Non-Uniform Dust Distribution Effect On Photovoltaic Panel Performance

Saman S. Jaafar1,1, Hiwa A. Maarof1b, Renas T. Salh1c, Hoshang Sahib1d, Yousif H. Azeeze1e

1Physics department, College of Science, University of Halabja, Halabja, KRG-Iraq

saman.jaafar@uoh.edu.iq, bHiwa.Maroof@uoh.edu.iq, crenas.salh@uoh.edu.iq, dhoshang.sahib@uoh.edu.iq
eyousif.husain@uoh.edu.iq

ABSTRACT

A novel experimental method for power efficiency loss is presented in this paper. It is used to quantitatively determine the impact of dust deposition on the PV power generation panel. To determine the selection range of unknown parameters in the experiment process, a photovoltaic panel with five collected dust samples (Toner (C), Soil, Cement (CaO, SiO4), Gypsum (Ca2SO4.2H2O), and Sand (AL2O3, SiO4)) is designed. According to experimental results, the extinction coefficient for the five pollutants are recorded. Eventually, the impact of dusts on the results is proved by repeating in two continuous days of same conditions. The results show that the proposed process has a high effect on the reduction of output power (62% to 96%), decrease of irradiance (34% to 93%) and increase of output power due to increasing of tilt angle as a doubling of power except toner. The experimental and calculated results are in agreement. The results show that non-uniform distribution of dust deposit pollutants on the photovoltaic panel significantly reduces the power output.

Index-words: Dust deposition, Dust accumulation, Power reduction, Solar PV performance, Extinction coefficient.

I. INTRODUCTION

With the industrial revolution and the increase in energy consumption, concerns about the environment and global warming have been raised (Mahmood, Jaafar, and Mustafa 2022). Recent worldwide efforts to improve energy security and reduce climate change have necessitated a fundamental shift in the way solar energy is handled [2]. Since photovoltaic (PV) phenomena were studied and solar cells were being made, countries have been using and relying on solar panels and modules for their electrical energy needs. The two prominent problems of PV are concerned with the environmental issues and energy that restricts the continuous development of economy and society. Installation of the solar panel depends on several uncontrollable factors, and dust deposition on the surface of the PV is an important reason to decrease the power. Dust accumulation on the PV can scatter, reflect, and absorb the light, that will seriously drop the transmission of light and reduce the power (Fan et al. 2021). Furthermore, the variety of environmental factors decreased the efficiency of the PV by more than 30% (Memiche et al. 2020). The chemical decomposition, density, and size of dust particles are the reason behind decreasing the power (Mostefaoui et al. 2018) (Said et al. 2018). The design of dust cleaning on the surface of solar cells is highly recommended to increase the PV output power (Parrott et al. 2018). Dust accumulation of (10 g/ m²) decreases the performance of the PV by 34% (Chen et al. 2019), based on Salimi et al. (2020). The adhesion of dust particles is proportionally related to the reduction of the output power of PV (Kawamoto and Guo 2018). There are growing appeals for cleaning steps that are more useful to raise the performance of a dusty panel (Lorenz et al. 2019). Also, the industrial activities lead to deposit of different kinds of dust particles on the PV, which drops the electrical efficiency from 29% to 64% based on the types of deposited dust (Andrea, Pogrebnya, and Khichonge 2019). The deposition of dust on the PV’s surface will increase directly with the density and the size of particles, but it changes inversely with the diaphaneity of the particles (Xingcai and Kun 2018). Recently, theoretical developments have revealed that dust accumulation drops the PV’s power by 29, 31, and 50% (Benghanem et al. 2018; Mostefaoui et al. 2018; Mussard and Amara 2018). Jaszczur (2018) stated that efficiency is reduced by 21% when 300mg of dust particles are deposited on each square meter. PV power is reduced directly with particles’ densities; meanwhile, it has been changed based on the tilt angle of the PV. The tilt angle of 0° to 45° reduces performance by 37.6% to 10.9%, respectively (Hachicha, Al-sawafta, and Said 2019).

