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Abstract - The dc-to-dc boost converter is a single-

switch, single-inductor, switching circuit used to 

efficiently transform energy from one dc voltage level 

to a greater voltage level of the same relative polarity. 

For a specific resistive load range, as the duty cycle 

decreases, the boost converter inductor enters a 

discontinuous current mode of operation - the output 

load current having decreased to a definable level. 

This paper analyses the fact that a further reduction of 

load current, as the duty cycle decreases towards 

zero, will always result in the re-emergence of a 

continuous inductor current condition. Further, at the 

other load extreme, high-current, progressively for 

increasing load current, starting at low duty cycle 

conditions, the minimum inductor current always 

increases from a fixed normalised current level, for a 

specific load range. These and other hitherto 

unexplored boost converter properties are analysed 

and verified mathematically and with PSpice 

simulations. 

 

Keywords - switched mode power supplies, smps, 

boost converter, dc to dc converters. 

 

I. INTRODUCTION 

 

A. Species Distribution Models (SDMs) 

The three common non-isolated, single-switch, single-

inductor, dc-to-dc converters (switch mode power 

supplies - smps) are 

 

 the forward (or buck or step-down) converter; 

 the step-up (or boost) converter; and 

 the inverting step-up/down (or buck-boost) 

converter. 

 

Each of these converters operates on the principle of 

taking input dc supply energy, temporarily storing that 

energy in the magnetic field of an inductor, then that 

energy is diverted to the load, which can be at a 

potential and polarity different to the input energy 

source emf voltage. 

This paper is specifically concerned with the boost 

converter shown in figure 1a and extends the 

analyses and understanding of its basic traditionally 

accepted operating modes and properties. The 

background theory is briefly presented to establish 

existing boost converter operational interpretation and 

to define the necessary concepts and parameters. 

 

The boost converter in its basic form converters dc 

voltage source energy to a higher voltage level, using 

switch mode (hard or soft) techniques (namely, the 

switch is either cut-off or fully on - saturated). The 

boost converter is used to step up the low output 

voltage of PV arrays to a voltage level commensurate 

with inverter link voltages suitable for transformerless 

ac grid interfacing [1]. Because of its continuous input 

current characteristic the boost converter is used 

extensively for extracting sinusoidal current at 

controllable power factor from wind turbine ac 

generators [2].    

 

As shown in figure 1b, operation and the output 

voltage are characterised by the switch on-time duty 

cycle δ, and analysis is centred on the inductor 

current iL and inductor voltage vL, as shown in figures 

1c and 1d. Specifically, in steady-state, analysis is 

based on the inductor satisfying Faraday’s equation  

 

L
L

di
v L

dt
  

 

Steady-state theoretical analysis assumes zero 

switch and diode losses, an infinite output 

capacitance C, and zero source and inductor 

resistance; then the switch on-state and off-state 

currents created Kirchhoff loops yield 

(V.s)L i T o DL i E t v t                               (1) 
 

which after rearranging the last equality, gives the 

traditional boost converter voltage and current 

transfer function expression 


 



1
(pu)

1

io

i o

v I

E I
                             (2) 

 

where, because of zero converter losses, the output 

power is equal to the input power, namely, 
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 ooi i
E I v I

- termed power invariance. This 

expression, equation (2), assumes continuous current 

in the inductor when the switch is off, during the 

period tD, such that 
 DT

t t
, where the steady-

state switching frequency is  1/sf  and the 

normalised switch on-period is 
/Tt 

. 

Equation (2) highlights that the relationship between 
the input and output voltages (and currents) is 
independent of circuit components L, C, and the 
switching frequency fs: being dependant only on the 

switch on-state duty cycle δ, provided inductor 
current flows throughout the whole switch off-state 
period, tD, normalised as δD = tD / τ = 1 - δ. This 
inductor current condition is termed continuous 
conduction. A continuous current requirement is 
highlighted when considering the circuit energy 
transfer balance between the input and the output: 

 

2 2

½ /

1 / (W)

L Lo oi o

Li oi L o

E I L i i v I

E I L I i v I



 

 
   

 

   

                       (3) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig .1. Non-isolated, step-up, flyback converter (boost converter) where vo ≥ Ei: (a) circuit diagram; (b) voltage transfer function dependence 

on duty cycle δ; (c) waveforms for continuous input (inductor) current; and (d) waveforms for discontinuous input (inductor) current. 
 

 

The last term in (3) is the continuous power 

consumed by the load, while the second term is the 

energy (whence power) transferred from the inductor 

to the load. The first term is the energy derived from 

the source Ei delivered through the inductor, while the 

inductor is also transferring energy to the load (when 

ii = iL 

tD tD 
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the switch is off). A similar energy transfer 

mechanism occurs with the step-up ac auto-

transformer. In using the factor 1 - δ in equation (3), it 

is assumed that energy is transferred to the load from 

the supply, during the whole period the switch is off, 

that is, continuous inductor current. Since the inductor 

is in series with the input, the input current terms are 

interchangeable with the corresponding inductor 

current terms, for example,   Assuming power from 

the emf source Ei is equal to power delivered to the 

load, power invariance, then equation (3) reduces to 

equation (2), or in a rearranged form 

 

(V)i o oE v v                                  (4) 

 

In this form, it can be seen that the output voltage vo 

has a component due the input dc supply Ei, and a 

boost component proportional to the switch on-state 

duty cycle δ, illustrating that the output voltage 

magnitude vo is equal to or greater than the input 

voltage (emf) magnitude Ei. 

