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ABSTRACT

 This research paper presents an innovative approach for defect detection and classification of solar photovoltaic 
(PV) cells using the adaptive neuro-fuzzy inference system (ANFIS) technique. As solar energy continues to be a vital 
component of the global renewable energy mix, ensuring the reliability and efficiency of PV systems is paramount. 
Detecting and classifying defects in PV cells are crucial steps toward ensuring optimal performance and longevity 
of solar panels. Traditional defect detection and classification methods often face challenges in providing precise and 
adaptable solutions to this complex problem. In this study the researchers pose an ANFIS-based scheme that combines 
the strengths of neural networks and fuzzy logic to accurately identify and classify various types of defects in solar 
PV cells. The adaptive learning mechanism of ANFIS enables the model to continuously adapt to changes in operating 
conditions ensuring robust and reliable defect detection capabilities. The ANFIS model was developed and implemented 
using MATLAB and a high predicting accuracy was achieved.
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I.	 INTRODUCTION

The global quest for renewable energy sources 
has propelled solar photovoltaic (PV) technology 
to the forefront of sustainable energy solutions 
[1]. As the demand for solar power escalates, the 
efficiency and reliability of PV modules become 
paramount. Solar panels are generally designed to 
have a lifespan of about 25 years [2]. However, the  
performance of  solar panels is intricately linked 
to the quality and integrity of their individual PV 
cells. Defects in PV cells, such as micro-cracks, 
hotspots, and delamination, can significantly 
degrade the performance of solar panels, leading 
to reduced power output, shortened lifespan, and 
in severe cases, complete system failure [3]. Timely 
and accurate identification of these defects is 
indispensable to mitigate energy losses and ensure 
the sustained performance of solar PV systems.

Visual inspection, a traditional method of defect 
detection, involves human inspectors visually 
examining PV cells for any visible irregularities or 
flaws [4]. This method is relatively straightforward 
and cost-effective, providing a quick assessment 
of surface defects such as cracks, chips, or 
discolorations. Sadok et al. [5] conducted research on 
the assessment  of  PV modules’ degradation based on 
visual inspection. In their conclusion, they deduced 
that the visual inspection technique is cost-effective 
and more suitable for defects that are visible to the 
bare eye. However, the visual inspection method 
is subjective and may overlook subtle defects that 
could impact the long-term performance of PV cells, 
making it less suitable for comprehensive quality 
control [6]. In contrast, automated optical inspection 
(AOI) systems represent a significant advancement 
in defect detection technology for PV cells [7]. AOI 
utilizes high-resolution cameras and sophisticated 



http://dx.doi.org/10.21622/RESD.2024.10.2.929

219

http://apc.aast.edu

Journal of Renewable Energy and Sustainable Development (RESD)                                   Volume 10, Issue 2, December 2024 - ISSN 2356-8569

image processing algorithms to analyze the surface 
of PV cells with precision and consistency. These 
systems can detect a wide range of defects, including 
microcracks, soldering defects, and variations in cell 
appearance. By automating the inspection process, 
AOI enhances efficiency and reduces the likelihood 
of human error, thus it improves the performance 
of PV modules as reported in [8]. However, the 
efficiency of AOI systems mainly depends on the 
image processing algorithms, therefore selecting 
the suitable algorithm is of prime importance. Non-
destructive testing (NDT) methods also play a crucial 
role in detecting internal defects within PV cells that 
may not be visible to the naked eye [9]. Techniques 
such as electroluminescence (EL) imaging, infrared 
thermography, and ultrasonic testing allow inspectors 
to assess the structural integrity and performance of 
PV cells without causing damage. NDT methods are 
particularly valuable for identifying defects such 
as delamination, hotspots, internal cracks, or cell-
to-cell interconnect issues that could compromise 
the overall module’s reliability. NDT techniques 
have been utilized for defect detection of PV cells 
in the studies [10-12]. However, NDT methods are 
expensive and time-consuming, particularly when 
inspecting large volumes of solar cells. Electrical 
characterization techniques can also be employed 
to evaluate the electrical performance of PV cells 
and identify deviations from expected behavior 
[13]. These techniques include current-voltage (I-V) 
curve tracing, spectral response measurements, and 
capacitance-voltage (C-V) profiling. Inspectors can 
identify defects such as shunts, junction failures, 
or degradation due to environmental factors by 
analyzing electrical parameters such as efficiency, fill 
factor, and open-circuit voltage. The only challenge 
when using electrical characterization techniques 
is that one needs to measure the electrical values of 
every solar cell to see the deviation from expected 
values, which might not be practical in operational 
settings.