A suggested way to weaken the adhesion of dust on the glass surface of the PV is to use hydrophobic coating when, for tilt angles of 30° and 60°, the power reduction is 44.4% and 11.2%, respectively (Zhang et al. 2019). During dust storms, for angles of 0° to 45° tilt angle, the power efficiency of PV drops from 58.2% to 20.7% (Khodakaram-Tafti and Yaghoubi 2020) (Hachicha et al. 2019). The dirty solar panel has power production of 10% lower than the clean one. The different dust samples have been tested and it was revealed that they have reduced the performance
of the PV from 5% to 30% (Chaichan and Kazem 2020). The main adhesion forces between the dust particles and the PV surface are studied as:

Capillary, Van der Waal, electrostatic and gravitational forces (Isaifan et al. 2019). Wang et al. (2018) showed that the coated PV with Fluorine super-hydrophobic film has less effect than the silicon super-hydrophobic film. The rainy weather can be mentioned as an excellent natural cleaner of dust on the PV (Panels 2020) (Al-Housani and Bicer 2019). A common strategy used to study the influence of dust deposition on the solar panel surface is to take a period of sandstorm going to deposit more thickness of dust particles and it leads to reducing the transmission of light (Mostefaoui et al. 2018). For decades, one of the most popular ideas for maintaining the highest performance in PV is the idea that the accumulated dust must be removed from its surface. The most detailed review of research has been done from 2012-2015, which shows the effects of dust accumulation on the PV in detail during the study of Costa, Diniz, and Kazmerski (2018). In Saudi Arabia, to remove the PV from deposited dust, they used jet water with low pressure, and the performance of the solar cell farm increased by 27% (Systems 2019). While the weak dust of density 0.644 g/m² reduced the performance of the PV by 7.4% (Chen et al. 2020). Various research on dust accumulation show results on how the different types of deposited dust particles will cause the decrease of the efficiency of the solar cells (Aljuhani et al. 2021; Alnasser et al. 2020; Chanchangi et al. 2020a, 2020b; Dhaouadi et al. 2021; Dida et al. 2020; Drame et al. 2021; Fan et al. 2021; Ilse et al. 2023; Javed et al. 2021; Kazem et al. 2020; Laarabi et al. 2021; Liu et al. 2021; Mustafa et al. 2020; Ullah et al. 2020; Zhang 2020). The rising temperature due to the high amount of solar radiation intensity caused a decrease in the PV cell’s efficiency (Kazem and Chaichan 2019). The layering of the dust particles is mostly related to the temperature of the PV (Jaszczur 2019).

The PV of higher surface temperatures has lower accumulated dust (Gupta et al. 2019). The dust deposition on the PV’s surface caused an increase in its surface temperature based on the study of Chaichan and Kazem (2020).

Cleaning the different panels is shown by the temperature-correction performance ratio (Guo et al. 2019). On the other hand, the cleaning process enhances the efficiency by 32.7% in a 1MWp PV farm (Hammoud et al. 2019). Based on the studies, the PV dust accumulation caused the thermal property settlement neither the electrical nor the optical (Gupta et al. 2019).

Finally, concentrating on complexity of dust distribution density and reduction power of PV panels, the researchers designed an experimental set up and measured the (I-V) and (P-V) data to evaluate the degree of dust accumulation on PV that exists in the environment. Firstly, the different types of dust samples are collected and each one is distributed on PV surface, the regular power production of PV panels is analysed, the basic equations form of dust density and power reduction rate is given, and dust density with irradiance is appointed. Basically, the analysis of the obtained behaviour of each of the five sample pollutants, containing distribution, concentration, composition, and the effect of dust particles on light transmission under different mass density and tilt angle is carried out. To ensure the reliability of the experimental results, some principle equations are used to to show the wrong analysis method for dust concentration.