Traditional theory considers when the load energy 

requirement falls below that level necessitating the 

inductor carry current during the whole period when 

the switch is off: termed discontinuous inductor 

current. Three sequential cycle stages (rather than 

two) now occur during the interval τ: 

 the period when the switch conducts, tT, 

normalised as /Tt   

 the period when the inductor and diode conduct, 

tD, normalised as /DD
t   

 the period tx is when the inductor and diode cease 

to conduct before t = τ; normalised as /xx
t   

 

such that tT + tD + tx = τ or when normalised δ + δD + δx 

= 1, as shown in figure 1d. 

From equation (1), using 

 

L

i T iE t E
i

L L



   (5) 

 

where 


 0Li  when the switch is turned on then 

 

½ ½L

i
L o

E
I I i

L


 



    

 

Assuming power invariance and substituting L iI I  

( 1) ½o i
o

i

v E
I

E L


   

 

that is, after various  ooi i
E I v I substitutions: 

 
22

2

1
1 1

2 2
1

2

o oi

i io i

i

v vE

E EL I L I

L I

  


    



 (6) 

 

Note that power invariance is valid for all inductor 

current conditions, namely, both continuous and 

discontinuous currents – during steady-state 

operation. But equation (6) is only valid for 

discontinuous inductor current, and its boundary with 

continuous inductor current operation. Equation (6) is 

consistent with power invariance, where, for 

discontinuous current, equation (3) becomes 

 

 
2

½ /Lo oo iv I E I L i  (7) 

 
Operational interest centres on the boundary 

conditions between continuous and discontinuous 

inductor current, where the basic voltage and current 

transfer function in (2) remains valid. On the verge of 

continuous conduction, any of the equations in (6) 

rearranged give the boundary critical output current 

  

(1 )
2

i
o critical

E
I

L
     (8) 

 

Using oov I R and equation (2), the critical boundary 

load resistance Rcritical is given by 

 

   
 

    
   


2

2 2
Ω

11

o o
critical

o critical i

v vL L
R

I E
 (9) 

 

A fact not previously specifically stated in the 

literature, is that the last equality in this critical 

resistance expression is common to all three single-

inductor, single-switch smps (buck, boost and buck-

boost): 

 
2

1
o

critical

i

v L
R

E   
 


 (10) 

 

which, for the boost converter, after differentiating the 

first identity in equation (9) and equating to zero, 

giving δ = ⅓, has a minimum value of 
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2
critical

L
R





   (11) 

 

when δ = ⅓ and vo = 1.5×Ei, which corresponds to a 

maximum critical current of  




  
4

               (A)
2 27

o o
o critical

critical

v v
I

LR
 (12) 

At other output voltages, when δ ≠ ⅓, lower currents 

(larger load resistance, 


 )criticalR  can be tolerated 

before the onset of discontinuous inductor current. 

Alternatively, equation (13) shows that critical 

resistance is inversely proportional to inductor ripple 

current. That is, a large continuous inductor ripple 

current and low duty cycle undesirably enhance the 

early onset of inductor discontinuous ripple current. 

 
2

2

1

i
critical

L

E
R

i


 
 (13) 

 

II. INDUCTOR ONTINUOUS/DISCONTINUOUS 

CURRENT BOUNDARY OPERATIONAL 

ANALYSIS METHODS 

 

The expressions in equation (6) are only valid for 

discontinuous inductor current, and on the boundary 

with continuous conduction, since their derivation is 

based on 


 0Li . 

Two methods are commonly employed to analyse 

discontinuous current conduction operation, equation 

(6), namely: 

The voltage transfer function is normalised with 

respect to 

 the maximum discontinuous inductor current in 

terms of the input current iI  

 the maximum discontinuous inductor current in 

terms of the output current oI  

 

where in each case the input voltage iE  and output 

voltage ov  are, in turn, assumed constant. 

The voltage transfer function is normalised in terms of 

the load resistance. This involves the smps time 

constant L/R, (formed by the circuit when the switch 

is off), being normalised by the reciprocal of the 

switching frequency, namely, τ. 

 

A. Normalisation in terms of the maximum 

discontinuous inductor current 

Of the four possible I-V combinations that can be 

analysed, the case specifically considered here, by 

way of example, is when the output voltage vo is 

assumed constant (as opposed to the input voltage, 

Ei) and is normalised with respect to the output 

current, oI  (as opposed to the input current, 
iI ). This 

specific case (  oov I , effectively load resistance) is 

considered since it later represents the situation 

which best presents hitherto unexplored properties.  