More recently, advancements in technology have 
led to the development of machine learning-based 
defect detection systems for PV cells [14]. These 
systems leverage artificial intelligence algorithms to 
analyze data from various sources, including optical 
images, electrical measurements, and historical 
performance data of PV cells. By learning patterns 
associated with known defects, these systems can 
detect anomalies and predict potential failures 
before they occur, enabling proactive maintenance 
and quality assurance in solar panels. Among the 

innovative artificial intelligence approaches, the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) 
is a promising avenue for defect detection and 
classification within solar PV cells [15]. ANFIS 
combines the adaptive learning capabilities of 
neural networks with the interpretability of fuzzy 
logic, offering a hybrid intelligent system capable of 
modeling intricate, non-linear systems. Its unique 
feature of providing transparent decision-making 
processes positions ANFIS as a viable solution to 
address the complexities inherent in defect detection 
tasks. Compared to other techniques, the ANFIS 
offers significant advancements in the detection 
and classification  of defects in solar photovoltaic 
(PV) cells. It provides an adaptive mechanism that 
dynamically adjusts to varying defect types and 
environmental conditions. This results in higher 
classification accuracy and improved sensitivity 
to minor defects that might be overlooked by 
conventional methods. Additionally, the proposed 
technique does not need electrical measurements 
to detect and classify solar cell defects, which is 
a key benefit when assessing solar cells during 
operational settings. Thus, this research investigates 
and evaluates the efficacy of an adaptive neuro-
fuzzy inference scheme tailored explicitly for defect 
detection and classification of solar PV cells. The 
ANFIS is implemented for defect detection and 
classification based on EL imaging.

II.	 COMMON  SOLAR PV CELL 
DEFECTS

Solar PV cell defects may arise from various stages 
of production, handling, installation, and operation 
of solar modules [7]. Here are some common types of 
defects found in solar PV cells.

A.	 Snail Trails

A “snail trail” defect in solar cells refers to dark-
colored, wavy lines or trails observed on the surface 
of crystalline silicon solar cells, resembling the 
tracks left by a snail [16]. These defects typically 
result from the migration of metal impurities, such 
as iron or copper, within the silicon material of the 
cell, which can occur during manufacturing or over 
the cell operational lifetime due to environmental 
factors. While snail trails themselves may not always 
directly impact the cell electrical performance, they 
can serve as sites for additional defect formation 
and contribute to localized degradation over time, 
potentially leading to increased electrical resistance, 
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reduced efficiency, or cell failure. Figure 1 shows a 
snail trail defect in solar cells. 

Fig. 1. A typical snail trail solar cell defect

B.	 Cracks

Cracks in solar PV cells, as shown in Figure 2, 
can originate  from  various sources, including 
mechanical stress during manufacturing, 
transportation, or installation processes [17]. These 
stressors can cause fractures in the semiconductor 
material of the PV cell, such as crystalline silicon or 
thin-film layers. Cracks may also develop over time 
due to thermal cycling, expansion, and contraction 
of materials, or external impacts. Cracks can 
compromise the structural integrity of the cell, 
leading to electrical shorts, reduced efficiency, and 
increased susceptibility to environmental factors 
such as moisture ingress or corrosion. In severe 
cases, cracks can propagate through the entire cell, 
rendering it non-functional.

Fig. 2. Cracked solar cell

C.	 Hotspots

Hotspots in solar PV modules occur when localized 
areas of the module experience higher temperatures 
than the surrounding regions [18]. Hotspots can arise 
from shading, mismatched cells, soiling, electrical 
faults, or bypass diode failures. When a portion 
of the module is shaded or experiences lower 

illumination levels than the rest of the module, it 
can act as a current sink, causing reverse biasing of 
affected cells and localized heating. Hotspots can 
accelerate degradation processes, reduce module 
efficiency, and potentially lead to permanent damage 
or catastrophic failures if not addressed promptly. 
Figure 3 shows hotspots in solar cells.