The five-dust samples and their chemical decomposition are Toner (C) (Parthasarathy 2021), Cement (CaO, SiO₄) (Oliveira and Moreira 1989), Sand (Al₂O₃, SiO₄) (Ibbeken and Schleyer 1991), Soil, and Gypsum (CaSO₄.2H₂O) (Bolubasí, Kurt, and Palacio 2016). The basic contributions can be explored as follows:

- Different curve behaviour of dust particles and the reduction of power production at the same irradiance for obtaining the effect quantity of dust deposition are plotted.
- To guarantee the experimental process results, different scenarios are applied like irradiance reduction with respect to the dust distributed density, and influencing the coefficient of tilt angle for each of the five collected dust samples.
- The experimental and calculated results are in agreement.

TABLE I: NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbols Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>CaO, SiO₄</td>
</tr>
<tr>
<td>AL₂O₃, SiO₄</td>
</tr>
<tr>
<td>CaSO₄</td>
</tr>
<tr>
<td>R_sh</td>
</tr>
<tr>
<td>Rs</td>
</tr>
<tr>
<td>Iₚ</td>
</tr>
<tr>
<td>Φ</td>
</tr>
<tr>
<td>I_{ph}</td>
</tr>
<tr>
<td>I_{s}</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Si</td>
</tr>
<tr>
<td>Ge</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>σ_{ext}</td>
</tr>
<tr>
<td>σ_{sc}</td>
</tr>
<tr>
<td>σ_{abs}</td>
</tr>
<tr>
<td>b_{sc}</td>
</tr>
<tr>
<td>b_{abs}</td>
</tr>
<tr>
<td>ρ</td>
</tr>
<tr>
<td>Φ_{sol}</td>
</tr>
<tr>
<td>Φ_{plane}</td>
</tr>
<tr>
<td>Φ_{dusty}</td>
</tr>
<tr>
<td>m</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>η</td>
</tr>
<tr>
<td>IR</td>
</tr>
<tr>
<td>P_{max,dusty}</td>
</tr>
<tr>
<td>P_{max,clear}</td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>V</td>
</tr>
</tbody>
</table>
II. METHODOLOGY

A. Position of the Problem

As a basic reason that influences the output voltage (V) and output current (I) of PV, dust deposit on the solar panel can reduce the output power (I.V). The PV panel of internal circuit like Figure 1 is shown and the main parameters of V and I which affect the solar cell’s actual power are described.

\[I_{\Phi_3} = I_{\Phi_2} - I_0 \left(e^{\frac{q(V+I_R)RT}{nKT}} - 1 \right) - \frac{V+I_R}{} \]

Where \(I_{\Phi_3}, I_{\Phi_2} \) are light current, \(I_0 = \) saturate Current of diode, \(R_s \) is series resistor, \(K \) Boltzmann constant, \(T \) is temperature, \(n \) is constant (Kazem et al. 2022).

The influence of dust accumulation on reducing PV output power can affect the efficiency (\(\eta \)) and it can be described as:

\[\eta = \frac{P_{\text{max}}}{P_{\text{in}}} \times 100\% \]

Where \(P_{\text{max}} \) is output power of PV cell that is usually determined by measuring the output voltage V and output current I, \(P_{\text{in}} \) is input power of light to the PV which is (irradiance \times Area of PV) (Ali et al. 2021).

B. Study Area

Continuously, the experimental process is done in the Halabja city-Kurdistan region of Iraq, as shown on 1st and 2nd October 2022. This city has an altitude angle and the azimuth angles are 35° and 5° (Jaafar and Maarof 2022).

Naturally, this location and in general most of the Iraqi provinces are under influence of dusty air in some months of year because of the existence of desert land in Iraq and other neighbouring countries. More than this, due to industrial actives, the same types of the collected dust pollutant exist in the environment air. For that reason, these kinds of the pollutants are collected and experimentally analysed to determine their effect on decreasing the PV performance.