Consider equation (6), specifically 

2

1
2

o i

i o

v E

E L I

 
   (14) 

 

which gives 

 

2

1 /
2

o o
o

i o
i

v v v
E LI E

 
   (15) 

 

At maximum discontinuous inductor current (at the 

boundary between continuous and discontinuous 

inductor current), the transfer function, equation (2) is 

valid, and on substitution into equation (15) gives a 

cubic polynomial in δ 

 
2

1
2

o
o

v
I

L


     (16) 

 
The maximum average output current on the 

boundary, for a constant output voltage vo, is found 

by differentiating (16) with respect to duty cycle δ, 

and equating to zero.  On substituting the conditional 

result δ = ⅓, this yields (as in equation (12)) 


   1

3when and
4

   1½
2 27

o o
o

i

v v
I

L E
 (17) 

 

Normalising equation (15) with respect to the 

maximum discontinuous current given by (17), after 

isolating the voltage transfer ratio, yields  
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2

constant

½ ½ 1 27 /

o

o o

i v
o

v I

E
I




  
 (18) 

 

The boundary equation between continuous and 

discontinuous inductor current conduction, relating 

the output current and duty cycle can be found by 

substituting the transfer function 1/1  , which is 

valid on the boundary, into (18), which yields 

 
227

4
1

critical
o

critical
o

RI
R

I

 



    (19) 

 

Equations (14) to (19) are presented in the 

penultimate column of Table 1, where the results of 

similar analysis for the other normalised input and 

output voltage and current conditions, being 

established background, are also summarised. The 

table also shows rearranged boundary conditions for 

each variable ( , / , and ),/o o oi
v IE I  in terms of 

the other variables, as in equation (19), for example.  

These normalised equations and their various 

rearranged forms are plotted in figures 2, 3, and 4. 

Each figure has four different plots, one for each of 

the possible normalised input and output voltage and 

current combination.  

i.  versus /I I  - figure 2      [3] 

Figure 2 shows how, to maintain a constant output 

voltage, the duty cycle must decrease as the load 

voltage tends to increase once the discontinuous 

conduction region is entered. As would be expected, 

independent of which input or output parameter is 

controlled, discontinuous inductor current results in 

over charging the output capacitor, thus the duty 

cycle must be decreased to reduce the energy 

transferred to the load, so as to maintain the required 

constant output voltage. Figure 2c shows the 

normalised condition as per equation (17), namely a 

peak boundary condition of δ = ⅓ at vo = 1.5×Ei. 

Because of power invariance, the two plots on the 

right in figure 2, have the identical shape, with 

variables interchanged appropriately. 

ii. versus /
o

i

v

E
I I - figure 3             [3], [4] 

Figure 3 conveys similar information to figure 2. 

However, figure 3 shows the more practical situation 

of how, for an increasing load resistance, for a given 

fixed duty cycle δ, the output voltage increases, when 

the load (hence input) current decreases once 

entering the discontinuous conduction region. 

Because of power invariance, the two right hand plots 

have the same shape. The four plots in figure 3 

predict an infinite output voltage, but a finite output 

current as the load current decreases: for a constant 

duty cycle, discontinuous inductor current occurs for 

all currents below the critical level. 

iii. versus o

i

v

E
 - figure 4  

Figure 4 affords a more informative representation of 

the various circuit equations. Each of the four parts of 

figure 4 show voltage transfer function variation with 

duty cycle. Each plot therefore involves the basic 

voltage transfer ratio curve, in the continuous current 

region:  

1

1
o

i

v

E 



 

 

The main region of concern is when the normalised 

current variable is less than one, in other words, 

when there is a possibility of discontinuous inductor 

current. By way of example, each graph has plotted 

two normalised currents of less than one, namely 

 1 2
3 3and  ./I I  Both of these load current 

conditions introduce a region where the transfer 

function becomes load current dependent – 

discontinuous inductor current.  

In the case where the input voltage Ei is constant, for 

loads based on the input current, the duty cycle 

boundary between the two modes occurs at  









 

 2

where for 

 

1
  

1 /

i

i

o i

i i
i

i

I

I

v I

E I
I

I

 

 

For loads based on the output current and constant 

input voltage, Ei, the boundary between the two 

inductor current modes occurs at  
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



 

  2
where

½ ½ 1 -

 1 4 /

o

o

o i

i i

I

I
v I

E I

 

 

between the two duty cycle boundary points. Again, 

because of power invariance this plot is the same as 

when the output voltage is constant, for varying input 

current conditions. 

The remaining plot in figure 4 and its insert, is most 

important since it represents the mode where the 

output conditions are controlled, as is the usual 

method of using the boost converter. A region of 

discontinuous inductor current occurs, for duty cycle 

values above and below which operation returns to 

continuous conduction [5]. The two boundary 

conditions for 0 1   are two of the roots of the 

cubic (see Appendix for the general expressions for 

roots of this cubic) 

 27
4

2
1 oI

I

 


 

o

 (20) 

and the corresponding voltage transfer function is as 

shown in Table 2. From Table 1 the voltage transfer 

function is 

½ 21 1 27 /o o

i

v I
E

I




 
   
 
  o

 

 

The voltage transfer function for discontinuous 

inductor current is approximately linear with duty 

cycle over a wide range: 

3 3
2½ /

o
o

i

v
I

E
I




 

o

 

The plot shows that discontinuity commences at  




  1
3 with when 1½  1 o o

i

v I

E
I o

 

Another rational boundary solution is 

 


  2
3

2
3 and  with when  2 - 3 3  ½ o o

i
o

v I

E
I

 

In all four cases (input/output I-V), the boundary 

conditions correspond to the appropriate vertical line 

 0 / 1I I  boundary intersection points on the plots 

in figures 2 and 3.The properties of the cubic 

polynomial in equation (20) bare closer examination. 

From the Appendix, three real roots exist 

(discontinuous current conditions) if 

/ / 1 0o oo o
I II I

   
 

 

 

which is true for  /0 1o oI I  - the discontinuous 

inductor current condition. The exact roots of 

equation (20) in terms of the coefficients of the cubic 

are given in the Appendix. 