Fig. 3. Hotspots in solar cells

D.	 Delamination

Delamination refers to the separation or detachment 
of layers within the PV module, typically 
involving the encapsulant layer that surrounds 
and protects the PV cells as shown in Figure 4 [19]. 
Delamination can occur due to prolonged exposure 
to environmental factors such as moisture, UV 
radiation, temperature fluctuations, or mechanical 
stress. Moisture ingress between layers can weaken 
adhesive bonds, leading to separation, bubbling, 
or blistering of encapsulant layers. Delamination 
exposes the PV cells to environmental contaminants 
and accelerates degradation processes, reducing the 
module performance, reliability, and longevity.

Fig. 4. Delamination defect in solar cells
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E.	 Soldering Defects

Soldering defects in solar PV cells often occur at the 
interconnections between individual cells, busbars, 
or  ribbon  connectors [20]. Poor  soldering techniques, 
inadequate temperature control during soldering 
processes, or contamination of soldering materials 
can result in defective connections. Solder joints 
with inadequate bonding or excessive resistance 
can lead to increased electrical losses, localized 
heating, and hotspots within the module. Over 
time, soldering defects can worsen due to thermal 
cycling and mechanical stress, compromising the 
electrical integrity and reliability of the PV module. 
A soldering defect is shown in Figure 5.

Fig. 5. Soldering defects in solar cells

F.	 Microcracks

Microcracks are small, often microscopic fractures 
that develop in solar PV cells due to mechanical 
stress, thermal cycling, or external impacts [21]. 
Microcracks may originate from manufacturing 
processes, handling, transportation, or installation 
activities. While individually small, microcracks can 
propagate and multiply over time, compromising 
the structural integrity and electrical performance 
of the PV module. Microcracks can serve as 
pathways for moisture ingress, leading to corrosion, 
delamination, or electrical degradation. They can 
also contribute to localized heating, hotspots, and 
increased susceptibility to mechanical failures or 
environmental stressors. Figure 6 gives the EL image 
of small cracks in solar cells.

Fig. 6. EL image showing microcracks in solar cells

III.	 ANFIS ARCHITECTURE

An Adaptive Neuro-Fuzzy Inference System (ANFIS) 
combines the strengths of neural networks and 
fuzzy logic to create a powerful tool for modeling 
complex systems and making accurate predictions 
[22]. The architecture of ANFIS comprises several 
layers, each responsible for different aspects of the 
learning process and inference. Figure 7 shows the 
ANFIS architecture.

Fig. 7. A schematic diagram of the ANFIS architecture [23]

Layer 1: Fuzzification Layer - The first layer in an 
ANFIS architecture is the fuzzification layer, where 
crisp inputs  are  transformed into fuzzy sets. This 
layer consists of nodes known as membership 
functions, which represent the degree of membership 
of an input in different linguistic terms. The most 
common membership functions include triangular, 
Gaussian, and trapezoidal functions. Each input 
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is associated with several membership functions, 
which capture different aspects of its uncertainty 
and ambiguity.

Layer 2: Rule Evaluation Layer - In the rule 
evaluation layer, the fuzzified inputs are combined 
according to a set of predefined fuzzy rules. These 
rules encode expert knowledge or domain-specific 
information about the relationships between inputs 
and outputs. Typically, the rule base follows an “if-
then” structure, where each rule specifies conditions 
under which a certain output should be activated. 
The activation level of each rule is determined by 
combining the degrees of membership of the input 
variables using fuzzy logic operators such as AND, 
OR, and NOT.

Layer 3: Rule Consequent Layer - The rule 
consequent layer calculates the contribution of each 
rule to the overall output of the system. Each rule 
has an associated consequence, which represents 
the output value predicted by that rule. The 
consequence is computed by combining the firing 
strengths of the input variables with adjustable 
parameters called consequent parameters. These 
parameters are typically optimized during the 
training process using techniques such as gradient 
descent or least squares estimation.

