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I.   INTRODUCTION 

Motion control applications can be found in almost 
every part of industry by induction motor, 
synchronous motor and DC motor. They are used to 
regulate mechanical motions in terms of position, 
velocity and acceleration. A high performance motor 
drive must have good position command, tracking 
and load to regulate response in the presence of   
external load uncertainty, un-modeled and nonlinear 
dynamics of plant. Similar to other industrial control 
problems, PID is the first choice in most of motion 
control applications. 
In [1] the PID controller has been designed based 
on stability analysis considering passivity in null 
space motion of redundant manipulator. A self-
tuning PID control strategy has been proposed in [2] 
for implementing a motion control system that 
stabilizes the two-wheeled vehicle and follows the 
desired motion commands. The controller 
parameters are tuned automatically, on-line, to 
overcome the disturbances and parameter 
variations. In [3] the dynamics of the synchronous 
motor has been investigated and the motor’s 
response to rapid load changes has been analyzed 
using decentralized PID controller. Another model-
based application with PID has been proposed in [4] 
on load motion control of two-mass 
servomechanisms. Although most of the proposed 
methods in this area rely on plant mathematical 
model, yet some model-free approaches can be 
found in the literature such as [5,6,7,8,18,19]. 
Almost every proposed model-free approach uses 
time domain data and online adaptive algorithms. A 
PID position domain control (PDC) is proposed in [6] 
for reducing contour tracking errors. Fuzzy control is 

 

 

II.  PROBLEM FORMULATION 

The basic model for many industrial motor drives 
can be described by an electrical part and a 
mechanical part [10]. This structure is shown in Fig. 
1. The electrical part is placed between input 
voltage u and output torque Te and the mechanical 
part is between torque Te and the rotor position θ. 
The electrical part that is much faster than the other 
one can be approximated by a first order transfer 
function plus a small time delay; and the mechanical 
part of electrical motors can be described by a two-
order transfer function [10]. In Fig. 1 the transfer 
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controller, robust control, frequency domain, model free 
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Abstract— A  new  model-free  approach  for  designing 
robust  PID  controllers  for  the  position  control  of 
electrical  machines  (such as  induction,  synchronous or 
DC  motors)  with  un-modeled  dynamics  is  proposed.  
In this paper, it  is  illustrated  that  frequency  response
data  is  sufficient  to  calculate  a  family  of  robust 
PID   controllers that  satisfy  an    -  norm on the
complementary  sensitivity  function.  The  approach  is 
illustrated on an induction motor drive system through
simulation. 
 

another model-free approach to motion control of 
motor drives [9,10].  An intelligent PID controller has 
been proposed in [18,19] based on a newly 
developed numerical differentiation. The approach 
use time domain and numerical differentiation to 
adjust the control.  
In this paper, another model-free technique is 
proposed in frequency domain for robust PID 
controller design of motor drive systems faced to 
un-modeled dynamics that can be classified as 
structured  uncertainties.  The  algorithm  used  to  
calculate the family of stabilizing PID controllers 
for nominal plant proposed in [11] is extended to 
plants with an uncertain parameter. It  is  shown 
that the only required data is the set of frequency 
responses  of  motor  drive  system  including 
frequency responses corresponding to maximum 
and minimum values of uncertain parameter. Also, 

the family of robust PID controllers that achieve  -
norm on complementary sensitivity function is 
calculated. Some special applications of the 
proposed approach are reviewed. It is shown that 
the problem can be solved with more relax 
conditions if the uncertain parameter appears in the 
feedforward path. 
The paper is organized as follows. The position 
control problem is introduced in Section II. The 
algorithm used to calculate the family of stabilizing
 PID controllers for nominal plants and its extension
 to uncertain plants are presented in Section III. A
 review on special cases of application of the 
proposed approach is presented in Section IV. The 
proposed approach is simulated on induction motor 
drive in Section V. Finally, some concluding 
remarks are given in Section VI. 
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function         where   is an unknown constant 
and | |    represents for the un-modeled 
dynamics.  
The paper investigates the position control of 
electrical motor drives that can be configured as 
structure of Fig. 1. This problem is formulated as 
follows. Consider the basic structure of a motor 
drive system and assume that  

1. The frequency response from voltage u to rotor 

position θ is available. 