 

The voltage transfer function can be expressed in 

terms of the duty cycle at the boundary of continuous 

inductor current. That is, from Table 1 – the third 

formula column, for vo constant and the output 

current normalised 

 
2

3
27 27

4 4

1

1

o

io

o
o

i

v

EI

vI
E

 


 
 

 
   

 
 
 

 (21) 

 

Factorising the last equality, which produces a cubic 

polynomial, yields 

                  
21 / 1 1 / / 1 0o o o

i i i

v v v
E E E

 (22) 
 

The first root confirms that the boundary for 

discontinuous conduction is 

1
/

1
o

i

v
E 




 (23) 

 

Although real roots exist to the quadratic polynomial 

in equation (22), for allowable duty cycle values 

0≤δ<1, both are meaningless except other than to 

confirm the maximum boundary condition at 1
3  , 

when / 1½o i
v E  and / 1o oI I . 

 

 



Journal of Renewable Energy and Sustainable Development (RESD)      Volume 1, Issue 2, December 2015 - ISSN 2356-8569 

277 
 

 

Table 1. Step-up converter transfer functions with constant input voltage, Ei, and constant output voltage, vo, with respect to I
o

and I
i
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Fig .2. Control of duty cycle δ to maintain a constant output voltage. 
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Fig .3. Voltage variation for constant duty cycle δ. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig .4. Output voltage variation for constant current. 
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B. Normalisation in terms of load resistance 

  

In the previous analysis, the transfer function for 

discontinuous conduction (and its boundary) is 

normalised with respect to the maximum 

discontinuous current of the form: 

o
o

v
I

L


  (24) 

 

Multiplying both sides by the load resistance gives 

o o o

R
I R v k v

L


    (25) 

where 

27
2 2/ (p.u.)o
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I

I

R
k

QL

 


 
   
 
 

          (26) 

 

which is the ratio of two time constants – the switch 

off-period circuit time constant /  L R and the 

reciprocal of the switching frequency, namely,  . 

Being relate to circuit Q, the symbol k in (26) is the 

ratio of energy delivered divided by total energy 

stored per cycle – a characteristic not previously 

observed. 

 

 Discontinuous inductor current [5]: 

The peak inductor current 


Li , during discontinuous 

inductor current operation is determined solely by the 

duty cycle, according to equation (5). That is 

i
L

i i

ER R
i k

E E L


   

 

The average inductor current for discontinuous 

inductor conduction is shown in Table 2. 

 

Consider the central identity expression in equation 

(6), which assumes 


 0Li  

2

1
2

o i

i o

v E

E L I

 
   (27) 

 

which is based on the energy equation (7) 

2½ /o oo i Lv I E I L i     

 

On substitution of k into equation (27), after suitable 

multiplication by R, then vo = IoR, gives (see equation 

(6)) 

2 2 2

21 1 1 1 ½
22 2

o i i i i

i o oo o

v E E R E R E
k

E Lv vL I L I R
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         (28) 

 

Isolating the voltage transfer function, gives for 

discontinuous conduction 

2½ 1 1 2
io

o

oi i

v I R
I k

E EI
     

  
 (29) 

 

where the output current has been normalised by the 

minimum output current, when δ = 0, the term /iE R . 

The voltage transfer function for discontinuous 

inductor current in (29) along with the normal voltage 

transfer function in equation (2), are plotted in figure 

5. The condition k = 13½, the verge of discontinuous 

inductor current at δ = ⅓ is shown. Also shown is the 

boundary conditions for increased load resistance, k 

= 22, δ = 0.62. The magnified view inset shows that 

continuous inductor current operation re-emerges at 

a low duty cycle of less than δ = 0.12. This re-

emergence of continuous inductor current at low duty 

cycles occurs for k > 13½, and can be characterised 

more rigorously by investigating the minimum 

inductor current characteristics. 

 

 Continuous inductor current: 

The key circuit parameter is the minimum inductor 

current, ,Li


which for continuous inductor current, is 

given by 

(A)
2

i
L i

E
i I

L




   (30) 

 

Normalisation with respect to the minimum load 

current, /iE R , gives 
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The voltage transfer function, equations (2) and (29), 

various inductor currents (average LI , peak Li , 

minimum


Li , equation (31)), etc. are summarised in 

Table 2. Critical circuit conditions, namely the 

boundary between continuous and discontinuous 

inductor current, occur when the minimum inductor 

current equals zero, that is, in equation (31) 


Li equals 

zero: 

1
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 (32) 

whence, on substituting the voltage transfer function, 

equation (2), which is valid on the boundary, yields 
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4
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as the discontinuous current conduction boundary 

condition. Note the similarity to equation (19). Such 

analysis to derive this equation appears in texts [5], 

but analysis progresses little further.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig .5. Voltage transfer function variation with duty cycle, showing discontinuous current boundaries. 
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Table 2. Step-up converter transfer functions, load resistance normalised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. MATHEMATICALLY ANALYSIS OF THE 

BOUNDARY CUBIC POLYNOMIAL 

 

Consider equation (33) rearranged into a more 
general cubic polynomial form 
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for δ. The effect of the constant term c is to produce 
a Y-axis shift of the basic cubic function, thus in this 
case, determining if one or more real roots exist. 
 