Layer 4:  Normalization  Layer - In  the normalization 
layer, the firing strengths of the rules are 
normalized. Each node in this layer  takes the  firing  
strengths from the previous layer and computes 
the normalized firing strength by dividing each 
firing strength by the sum of all firing strengths. 
This normalization ensures that the sum of the 
normalized firing strengths equals one, making the 
system output more interpretable and stable.

Layer 5: Defuzzification Layer - The final layer in 
the ANFIS architecture is the defuzzification layer, 
where the fuzzy output obtained from the previous 
layer is converted back into a crisp output. This is 
achieved by aggregating the weighted outputs of all 
rules using methods such as centroid defuzzification 
or weighted averaging. The resulting crisp output 
represents the predicted value of the system based 
on the input variables and the learned fuzzy rules.

Adaptive Learning Mechanism - One of the key 
features of ANFIS is its ability to adaptively adjust 
its parameters based on training data. This is 
typically achieved using a combination of gradient 

descent and backpropagation algorithms. During 
the training process, the consequent parameters of 
the fuzzy rules are adjusted to minimize the error 
between the predicted output and the actual output 
observed in the training data. Additionally, the 
shape and parameters of the membership functions 
can also be optimized to improve the model accuracy 
and generalization performance.

A.	 Applications of the ANFIS Technique 

The ANFIS represents a powerful fusion of artificial 
neural networks and fuzzy logic, offering a versatile 
approach to handling complex systems with both 
adaptability and interpretability. ANFIS models 
are particularly well-suited for applications where 
traditional techniques struggle to capture the 
intricacies of the underlying data [24]. The following 
section gives different applications of the ANFIS 
method.

1.	 Control Systems

ANFIS plays a pivotal role in control systems, 
where precise regulation of processes is vital for 
optimal performance [25]. In industrial settings, 
ANFIS models are deployed to dynamically adjust 
control parameters in response to real-time data 
feedback. For instance, in manufacturing plants, 
ANFIS ensures that production processes operate 
efficiently by fine-tuning parameters such as 
temperature, pressure, and flow rates [26]. Similarly, 
in automotive control systems, ANFIS contributes 
to enhancing vehicle performance and safety by 
optimizing engine parameters, brake systems, and 
stability control mechanisms [27, 28]. Moreover, in 
robotics, ANFIS-based controllers enable robots 
to adapt their behavior to varying environmental 
conditions, facilitating tasks such as trajectory 
planning, grasping objects, and navigating obstacles 
with precision and agility [29].

2.	 Pattern Recognition

Pattern recognition is a fundamental task in various 
fields, including speech recognition, handwriting 
recognition, and image processing. ANFIS excels 
in this domain due to its ability to handle complex 
and ambiguous data patterns effectively. In speech 
recognition applications, ANFIS models analyze 
speech signals to identify phonemes, words, and 
sentences, enabling accurate transcription and 
interpretation of spoken language [30, 31]. Similarly, 
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in handwriting recognition, ANFIS algorithms 
decipher handwritten characters and symbols, 
facilitating text recognition in documents and digital 
interfaces [32, 33]. Moreover, in image processing 
tasks such as object detection and classification, 
ANFIS-based approaches leverage fuzzy logic 
to interpret visual data and extract meaningful 
features, contributing to advancements in computer 
vision and pattern analysis [34].

3.	 Time-Series Prediction

Time-series prediction is crucial in various domains, 
including finance, weather forecasting, and stock 
market analysis. ANFIS models excel in this area by 
leveraging historical data to forecast future trends 
and outcomes. In finance, ANFIS-based algorithms 
analyze market data, economic indicators, and 
investor sentiment to predict stock prices, currency 
exchange rates, and market indices [35, 36]. These 
predictions aid investors, traders, and financial 
institutions in making informed decisions about 
asset allocation, risk management, and portfolio 
optimization. Similarly, in weather forecasting, 
ANFIS models assimilate meteorological data, 
satellite imagery, and atmospheric conditions to 
predict temperature, precipitation, and weather 
patterns with high accuracy [37]. These forecasts are 
invaluable for disaster preparedness, agriculture, 
transportation, and other sectors reliant on weather-
sensitive activities.

