, Apr. 2018, doi: 10.1080/17515831.2018.1452369.
R. Kumar, S. Bhandari, and A. Goyal, “Synergistic effect of Al 2 O 3 /TiO 2 reinforcements on slurry erosion performance of nickel-based composite coatings,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 232, no. 8, pp. 974–986, Aug. 2018, doi: 10.1177/1350650117736487.
K. R.K., K. M., S. S., and A. K. S., “A pragmatic approach and quantitative assessment of silt erosion characteristics of HVOF and HVAF processed WC-CoCr coatings and 16Cr5Ni steel for hydro turbine applications,” Mater Des, vol. 132, pp. 79–95, Oct. 2017, doi: 10.1016/j.matdes.2017.06.046.
V. Sharma, M. Kaur, and S. Bhandari, “Slurry erosion performance study of high velocity flame sprayed Ni–Al 2 O 3 coating under hydro accelerated conditions,” Mater Res Express, vol. 6, no. 7, p. 076436, Apr. 2019, doi: 10.1088/2053-1591/ab1927.
V. Sharma, M. Kaur, and S. Bhandari, “Development and Characterization of High-Velocity Flame Sprayed Ni/TiO2/Al2O3 Coatings on Hydro Turbine Steel,” Journal of Thermal Spray Technology, vol. 28, no. 7, pp. 1379–1401, Oct. 2019, doi: 10.1007/s11666-019-00918-5.
B. Singh and S. Zafar, “Effect of microwave exposure time on microstructure and slurry erosion behavior of Ni + 20% Cr7C3 composite clads,” Wear, vol. 426–427, pp. 491–500, Apr. 2019, doi: 10.1016/j.wear.2018.12.016.
D. K. Goyal, H. Singh, H. Kumar, and V. Sahni, “Slurry Erosive Wear Evaluation of HVOF-Spray Cr2O3 Coating on Some Turbine Steels,” Journal of Thermal Spray Technology, vol. 21, no. 5, pp. 838–851, Sep. 2012, doi: 10.1007/s11666-012-9795-5.
H. S. Grewal, H. S. Arora, A. Agrawal, H. Singh, and S. Mukherjee, “Slurry Erosion of Thermal Spray Coatings: Effect of Sand Concentration,” Procedia Eng, vol. 68, pp. 484–490, 2013, doi: 10.1016/j.proeng.2013.12.210.
H. S. Grewal, H. S. Arora, H. Singh, and A. Agrawal, “Surface modification of hydroturbine steel using friction stir processing,” Appl Surf Sci, vol. 268, pp. 547–555, Mar. 2013, doi: 10.1016/j.apsusc.2013.01.006.
S. A. Romo, J. F. Santa, J. E. Giraldo, and A. Toro, “Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy,” Tribol Int, vol. 47, pp. 16–24, Mar. 2012, doi: 10.1016/j.triboint.2011.10.003.
J. F. Santa, L. A. Espitia, J. A. Blanco, S. A. Romo, and A. Toro, “Slurry and cavitation erosion resistance of thermal spray coatings,” Wear, vol. 267, no. 1–4, pp. 160–167, Jun. 2009, doi: 10.1016/j.wear.2009.01.018.
M. K. Padhy and R. P. Saini, “A review on silt erosion in hydro turbines,” Renewable and Sustainable Energy Reviews, vol. 12, no. 7, pp. 1974–1987, Sep. 2008, doi: 10.1016/j.rser.2007.01.025.
A. Karn et al., “Bubble size characteristics in the wake of ventilated hydrofoils with two aeration configurations,” International Journal of Fluid Machinery and Systems, vol. 8, no. 2, pp. 73–84, Jun. 2015, doi: 10.5293/IJFMS.2015.8.2.073.
A. Karn, C. Ellis, J. Hong, and R. E. A. Arndt, “Investigations into the turbulent bubbly wake of a ventilated hydrofoil: Moving toward improved turbine aeration techniques,” Exp Therm Fluid Sci, vol. 64, pp. 186–195, Jun. 2015, doi: 10.1016/j.expthermflusci.2014.12.011.
A. Karn, C. Ellis, R. Arndt, and J. Hong, “An integrative image measurement technique for dense bubbly flows with a wide size distribution,” Chem Eng Sci, vol. 122, pp. 240–249, Jan. 2015, doi: 10.1016/j.ces.2014.09.036.
A. Karn, G. M. Monson, C. R. Ellis, J. Hong, R. E. A. Arndt, and J. S. Gulliver, “Mass transfer studies across ventilated hydrofoils: A step towards hydroturbine aeration,” Int J Heat Mass Transf, vol. 87, pp. 512–520, Aug. 2015, doi: 10.1016/j.ijheatmasstransfer.2015.04.021.
Z. Chen and Y.-D. Choi, “Influence of air supply on the performance and internal flow characteristics of a cross flow turbine,” Renew Energy, vol. 79, pp. 103–110, Jul. 2015, doi: 10.1016/j.renene.2014.08.024.
K. Kumar and R. P. Saini, “A review on operation and maintenance of hydropower plants,” Sustainable Energy Technologies and Assessments, vol. 49, p. 101704, Feb. 2022, doi: 10.1016/j.seta.2021.101704.
R. E. A. Arndt, C. R. Ellis, and S. Paul, “Preliminary investigation of the use of air injection to mitigate cavitation erosion,” in American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 1993.