The duty cycle range of interest is 0 ≤ δ ≤ 1 and c ≥ 0 
(representing positive output current). Although 
primarily interested in the roots of this cubic, those 
roots are uniquely associated with the properties of 
the local maxima and minima. Equating the first 
differential to zero (and testing for a maxima or 
minima) yields  



 1
3 and 1  , both independent 

of c. The local minima


 1  always occurs at a value 
of -c, the Y-axis intercept value (when δ = 0). The 
inflexion point (second differential equated to zero) 
gives inflex

2
3 , whence a local maxima and minima 

always exist.  
 

The local maxima and minima represent the δ values 
at which roots emerge and disappear respectively, as 
the value of c (the Y-axis intercept) shifts the cubic 
plot up the Y-axis (decreasing current), as shown in 
figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig .6. Boundary conditions for three real roots to the cubic equation. 

 

 

Solvable, unique boundary solutions exist for δ when 

all three real roots exist such that two are coincident 

(real and equal). These cases are plotted in figure 6. 

Equation (34) is equated to the following general 

cubic with two coincident roots, which releases a 

solution degree of freedom. 

     
2 2

1 0 X criticalc            (35) 

 

By expanding both sides and equating coefficients, 

because of the released degree of freedom, a unique, 

viable, quadratic solution results, yielding:  

  1 4
3 3or 1 and 

critical X  

 

and for δ = ⅓, c = 4/27 (k = 13½). The root δX =  
supports the fact that when only one real, positive 

root exists, that root occurs for 4
3X  . Similar 

analysis on the local minimum yields that if only one 

real negative root exists that single root must be less 

than zero, hence a single root solution is in the range 

  4
30

X ; always outwith the range of interest, 0 ≤ 

δ ≤ 1. The local minima also yields coincident roots, at 

δ = 1, when c = 0 (k→∞, an output open circuit). Exact 

solutions for the roots of the cubic polynomial, in 

terms of its coefficients, can be found in the 

Appendix. 
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IV. INTERPRETATION OF THE BOOST 

CONVERTER BOUNDARY CUBIC 

POLYNOMIAL 

 

 Interpretation of the cubic analysis results, is:  

if k < 13½ (c > 4/27, with no real roots between 0 < δ < 

1), discontinuous inductor current does not occur for 

any duty cycle δ. From equation (26), continuous 

inductor current results if 

27
2

R
k

L


   (36) 

 

As k increases above 13½ (0 < c < 4/27), as the load 

resistance increases and the load current decreases, 

a region about δ = ⅓ spreads asymmetrically 

(towards δ = 1 and towards δ = 0), where δ in that 

range results in discontinuous inductor current. The 

implication of the critical range spreading in both 

directions about δ = ⅓, is significant. For a given fixed 

load resistance, with k > 13½, as the duty cycle 

decreases from a maximum, discontinuous inductor 

current results before δ = ⅓, but, as the duty cycle is 

reduced below δ=⅓, further towards zero, continuous 

inductor current conduction always re-emerges [5].  

 

 A corollary, at first sight contradictory, is that:  

if the duty cycle δ is maintained constant as the load 

current is decreased (k increased), once 

discontinuous inductor current occurs, continuous 

inductor current operation does not re-emerge (if the 

duty cycle is maintained constant), as confirmed by 

any of the four plots in figure 3. 

 

In figure 3 once a constant duty cycle contour enters 

the shaded discontinuous current region, the output 

voltage increases and the constant duty cycle contour 

remains in the discontinuous current region as the 

current decreases to zero. Only if the duty cycle is 

decreased (decreasing the energy being transferred 

to the load) can operation re-enter the continuous 

inductor current region. Theoretically continuous 

inductor current occurs at δ=0. 

 

The normalised design monogram in figure 7, 

illustrating the equations in Table 2 with k = 22, for 

which discontinuous conduction occurs according to 

equation (31), illustrates the properties of the cubic 

boundary equation (33). For k = 22, the boundary 

values for discontinuous conduction are 0.12 ≤ δcrit ≤ 

0.62. In figure 7, the inductor current waveform is 

continuous for δ = 0.65, then discontinuous when the 

duty cycle is reduced to δ = 0.3. If the duty cycle is 

further reduced, to k=0.05, continuous conduction is 

predicted, as substantiated by the PSpice plots in 

figure 8c. 

 

Figure 8, parts a to c, show PSpice plots for three 

load conditions (k = 10, 13½, and 22). The first, figure 

8a, is when k = 10, and continuous inductor current 

occurs for all δ, as predicted. The plot in figure 8b, 

shows operation on the verge of discontinuous 

conduction, when for δ=⅓ the minimum inductor 

current just reaches zero, as predict for k = 13½. 

Figure 8c shows the case for k = 22, when 

discontinuous inductor current results, but re-

emerges at a lower duty cycle.  

 

The reason why continuous current recommences at 

low duty cycles (δ<⅓) is related to the amount and 

how energy is transferred to the load. During normal 

operation, when the switch is off, two sources transfer 

energy to the load, as shown by equation (3).  

2 2

½ /L Lo oi oE I L i i v I
 

   
 

 

 

The source Ei energy is proportional to load current, 

while the energy from the inductor is quadratic 

current dependent, and the load current is 

proportional to voltage. The output voltage decreases 

according to 1/1 -   when inductor conduction is 

continuous, but is approximately proportional to duty 

cycle (from equation (29) and figure 5), when 

discontinuous. The energy from the supply when the 

switch is off is that necessary to maintain the output 

at its minimum value Ei, equation (4), while the 

inductor energy produces the boost voltage above Ei, 

δvo.  
 