4.	 Fault Detection and Diagnosis

ANFIS is instrumental in fault detection and 
diagnosis across industrial systems. ANFIS 
adaptability allows it to generalize across different 
equipment types and environmental conditions, 
offering robust fault detection and diagnosis 
capabilities crucial for maintaining operational 
reliability and efficiency in diverse industrial 
settings. For instance, in a manufacturing plant, 
ANFIS can analyze sensor data from machinery to 
detect abnormal vibrations indicative of potential 
bearing wear or misalignment, thus pre-empting 
breakdowns and optimizing production uptime 
[38]. In a power distribution network, ANFIS can 
identify irregularities in voltage or current levels, 
signalling potential faults such as line overloads or 
equipment failures, enabling swift intervention to 
prevent widespread outages [39]. Moreover, ANFIS 
can be utilized for identifying and diagnosing 
various issues in solar PV systems [40]. For instance, 
by analyzing voltage and current data, ANFIS can 

detect potential issues such as shading on solar 
panels, which might manifest as abnormal voltage 
drops or current fluctuations. Additionally, ANFIS 
can utilize temperature data to identify overheating 
components, such as inverters or junction boxes, 
indicating potential faults or degradation. Also, 
ANFIS can detect anomalies in irradiance levels, 
which could signify shading from nearby objects 
or degradation of solar panels. By integrating these 
data points and employing fuzzy logic, ANFIS can 
accurately diagnose the root causes of these issues, 
whether it is dust accumulation, module degradation, 
or electrical faults, enabling timely intervention and 
maintenance to ensure optimal performance and 
longevity of the solar PV system.

IV.	 DATA ACQUISITION                                
AND METHODOLOGY

This section provides a methodology used for this 
research. The ANFIS was implemented for defect 
detection and classification based on EL imaging. 
The main idea is to develop a classification technique 
that can be utilized in the preventive maintenance of 
solar farms where the EL camera attached to a drone 
is used to perform surveys. The EL camera captures 
the pictures of the solar panels and the smaller solar 
cells that make up the module. The captured EL 
images of the solar cells will then be sent through 
the trained classification algorithm to detect and 
classify different types of defects on the solar panels.  
This research focuses on training and validating the 
detection and classification model that can be utilized 
for the above-explained procedure. In this research 
work, solar cells were used for the experiments, and 
artificial defects (shadows) were created to generate 
the data sets. Artificial defects were used since these 
defects can be used as the representation of the 
actual defects for demonstration purposes. Table I 
provides the specifications of the solar cells used.

TABLE I
SPECIFICATIONS OF THE SOLAR CELLS USED.

Specification Value

Max power 4.67 W

Open-circuit voltage 0.645 V

Short-circuit current 8.99 A

Fill Factor 0.81

Efficiency 19 %

Number of busbars 4

Size 156 mm X 156 mm

Technology Polycrystalline
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The artificial defects were created by covering a 
portion of the solar cell surface using a cardboard 
mask made from aluminium. The covered portions 
were then not able to produce the current and 
because of that, the solar cell is considered defective. 
Six types of artificial defects were created using this 
method. Table II gives the artificial defects with 
defect number 0 representing the original solar 
cell without any defect. The original solar cell was 
included in this regard for standardization purposes. 
Figure 8  shows pictures of different types of 
shadows for creating artificial defects.

TABLE II
TYPES OF ARTIFICIAL DEFECTS.

Defect code Description

0 Original solar cell with no defect.

1 A defect was created by covering the top 
edge of the solar cell with a long horizontal 

cardboard mask.

2 A defect was created by covering the side edge 
of the solar cell with a long vertical cardboard 

mask

3 A defect was created by placing a big circular 
cardboard mask at the center of the solar cell.

4 A defect was created by placing a small 
circular cardboard mask at the center of the 

solar cell.

5 A defect was created by placing two small 
circular cardboard masks at the adjacent 

corners of the solar cell.