Now, to have more accurate analysis data on dust accumulation on surface of PV, the calculation of the output power is usually done for the case of dusty surface (\(P_{\text{dusty}} \)) and clean surface (\(P_{\text{clean}} \)). After that the researchers defined the power reduction rate, which is used to present the best achieved efficiency (Ullah et al. 2020). Thus

\[L(t) = \frac{P_{\text{clean}} - P_{\text{dusty}}}{P_{\text{clean}}} \times 100\% \]

Where \(b_{\text{ext}} \) is the extinction factor due to the dust particles, \(P_{\text{dusty}} \) is the output power of dusty panel and \(P_{\text{clean}} \) is output power of clean PV panel.

For having more detail and raising the level of accuracy the \(b_{\text{ext}} \) can be calculated as dependent on \(\Phi_3 \) and represent as:

\[\Phi_3 = \Phi_2 e^{-b_{\text{ext}}x} \]

Remark: For increasing the level of accuracy and test the next pollutants the previous one was totally removed from the surface of the PV. When the extinction coefficient of used plane glass \(b_{\text{ext}} = 0.028 \), it can be easy to measure the reduced irradiance for each dust samples with different mass density.

The extinction coefficient can be determined from both scattered and absorption coefficient as (Redmond, Dial, and Thompson 2010):

\[b_{\text{ext}} = b_{\text{scat}} + b_{\text{abs}} \]

Where \(b_{\text{scat}}, b_{\text{abs}} \) is scattered and absorption coefficient, respectively.

Due to absorption coefficient of dust particle the intensity of light reduced, then Lambert’s Law stated as:

\[\Phi_3 = \Phi_2 e^{-\mu x} \]

Where \(\mu \) is the intensity reduced due to (dusty PV), initial intensity of light after pass through clean PV and \(x \) is the interaction distance between the light and the dust particles.

C. Experimental Setup

After establishing the basic theory of experimental process, five prepared dust particles on PV panels in different amount of masses are investigated. Mainly, to detect the exact effectiveness coefficient \(b_{\text{ext}} \) and the reduced actual power, a real design of experiment is designed.
D. Experimental Process

Dust accumulation on PV cell in the real environment, a single PV panel of 15W power generation for experiment setup is set up. The dust samples and experiment setup are given in Figures 3 and 4.

In the first part, a plane glass is used to put on the PV surface. The aim of that was just for measuring the irradiance after going through the plane glass and the accumulated dust on plane glass. After that an outdoor PV power generation system is established. Three radiation levels are measured during the experiment, and the sun radiation range was from 925 to 1000 W/m² and this range was between 560 to 700 W/m² for plane glass. In the second part, an electronic balance is used to calculate the dust mass density of the plane glass sheet. Here, it was necessary to control the mass of deposited pollutants in the third part, so that dust density range is 0.2840 g/cm² to 1.4198 g/cm². In the third part, the dust distributing process is done manually. Regarding to the non-uniform distribution of dust, it will have the same effect on the PV power same as the natural uniform deposition. After determining dust density and output power from the plotted curves, the effect model of dust accumulation and power efficiency is analyzed and obtained and the validity of the experiment is proved by the actual conditions.

Step 3. By using voltmeter, ammeter, and a rheostat all V-I data are measured and the power is obtained for each couple I and V data. P-V curves are plotted as can be seen in Fig. 6.

Step 4. For all type of dusts with specific mass density different tilt angle 0° to 45° and for C case extra angle of 60° are tested. Step 3 is repeated for all tilt angle and the data are plotted.

To reduce the error factor of the experiments process, the steps are repeated on two continuous days in same natural conditions.

III. RESULTS AND DISCUSSION

In this part, the experimental outcome will be analyzed in detail. In subsection 5.1, the all parameters characteristics such as V-I curve, V-P curve, . , and different tilt angle of five dust pollutants are investigated.

A. Analysis Impact of Dust Deposition on PV Panels

In order to acquire the power reduction factor, the experiment is set up to test and measure the energy performance of the PV panel, including output voltage, current, power, irradiance and tilt angle. Fig. 6 shows the power output curves for all dust pollutants under unchanged radiation with a dust density of five levels. In addition, each sub-Figure shows the evolution of the power efficiency of the same dust pollutant of different
mass (five concentrations of pollutant accumulation). Experimental results show that the output power of the PV panels decreases in different degrees with the increase of mass density of each accumulation effect.