2.   is an unknown constant and | |     

 

Under these assumptions the control objective is to 
calculate the family of PID controllers that stabilize 
the uncertain plants               where | |    

and satisfies   -norm consideration on 
complementary sensitivity function in the presence 
of un-modeled dynamics. 
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Fig. 1. Motor drive system with un-modeled dynamics 
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 Fig. 2. Feedback structure with uncertain plant and PID 

 
Fig. 2 shows the feedback system with PID 
controller in which        is an uncertain plant and  
  can be substituted by   . In the next section, a 
survey on the algorithm proposed for nominal 
stability in [11] and its generalization to uncertain 
plants is presented and it is illustrated that the 
control objectives of this paper on motor drive 
system can be satisfied in a same way. 
 

III.  PID CONTROLLER DESIGN: MODEL FREE 
APPROCH 

 
In this section, the problem of achieving the 

family of stabilizing PID controllers for nominal 
stable plant      proposed in [11] is reviewed. Then 
by verifying a theorem, this approach is generalized 
to plants with an uncertain parameter. Similar 
approach is proposed for unstable plants which are 
omitted here because of room limitation.  

The feedback system with PID controller is 
shown in Fig. 2. First, some mathematical 
preliminaries are introduced. Consider a real 
rational function  

     
    

    
 

where     and      are polynomials with real 
coefficients and of degrees m and n, respectively. 

Assume that      and      have no zero on    axis. 

Let              determine the number of open 
right halp plane (RHP) (open left half plane (LHP)) 
zeros and poles of    . Also let  | 

         denotes 

the net change in phase of      as   runs from 0 to 

  . Then  

  | 
     

 

 
                                (1) 

Define the (Hurwitz) signature of      as 

      
 

 
 | 

                                                 (2) 

and since      has no pole and zero on    axis, it 
can be written  
                                           (3) 

The value of     can be calculated from the 

frequency data of      and     can be calculated 
from (3). Let 

                     
where        and        denote the real and 

imaginary parts of      , respectively. Assume that 
the real, distinct, finite zeros of          denote as 

             such that 

               

and consider the modified PID controller as  

     
           

       
 

where   ,    and  are the proportional, integral and 

derivative coefficients of PID controller and T is a 
positive constant. 

Lemma 1: Let 

             (           )     

and 

              . 
Then the closed loop stability is equal to 

 (    )             

Let  

                      (    ) 

where 

                     |     |          
        

and 

  (    )    |     |                

Consider   (    )    and define  

     
                 

|     |
                        (4) 

and           
       where   

      
    

     

Theorem 1: Let             denote the 
distinct frequencies of odd multiplicities which are 
solutions of  

  (    
 )     

Determine strings of integers                   
where           such that: 
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for n-m even: 

[                                         
                                                  (5)  
and for n-m odd: 

[                                 
                                                  (6) 
Also let 

           
          

Then for      
 , the values of        

corresponding to the closed loop stability are given 
by 

                                                         (7) 
 
where it’s are taken from strings satisfy (5) or (6) 

and    s are taken from the solutions of (4).  

Next theorem shows how to calculate the 
admissible range of    . 

Theorem 2: The necessary condition of existence 
the stabilizing PID for LTI plants is that there exists 

   such that         has at least R distinct roots 

of odd multiplicities such that 

 {
  

         

 
                    

  
         

 
                   

            (8) 

The procedure for calculation the family of 
stabilizing PID controllers is summarized in the 
following algorithm [11]. 

Algorithm 1. 
1. Determine the relative degree     of plant      

from high frequency slope of bode magnitude of  

     .  

2. Determine      from (2). 

3. Determine    from (3). 

4. Determine      for     from (4). 

5. Apply Theorem 2 to determine the range of   . 

6. For      
 , solve (4) and obtain       

      . 

7. Let      and     . Determine 

            from (5) or (6). 

8. For      
 , determine the         values  from 

(7). 

9. Change    and go to step 6 to obtain the whole 

family of stabilizing PID controllers. 