6 A defect was created by placing a big circular 
cardboard mask at the corner of the solar cell.

Fig. 8. Different types of shadows (artificial defects)

The experiments to collect the datasets were done 
indoors, in the laboratory. The procedure for 
creating the datasets was as follows. A solar cell 
was placed at the bottom of the isolated box. After 
that, a specific artificial defect was introduced by 

placing an aluminium cardboard on the surface of 
the solar cell. An InGaAs C12741-0 silicon detector 
camera was then used to capture the EL image of the 
defective solar cell. Another different artificial defect 
was introduced, and the procedure was repeated for 
all types of defects mentioned above. This process 
is also repeated with different solar cells and a total 
of 588 datasets were generated. Thus, the datasets 
include the EL images and defect code. 

A.	 EL Images Feature Extraction

As explained in the previous section, every dataset 
goes with an EL image. Firstly, the quality of the 
images was improved by removing dead pixels, 
adjusting the brightness, and fixing the distortion 
caused by the lens of the camera. In machine 
learning, it is not easy to directly use EL images to 
train the models. It is therefore recommended to 
extract some useful features from the images and 
then use those features to train the models. To extract 
the features from the EL images, a histogram of each 
image was computed in MATLAB. The histogram is 
a graphical representation of the distribution of pixel 
intensity values in the image. It shows how many 
pixels have each intensity value.  Figure 9 shows a 
typical solar cell with no defect with its respective 
histogram. The distribution of the histogram has 
different meanings, the x-axis represents the range 
of pixel values (intensity), and the y-axis represents 
the number of pixels at each intensity level. In 
each histogram, there were two main peaks (one 
on the left side of the graph and another on the 
right side), that represent the white (regions of the 
solar cells that emit more light to the camera) and 
dark areas (regions of the solar cells that emit less 
light to the camera) in an EL image. In this research 
work, the x-axis of the histogram was standardized 
and kept constant, and the main focus was on the 
changes in the y-axis of the graph. The values of 
the two main peaks (Peak 1 and Peak 2), the y-axis 
standard deviation (Y-STD), and the y-axis median 
(Y-Median) were extracted from the histogram for 
use in training the ANFIS model. Peak 1 represents 
the highest peak in the graph and Peak 2 represents 
the lower peak on the other side, as shown in Figure 
9. The standard deviation measures how spread 
the intensity values are around the mean. In the 
context of EL images, they indicate the variability 
in the luminescence across different regions of the 
solar cells. The median provides the midpoint of 
the intensity values, offering a robust measure less 
affected by extreme values (outliers) than the mean. 
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This is particularly useful in EL imaging, where the 
distribution of intensity values can be non-normal 

due to the presence of defective areas.

Fig. 9. Typical EL image of a solar cell and its respective histogram

V.	 ANFIS IMPLEMENTATION

The input variables to the ANFIS model were the 
extracted features from the EL images (Peak 1, Peak 
2, Y-Median, and Y-STD) and the output variable 
was the defect code. The design and modeling of 
the ANFIS model was done in MATLAB. The data 
were then grouped into three categories, training 
data (80%) (470 datasets), validation data (10%) (59 
datasets), and testing data (10%) (59 datasets). The 
Sugeno fuzzy inference system (FIS) in MATLAB 
was used in this study. Figure 10 below shows the 
ANFIS model architecture and Table III gives the 
specifications of the ANFIS model.

Fig. 10. ANFIS model architecture

TABLE III
SPECIFICATIONS OF THE ANFIS MODEL.

Parameter Value/Type

Fuzzy inference system (FIS) 
type

Sugeno

Inputs 4

Output 1

Membership functions type Gaussian

FIS generation Grid partition

Training optimization 
method

hybrid

Number of Epochs 50

Number of fuzzy rules 24

Because of the number of the input variables, the 
Sugeno FIS type was utilized and after several test 
runs, the Gaussian membership functions were 
chosen for all input variables. The output variable 
was set at linear. Figures 11 and 12 show the 
membership representation of the FIS variables. The 
membership functions were designed using the grid 
partition method and 24 rules were created.
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Fig. 11. Membership functions for Peak 1 (left) and Y-STD (right)

Fig. 12. Membership functions for Peak 2 (left) and Y-Median (right)