At high duty cycles the necessary quadratic inductor 

energy reduces at the same rate as the output energy 

fall rate which is dependant on the duty cycle. At the 

boundary of discontinuous inductor current, the 

troughs of the inductor current are unable to reverse 

(therein transferring energy back to the dc supply), 

which results in excess energy being transferred to 

and retained by the load circuit. As the duty cycle is 

decreased below this level, the load energy rate 

decreases approximately linearly with duty cycle, at a 



Journal of Renewable Energy and Sustainable Development (RESD)      Volume 1, Issue 2, December 2015 - ISSN 2356-8569 

285 
 

faster rate than the inductor energy rate reduction. As 

the duty cycle decreases further, the load 

requirement is such to necessitate inductor energy 

associated with continuous inductor current. The 

inductor energy again balances the boost voltage 

according to the transfer function 1/1 -  .  

 

Progressive a larger percentage of energy must be 

provided by the supply energy component, which can 

only support an output voltage Ei. As δ tends to zero 

the vast majority of the load energy is provided 

directly by the dc supply; with a continuous load 

(hence inductor) current, /o i
I E R from the supply 

when δ = 0 and the inductor ripple current is zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig .7. Step-up converter performance monogram for k = 22, giving discontinuous inductor current for 0.12 ≤ δcrit ≤ 0.62. Inductor time 

domain current waveforms for δcont = 0.65 (continuous inductor current) and δdis = 0.3 (discontinuous inductor current).  Capacitor 

discharge in switch-off period δ ≤ 0.7. 
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V. GENERAL ANALYSIS OF THE BOOST 

CONVERTER 

 

Figure 9 shows the minimum inductor current at the 

boundary of discontinuous inductor current, as given 

by equation (31), plotted in three different domain 

combinations. Specifically the plots are combinations 

of k, δ, and the normalised minimum inductor current:  

 
2

1
½

1
L

i

R
i k

E






 


 (37) 

 

Together the four shown plots reveal the underlying 

mechanisms of the boost converter. Reversible 

converter operation has been assumed in equation 

(37), that is the voltage transfer function, equation (2), 

is always valid. This recognises that if the boost 

converter is reversible (extra switch and diode) then 

the inductor current can reverse and the transfer 

function given by equation (2) remains valid for all δ, 

provided 0oI   with a passive R load. 

 

The first plot, 8a, of minimum inductor current versus 

load, k, shows the minimum inductor current reaching 

zero when the load resistance reaches k = 13½ for δ 

= ⅓, thereby confirming the solution to (35).   

The minimum current locus is derived from 

differentiation of equation (37) 

  





  


  

3

3 4whence such that

2
½ 0

1

1     4

L

i

k

d R
i k

d E

k

 

 

Substitution of this duty cycle condition back into 

equation (37) gives 

 
 3

2
3

min

4

4

1
½ 1

L

i

k

k

R ki
E


   (38) 

 

The straight line (equation (31)) tangents (of slope 

½δ from differentiation of equation (37) with respect 

to k) represent the minimum inductor current variation 

for a constant duty cycle δ as the load k, is changed. 

This plot is not readily interpreted when k < 4 (high 

load current levels), for it tends to predict tangents 

such that δ < 0. Obviously δ = 0 is a restriction, hence 

the minimum locus plot in figure 9a is shown dashed 

for k < 4. 

The plot in figure 9b shows minimum inductor current 

plotted against duty cycle δ for different load 

conditions, k. The locus of the minimum possible 

inductor current for a given load is derived by 

differentiating equation (37) with respect to δ and 

equating to zero, giving 

 
3

4

1
k





 

 

which on substitution back into equation (37) yields 

the locus: 

 
3

min

1 3

1
L

i

R
i

E





 



 (39) 

 

The plot (and equation (39) when equal to zero) 

confirms the critical inductance current condition 

occurring at k = 13½ for δ = ⅓. Figure 9b sheds some 

light on the converter mechanisms when k < 4. As the 

load current increases, (that is, load resistance 

decreases - k decreases) the locus of minimum 

inductor current increases, the minimum value of 

which increases as duty cycle decreases. At k = 4, the 

minimum possible inductor current of 1 pu, 


 /L ii E R , occurs at δ = 0, any further decrease in 

load resistance results in the minimum normalised 

inductor current of 1pu continuing to occur at δ = 0. 

The theoretical locus for k=0, that is an output short 

circuit is shown, with k < 0 being shaded as an 

unobtainable operating region.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Renewable Energy and Sustainable Development (RESD)      Volume 1, Issue 2, December 2015 - ISSN 2356-8569 

287 
 

 

k = 10 

o
u
tp

u
t 

 v
o
lt
a

g
e

  
(×

E
i)

  
  
  
  
  
  
  
  
  
  
  

  
d
u
ty

  
c
y
c
le

  
(p

u
) 

 

v
o

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 δ

 

1 
 
 
2 
 

 
3 
 

 
4 
 

 
5 

0               τ 

t 

t 

iL 

δ = ¾ 

EI 

1 
 
 
¾ 

 
½ 
 
 
¼ 
 

δ = ¾ 

m
in

im
u
m

 i
n
d
u

c
to

r 
c
u
rr

e
n
t 

(A
) 

 

Li


  
  
  
  
  
  
  
  

in
d

u
c
to

r 
 v

o
lt
a
g

e
  
(×

E
i)
  

 (
V

) 
 

  
  