At low density, the coverage area of toner on PV is more, which has high effect on power output. When the concentration of toner reaches 0.775 g/cm², the output power drops to zero. When the soil concentration raised to the same value, the output power changes to 2.4 W and it is significantly lower than the power of clean PV. The output power is 2.86 W, when the maximum density is 1.4119 g/cm² for Al₂O₃, SiO₂. CaO, SiO₄ is one of the pollutants that have reduce the output power to 2.17 W of the same density as Al₂O₃, SiO₂. It can be sensed that the output power of PV panels is highly sensitive to toner pollutant because of the its colour and adhesion.

From Fig. 7, the plot (a): represents five different curves of the same mass density. When the density is 0.5679 g/cm², the power decline trend is 62.35%, 66.95%, 69.05%, 63.35% and 96.65% for soil, (Al₂O₃, SiO₂), (CaO, SiO₄), (CaSO₄.2H₂O) and (C), respectively. Plot (b): among all pollutants, soil, (CaSO₄.2H₂O) and (Al₂O₃, SiO₂) rapidly changed with increasing the concentration. However, for (CaO, SiO₄), the output power extremely decreased from 0.28 g/cm² to 0.56 g/cm² and after that the change went slowly. For toner, output power rapidly goes to zero by concentration of 0.56 g/cm². Plot (c): soil, (Al₂O₃, SiO₂) and (CaO, SiO₄) by increasing the tilt angle, the effectiveness of their concentration will be reduced because the output power of each of the three increased. The output power increased highly after angle of 30° due to low adhesion. Toner C has a small particle size and high adhesion, and the output power goes forward constantly. Plot (d): toner pollutant highly reduced the irradiance, but other types of dust uniformly decreased the irradiance. The low concentration of pollutants has a little effect on irradiance, while high concentration of each influenced the irradiance significantly.
Fig. 7. Curves of All Pollutants: a: P - V curves, b: P - ρ curves c: P - tilt angle curve

Fig. 8. $\Phi_3 - \rho$ Curves with their Fitting Curves to Find the Value of $b_{ext} \cdot x$
IV. CONCLUSIONS

The impact of five collected dust pollutants (Toner (C), Soil, Cement (CaO, SiO₂), Gypsum (CaSO₄·2H₂O), and Sand (Al₂O₃, SiO₄) on the actual power of PV panels are determined in this study. Fortunately, the effectiveness of extinction coefficient of various dust particles for different dust decomposition on the power of PV panels with various concertation is determined. The overall the results could be as:

1. Dust deposition has a remarkable inhibitory influence on PV panels output power, and its efficiency debilitation depends on the kind of pollutant colour, composition, and more on the density of dusts.

2. Joining the impact of concentration on the irradiance ratio of PV panels output power experimentally established.

3. The outcomes present that the calculated output power reduced (62% to 96%), irradiance (34% to 93%) decreased and increasing of output power due to increasing of tilt angle as redouble the power. But toner double down the power.

4. The extinction coefficient of all pollutants has been found and the toner has the highest extinction with (Al₂O₃, SiO₄).

Although the influence of different dusts is collected, their accumulation on the PV is considerably not uniformly, and there may be difference extinction coefficient various points on PV panel. In the future, the used model of uniform distribution condition of pollutant should be further developed to have a uniform experimental process for the recording of V-I and V-P graphs of pollutants.

Contribution

Saman Jaafar carried out system building, data analysis, and interpretation experiments. Hiwa Abdlla Maarof and Renas T Salh cooperated as a partner in data analysis. Hoshang Sahib did the plots and fitting of the data measures. Yousif Azeez cooperated as paraphrasing and rewrite the draft version. All authors have read and agreed to the published version of the manuscript.

Declarations

Ethical approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Conflicts of interest: The authors declare no conflict of interest.

References