After designing the ANFIS model, the training data 
were loaded. The training data were made up of 
470 datasets. The model was then trained using a 
hybrid optimization training method. The hybrid 
method combines the backpropagation for the 
parameters associated with the input membership 
functions and the least squares estimation for the 
parameters associated with the output membership 

functions. After training, the model was validated 
and tested to evaluate its performance. In MATLAB, 
a surface viewer plots the 3D relationship between 
the variables in an ANFIS model. The shape of the 
surface indicates how the input variables are related 
to the output variable. Figures 13 and 14 show the 
surface viewer of the input variables and the output 
variable.
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Fig. 13. 3D Surface viewer for Peak 1, Y-STD (left) and Peak 1, Peak 2 (right) against Defect code

Fig. 14. 3D Surface viewer for Y-Median, Y-STD (left), and Y-STD, Peak 2 (right) against Defect code

VI.	  RESULTS AND DISCUSSION

The RMSE was used to evaluate the training, 
validation, and testing processes during the 
development of the ANFIS model. For evaluating 
the predicting accuracy of the model, the coefficient 
of determination (R2 )  was used. R2  is a statistical 
measure representing the proportion of the variance 
in the dependent variable that is predictable from 
the independent variables in a regression model. 
It is a key metric used to evaluate the goodness-of-
fit of a regression model. R2 typically ranges from 
0 to 1 of which a value closer to 1 indicates that a 
larger proportion of the variance in the dependent 
variable is explained by the independent variables, 
suggesting a better fit of the model and it can also 
be expressed as a percentage. The above-mentioned 
statistical indicators are given by the following 
equations,

                                        (1)

where,   is the sample size,   represents predicted 
values and,   represents the actual values.

                                                                       (2)

where   is the sum of squares of residuals  and 
  represents the total sum of squares. The 

training of the ANFIS model was evaluated using the 
RMSE and a value of 0.0519  was obtained. This low 
RMSE indicates good performance of the model in 
capturing the patterns present in the training data. 
However, a very low training RMSE might suggest 
that the model is overfitting the training data, 
meaning it learns the noise and specific patterns 
in the training data rather than the underlying 
relationships. To avoid overfitting and tune the model 
hyperparameters, a separate validation dataset was 
introduced, and a validation RMSE of 0.0947  was 
obtained. The small difference between the training 
RMSE and validation RMSE suggests that the model 
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is generalizing well and is not overfitting the training 
data. Overfitting would typically result in a much 
larger gap between training and validation errors. 
The test dataset was also utilized to evaluate the 
model’s performance after training was complete. 
These are the data that have not been seen by the 
model during training and validation. The test RMSE 
of 0.1100 as obtained during this process. Overall, 
the test RMSE of 0.1100, following training and 
validation RMSEs of 0.0519 and 0.0947, respectively, 
indicates a well-performing and reliable model with 
good generalization capabilities.

Fig. 15. Prediction accuracy of the model

The model was also evaluated for classification 
accuracy.  This was achieved by utilizing the “evalfis” 
function in MATLAB to predict the defect code 
class using the developed model and based on the 
inputs of the test data. The model predicted defect 
code was then compared to the original/expected 
defect code for each test dataset by plotting the 
model defect code against the original defect code 
to check the prediction accuracy. The coefficient 
of determination of 0.9976 was obtained, which 
translates to a predicting accuracy of 99.76% . This 
implies that the developed model is highly effective 
at making accurate predictions on the given 
dataset. Figure 15 shows the predicting accuracy 
of the proposed technique. The proposed method 
was also compared to other common artificial 
intelligence techniques used for defect detection 
and classification of PV cells based on EL imaging 
as reported in the literature. The comparison was 
based on the prediction accuracy. Table IV compares 
the proposed technique and other AI methods used 
for defect detection and classification of PV cells. The 
proposed technique proves to be among the best for 

tackling this problem. However, it should be noted 
that the dataset sizes are different for techniques 
compared in Table IV.

TABLE IV
COMPARISON OF THE DESIGNED ANFIS MODEL WITH 

OTHER AI TECHNIQUES.