  
  
 v

L
  
  
  
  
 

100 
 
 
 

80 
 
 
60 
 
 
40 
 

 
20 
 

 
0 

   0         ¼                    ½                    ¾                  1 
δ 

 

0               τ 

0       ¼                   ½                   ¾                  1 
δ 

 

-1 
 
 
 

 0 
 
 
 1 
 

 
 2 
 

 
 3 
 

 
 4 

in
d

u
c
to

r 
 c

u
rr

e
n
t 

  
(A

) 
 

 i
L

  
  
  
  
  
  
  
  
 

100 
 
 
 

80 
 
 
60 
 
 
40 
 

 
20 
 

 
0 

 

Li


 

δ = 0.05 

1
3   

δ =¾ 

δ =¾ 

δ =¾ 

δ = 0.05 

δ =0.05 

1
3   

1
3   

vL = vo - EI 

Li


 

iL 

δ=0.33 
 

iL 

δ=0.05 

 

k = 13½ 

o
u

tp
u

t 
 v

o
lt
a
g

e
  

(×
E

i)  
  
  
  
  
  
  
  
  
  
  
  

 d
u

ty
  
c
y
c
le

  
(p

u
) 

 

v
o

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 δ

 

1 
 
 
2 
 

 
3 
 

 
4 
 

 
5 

0               τ 

t 

t 

iL 

δ = ¾ 

EI 

1 
 
 
¾ 

 
½ 
 
 
¼ 
 

δ = ¾ 

m
in

im
u
m

 i
n

d
u
c
to

r 
c
u

rr
e
n

t 
(A

) 
 

Li


  
  
  
  
  
  
  
  

in
d

u
c
to

r 
 v

o
lt
a

g
e

  
(×

E
i) 

  
  

(V
) 

 

  
  

  
  
 v

L
  
  
  
  
 

80 
 
 
 

60 
 
 
 
40 
 

 
 
20 
 
 
 

0 

   0         ¼                    ½                    ¾                  1 
δ 

 

0               τ 

0       ¼                    ½                    ¾                   1  
δ 

 

-1 
 
 
 

 0 
 
 
 1 
 

 
 2 
 

 
 3 
 

 
 4 

in
d

u
c
to

r 
 c

u
rr

e
n

t 
  
(A

) 
  i
L

  
  
  
  
  
  
  
  
 

80 
 
 
 

60 
 
 
 
40 
 

 
 
20 
 
 
 

0 

 

Li


 

δ = 0.05 

1
3   

δ =¾ 

δ =¾ 

δ =¾ 

δ = 0.05 

δ =0.05 

1
3   

1
3   

vL = vo - EI 

Li


 

iL 

δ=0.33 
 iL 

δ=0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig .8a. Step-up converter performance, k=10=R. [Ei = 50V, R = 10Ω, L = 100μH, τ = 100μs, δ = 0.05, ⅓, ¾]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig .8b. Step-up converter performance, k=13½=R.[Ei = 50V, R = 10Ω, L = 100μH, τ = 100μs, δ = 0.05, ⅓, ¾]
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Fig .8c. Step-up converter performance, k=22=R.[Ei = 50V, R = 10Ω, L = 100μH, τ = 100μs, δ = 0.05, ⅓, ¾]

 

Further insight is gained into operation below k = 4, by 

plot 8c which shows load resistance k plotted against 

duty cycle δ. The locus of minimum load resistance k 

for a given duty cycle is given by differentiating (37) 

with respect to duty cycle, when the equation is 

expressed in terms of k, namely 

 
2

2 1

1
L

i

R
k i

E 

 
  
  

 

 

which on differentiation and equating to zero yields 

 
3

1 3

1
L

i

R
i

E





 



 

 

and on back substitution gives 

 



 


3min

4

1
k k  (40) 

 

The region of discontinuous inductor current for k > 

13½ is shown shaded, and is indicated as reversible.  

Notice that quadratic type minimum inductor current 

contours are not obtained when k < 4. The best way 

to interpret the region for k < 4 is to examine the 

extreme limit, when k = 0. In the limit, as the load 

resistance tends to zero, k = 0, the minimum inductor 

current is restricted by the duty cycle. Certain 

operating current and duty cycle conditions are 

unobtainable, as shown in plot 8d. As the minimum 

inductor current increases (less ripple current) the 

minimum necessary duty cycle increases in order to 

maintain the output voltage. Since the ripple current 

maximum peak to peak is fixed (but proportional to 

duty cycle), this means a limitation on the minimum 

ripple current at high current levels and low duty 

cycles. The boundary for forbidden operation in figure 

9d (and also shaded in figure 9b) is given by k = 0 in 

equation (37), that is 

 
2

0

1

1
L L

i ik

R R
i I

E E





 


 (41) 

 

The average normalised inductor current is given 

when k = 0 in equation (37) or equation (41). 

The limitation area is between 0 < k < 4, as shown in 

figure 9d, where the upper bounds is  
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 (42) 

 

Rearranging equation (41) gives the minimum duty 
cycle for k < 4, for which the minimum normalised 
inductor current is not restricted, as shown in figure 

9d. 
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Fig .9. Step-up converter characteristic load curves.