R. E. A. Arndt, C. R. Ellis, and S. Paul, “Preliminary Investigation of the Use of Air Injection to Mitigate Cavitation Erosion,” J Fluids Eng, vol. 117, no. 3, pp. 498–504, Sep. 1995, doi: 10.1115/1.2817290.
A. Karn, S. Shao, R. E. A. Arndt, and J. Hong, “Bubble coalescence and breakup in turbulent bubbly wake of a ventilated hydrofoil,” Exp Therm Fluid Sci, vol. 70, pp. 397–407, Jan. 2016, doi: 10.1016/j.expthermflusci.2015.10.003.
P. Dhiman, A. Bhat, and A. Karn, “The Efficacy of Air Injection in Mitigating Silt Erosion on Hydroturbine Blades: A Computational Study,” 2024, pp. 437–444. doi: 10.1007/978-981-99-6616-5_49.
A. Karn, A. Bhat, and P. Dhiman, “Multipahse flow simulations to explore novel technique of air injection to mitigate silt erosion in hydro turbines,” Journal of Applied Fluid Mechanics, 2025.
S. Aryal, S. Chitrakar, R. Shrestha, and A. kumar Jha, “Credibility of Rotating Disc Apparatus for investigating sediment erosion in guide vanes of Francis turbines,” IOP Conf Ser Earth Environ Sci, vol. 1037, no. 1, p. 012034, Jun. 2022, doi: 10.1088/1755-1315/1037/1/012034.
R. Silva, C. Cotas, F. A. P. Garcia, P. M. Faia, and M. G. Rasteiro, “Particle Distribution Studies in Highly Concentrated Solid-liquid Flows in Pipe Using the Mixture Model,” Procedia Eng, vol. 102, pp. 1016–1025, 2015, doi: 10.1016/j.proeng.2015.01.224.
Y. Zhang, E. P. Reuterfors, B. S. McLaury, S. A. Shirazi, and E. F. Rybicki, “Comparison of computed and measured particle velocities and erosion in water and air flows,” Wear, vol. 263, no. 1–6, pp. 330–338, Sep. 2007, doi: 10.1016/j.wear.2006.12.048.
R. E. Vieira, A. Mansouri, B. S. McLaury, and S. A. Shirazi, “Experimental and computational study of erosion in elbows due to sand particles in air flow,” Powder Technol, vol. 288, pp. 339–353, Jan. 2016, doi: 10.1016/j.powtec.2015.11.028.
A. Mansouri, H. Arabnejad, S. A. Shirazi, and B. S. McLaury, “A combined CFD/experimental methodology for erosion prediction,” Wear, vol. 332–333, pp. 1090–1097, May 2015, doi: 10.1016/j.wear.2014.11.025.
C. Bogey, “Grid sensitivity of flow field and noise of high-Reynolds-number jets computed by large-eddy simulation,” Int J Aeroacoust, vol. 17, no. 4–5, pp. 399–424, Jul. 2018, doi: 10.1177/1475472X18778287.
R. Koomullil, B. Soni, and R. Singh, “A comprehensive generalized mesh system for CFD applications,” Math Comput Simul, vol. 78, no. 5–6, pp. 605–617, Sep. 2008, doi: 10.1016/j.matcom.2008.04.005.
I. SADREHAGHIGHI, R. SMITH, and S. TIWARI, “An analytical approach to grid sensitivity analysis,” in 30th Aerospace Sciences Meeting and Exhibit, Reston, Virigina: American Institute of Aeronautics and Astronautics, Jan. 1992. doi: 10.2514/6.1992-660.
D. Felix, I. Albayrak, and R. M. Boes, “Continuous measurement of suspended sediment concentration: Discussion of four techniques,” Measurement, vol. 89, pp. 44–47, Jul. 2016, doi: 10.1016/j.measurement.2016.03.066.
W. Tsai, J. A. C. Humphrey, I. Cornet, and A. V. Levy, “Experimental measurement of accelerated erosion in a slurry pot tester,” Wear, vol. 68, no. 3, pp. 289–303, May 1981, doi: 10.1016/0043-1648(81)90178-2.
A. Elkholy, “Prediction of abrasion wear for slurry pump materials,” Wear, vol. 84, no. 1, pp. 39–49, Jan. 1983, doi: 10.1016/0043-1648(83)90117-5.
A. Kapali, H. P. Neopane, S. Chitrakar, and O. Shrestha, “Design and development of non-recirculating type erosion test setup for hydraulic turbines,” IOP Conf Ser Earth Environ Sci, vol. 1079, no. 1, p. 012013, Sep. 2022, doi: 10.1088/1755-1315/1079/1/012013.
R. Thakur*, S. Kumar, K. Kashyap, A. Sharma, and S. Aggarwal, “Selection of Erosive Wear Rate Parameters of Pelton Turbine Buckets using PSI and TOPSIS Techniques,” International Journal of Innovative Technology and Exploring Engineering, vol. 9, no. 1, pp. 2418–2428, Nov. 2019, doi: 10.35940/ijitee.A4408.119119.
DOI: http://dx.doi.org/10.21622/resd.2024.10.2.1054
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Prashant Dhiman, Varun Pratap Singh, Ashish Karn
Renewable Energy and Sustainable Development
E-ISSN: 2356-8569
P-ISSN: 2356-8518
Published by:
Academy Publishing Center (APC)
Arab Academy for Science, Technology and Maritime Transport (AASTMT)
Alexandria, Egypt