Technique Reference Datasets 
size

Accuracy

ANFIS Present 
study

588 99.76%

Convolutional neural 
networks (CNN)

[41] 2624 93.02%

Hybrid fuzzy 
convolution neural 

network

[42] 5000 88.38%

Fuzzy logic [43] 200 97.08%

Support vector 
machine (SVM)

[44] 200 95.00%

CNN (ResNet-50) [8] 17064 95.40%

Generative adversarial 
networks (GAN)

[45] 781 90.00%

Deep neural networks 
(DNN)

[46] 2624 98.05%

Support Vector 
Machine

[47] 753 99.70%

VII.	 FUTURE WORK                                                                                        
AND RECOMMENDATIONS

This research work demonstrates how powerful 
the ANFIS is for defect detection and classification 
of solar cells. Future research should investigate 
the use of more sophisticated image processing 
algorithms to enhance the quality of EL images, 
such as noise reduction, contrast enhancement, and 
defect feature extraction. Integrating deep learning-
based image processing techniques could further 
improve the accuracy and robustness of defect 
detection and classification. Additionally, developing 
methods to process high-resolution EL images in real 
time will allow for more precise defect detection. 
Optimizing the algorithm for real-time processing is 
also essential. 

Expanding the dataset to include a wider variety 
of defects and a larger number of EL images is also 
crucial for improving the training and validation 
of the neuro-fuzzy system. This dataset should also 
include images captured under different operating 
conditions and from different PV cell technologies 
to ensure the system generalizability. Implementing 
adaptive learning mechanisms will allow the neuro-
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fuzzy system to continuously update itself with 
new data, enhancing its performance over time. 
Additionally, developing online learning capabilities 
will enable the system to learn from new defects and 
operational scenarios without the need for complete 
retraining.

Exploring the combination of EL imaging with other 
imaging techniques, such as infrared (IR) imaging or 
photoluminescence (PL) imaging, could also improve 
defect detection and classification accuracy. A 
multi-modal approach where data from multiple 
imaging techniques are fused could provide a more 
comprehensive defect analysis. These advancements 
will contribute to a more robust and effective defect 
detection and classification system for solar PV cells.

Future work should also explore applying the ANFIS 
approach to large-scale operational settings since 
it may present challenges such as computational 
complexity, increased training time, and large memory 
requirements. The computational complexity of 
ANFIS can be significant, especially when dealing 
with large datasets or high-dimensional data. As the 
number of input variables increases, the training 
time and memory requirements grow exponentially, 
leading to potential issues with scalability and 
efficiency. This challenge is compounded by the risk 
of rule explosion, where the number of fuzzy rules 
becomes unmanageable, making the system difficult 
to implement and maintain in real-time operational 
settings.

Addressing the outlined future work and 
recommendations will enhance the ANFIS 
capabilities for solving the problem at hand, ensuring 
its practical applicability, and contributing to the 
advancement of defect detection technologies in the 
solar PV industry. These advancements are crucial 

for achieving Sustainable Development Goals related 
to clean and sustainable energy. By focusing on these 
areas, the research can continue to evolve, providing 
more robust, efficient, and practical solutions for 
defect detection and classification of solar PV cells 
using EL Imaging, ultimately supporting global 
efforts toward a sustainable future.

VIII.	 CONCLUSION

In conclusion, this  research  provides a 
comprehensive investigation into the application 
of an innovative Adaptive Neuro-Fuzzy Inference 
System (ANFIS) framework for defect detection 
and classification of solar PV cells. By harnessing 
the combined strengths of neural networks and 
fuzzy logic, the proposed scheme demonstrates 
a notable capacity  to effectively identify and 
categorize various types of defects encountered in 
solar photovoltaic systems. The defect detection 
and classification were performed based on EL 
imaging. The results showed that the ANFIS is 
capable of detecting and classifying solar PV cell 
defects with high accuracy. As for future endeavors, 
expanding the dataset to encompass a wider array 
of defect types and environmental conditions could 
enrich the model learning capacity and improve 
its robustness in real-world scenarios. Moreover, 
exploring the integration of advanced sensing 
technologies and real-time monitoring systems holds 
the potential for enhancing the proactive detection 
and mitigation of defects, thereby propelling 
forward the performance and sustainability of 
solar PV technologies. This avenue of research not 
only promises advancements in defect detection 
methodologies but also contributes significantly to 
the broader goal of advancing renewable energy 
systems toward greater reliability and sustainability.
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