 

 Maximum period  X for zero inductor current  

Figure 10 shows the boost converter characteristics 

for discontinuous inductor current when operating at 

the maximum length of time with a discontinuous 

current condition,  X . From Table 2, the period of 

zero inductor current, is given by 
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The maximum non-conduction period, (after 
eliminating the voltage transfer function, then 
differentiating and equating to zero) is when 
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  2 27
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2
k k  (44) 

 

which yields for   3
2k   

27
21 3 1X k      (45) 

 

62D k 
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   (46) 

 

when, during discontinuous inductor current, a 

constant output voltage results 

1½o

i

v

E
  (47) 

 

These equations reconfirmed the verge of 

discontinuous inductor current condition, when 

k=13½, δ = ⅓, δx = 0, and vo / Ei  = 1½. 

Operation at the longest inductor discontinuous 

current duration point results not only in a constant 

output voltage, equation (47) but also in a constant 

average normalised inductor current given by 
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while the minimum inductor current is zero for all k > 

13½, the peak inductor current is 

3

2
L

i

R
i k

E






    

These inductor currents are shown in figure 10, along 

with the boundary case k = 13½ for continuous 

inductor current conduction.  

 

VI. DISCONTINUOUS CAPACITOR CURRENT 

DURING THE SWITCH OFF PERIOD 

Output ripple voltage is dominated by the capacitor 

ripple voltage, which is related to the output capacitor 

 charging current variation 

 equivalent series resistance  

 equivalent series inductance  
 

Generally for the boost converter, when the switch is 

on, the output capacitor provides the entire constant 

load current oI . The capacitor ripple voltage due to 

this constant discharge is given by 

  0
1 1Tt

o oC Tv I dt I t
C C

 

 

That is 

 


 puC

o

v

v RC
 (48) 

 

This equation assumes that the capacitor only 

discharges when the switch is on. Under lower duty 

cycle conditions the capacitor is prone to provide load 

current when the switch is off, when the inductor 

current falls to a level which is insufficient to provide 

all the load current requirement. Such a condition 

occurs with discontinuous inductor current, that is 


 0Li , as shown in figure 11 (which is figure 9c 

reproduced for clarity). This boundary condition is 

defined by equation (33), that is 

  



2

2
1

k                                   (49) 

The capacitor ripple voltage increases above that 

given by equation (48) and is given by 
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 (50) 

 
The voltage transfer function is given by equation 

(29). 

In fact a more restrictive boundary than equation (49) 

exists, which is characterised by equating the 

minimum inductor current to the load current such 

that Ic = 0, that is 


 0 L oi I . From Table 2, for 

continuous inductor current the boundary is given by 

 

½ 
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i i
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k I

E E
 

 

which, as shown in Table 2, produces a region 

defined by  

 
2

2

1
k





 (51) 
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Fig .10. Locus of maximum discontinuous current characteristics. 

 

 

This boundary is related by the duty cycle δ to the 

boundary specified by equation (49), both equations 

being shown in figure 11. Provided discontinuous 

inductor current does not occur, the voltage transfer 

function given by equation (2) remains valid. The 

output ripple voltage magnitude is given by 
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 (52) 
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locus Equation (48) 

Equation 

(52) 

Equation 

(50) 

0L
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Equation (49) 

 

Equation (51) 

The first equality is for when the ripple voltage 

increases, as the capacitor is recharged immediately 

after the switch is turned off. The second equality 

comprises the two components when the capacitor 

voltage decreases, namely when the switch is on and 

during the latter part of the switch off period once the 

inductor current falls below the load current level oI . 

  

 

 

 
 
 
 
 

 

 

Fig .11. Zero capacitor current characteristics in switch off-state. 
 

VII. CONCLUSIONS 

 
The discontinuous inductor current properties and 

characteristics of the boost converter have been 

investigated. Specifically, the re-emergence of 

continuous inductor current at low duty cycles has 

been quantified. This property never occurs if the load 

is varied and the duty cycle is fixed. The minimum 

inductor current properties at high current have also 

been investigated.  Output capacitor ripple voltage 

has also been quantified for both discontinuous 

inductor current and a more likely condition where the 

inductor current falls below the load current level. 

 

VIII. APPENDIX:  EXACT ROOTS OF A CUBIC 

EQUATION IN TERMS OF ITS 

COEFFICIENTS 

 From Table 1, at the boundary of continuous 

conduction, equation (21), 
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and from Table 2, equation (33) 
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Rearranging gives the normalised cubic equation 
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and solving the resultant quadratic yields 

 

¼3 21 1
27

kX k      
 

 

 

whence for 1o

i

v

E
  

¼
¼

¼ ¼

3

3

3 31
6

/
6

21 1
27 21 16   27

2 21 1 1 1
27 27

o

i

v kX
XE

k kk
kk

k kk k k

 

      
      
 

            
   

 
From the discriminant, for more than one real root 
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E
 

Note that a negative discriminant is the correct 

condition for more than one real root [6].  

 

 The solution to equation (21), for the duty cycle in 

terms of the normalised maximum critical inductor 
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current ( let /o o
II I ) is 

       3 31 1 2
3 3 31

2 1 2 1 2 1 2 1I I I I I I           (53) 

 
The remaining two roots δ2,3 are 

       3 3

2,3 1

1
½ 1 2 1 2 1 2 1 2 1

2 3
j I I I I I I 

 
           

 
 (54) 

which are all real roots if  0 1.I  

 The solution to equation (33), for the duty cycle in 

terms of the normalised load resistance factor k, is 

found by substituting  27
2I k  into equations (53) 

and (54), such that more than one real root results 

if  270 1,2k  that is  27 .2k  
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