Now the main result of this paper will be presented. 
Consider an uncertain real rational plant        
where               is an uncertain parameter. 
The control goal is to calculate the family of robust 
stabilizing PID controllers for the uncertain 
plant      . The feedback structure is shown in Fig. 
2.  The only required data is the set of frequency 

responses         including            and 
            for      
 

In the proposed approach of Algorithm 1, roots   
of function      in (8), can be obtained from (4) and 

the range of    is calculated based on the value of . 

Also the range of admissible        values obtain 

from (7) which have the slope equal to   
 . If by 

monotonic variation of the uncertain parameter q, 

     varies monotonically, some substantial results 
could be concluded. First of all, the range of 
admissible   for stabilizing the uncertain plant  

        is the common range of admissible    for 

two plants            and         . Second, since 
the slope of linear inequalities in (7) varies 
monotonically with monotonic varying the uncertain 
parameter, the inequalities corresponding to 
          and          have the maximum and 
minimum slopes, not necessarily respectively. 
Finally, since variation of the uncertain parameter  , 

does not lead to monotonic variation in the   
           the common space of inequality (7) for 
          and          is larger than the 

admissible         values. An approach to find the 
exact range of admissible parameters is presented 
in the following remark. 

Remark 1: A simple approach to exclude these 
regions is to choose some test points in those 
regions and analyzing their stability. So monotonic 
variation of the function      makes it easy to 
calculate the family of stabilizing PID controllers for 
plants with an uncertain parameter.  

Theorem 3: Let        be a real rational transfer 

function and              is an uncertain 
parameter. If the Number of zeros and poles and 

the number of RHP zeros of        are fixed for 
               then the family of stabilizing PID 
controllers for uncertain plant is a subspace of 
common space between two set of stabilizing PID 

controllers for           and           if one of the 
below constraints satisfy 

 {
  

    
          

           
                               (9) 

  

 {
  

    
          

           
                             (10) 

 
for only one value of uncertain parameter q and for 

     and  
         . Then  

 ≥ 0. 

Proof: If monotonic varying the uncertain parameter 

leads to monotonic varying the function      w, then  

the family of stabilizing PID controllers for uncertain 
plant is a subspace of common space between two 

set of stabilizing PID controllers for       
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    (  

   

  
   

   

  
)        

  
    

  

Without loss of generality, consider the case of 
monotonic increasing in     . Increasing the 

uncertain parameter leads to increasing in      if 
the following inequality holds: 
 

   
    

                
     

             
                     

Assumption 1:  Let 

   
     

          .                              (12)  
 
and note that the symbol ‘>’ could be inversed; but 
for simplicity it is assumed as ‘>’. Finally, consider 
the real rational symbol of (12). So (11) can be 
transformed to 

 
   

   
 

(  
    

        )

   
     

         
                                   (13) 

and by change of variable as: 

  
  

  

 

the inequality (13) can be changed to: 

      
            

        
   .                            (14) 

Assumption 2:  Let  

                                                              (15) 
and 

 
            

        
                                          (16) 

 
similar to Assumption 1, the real rational symbol of 
(15) and (16) will be considered finally. From (15) 
and (16), the inequality (14) leads to: 

  (
     

        

)              
     

        

   

and since    
  

  
 , then 

  
    

           
that is one of the necessary conditions imply that 
increasing the uncertain parameter   leads to 

increasing in     . Assumptions 1 and 2 imply 
another necessary condition as 

             

Remark 2: Bode diagrams corresponding to 

           and            could be recognized 
from the frequency responses set of uncertain plant 
       . In fact if (9) or (10) holds, then from 

monotonic variation of the function    , it could be 
deduced that the uppermost and  lowermost plots of 
     are corresponding to            and 

          , not necessarily respectively. 

The following Corollary shows that the problem 
can be solved easier when the uncertain parameter 
is in the feedforward path of control loop.  

Corollary 1. Let ( , )P s q  be a real rational function 

for an uncertain LTI plant and min max{ , }q q q is an 

uncertain parameter that appears in the feedforward 
path. Then the family of stabilizing PID controllers 
for uncertain plant is a subset of common set 
between two set of stabilizing PID parameters for 

min( , )P s q and max( , )P s q  if one of the below sets 

satisfy 

( ) 0 : ( )

( ) 0 : ( )

r i

r i

P P if g is ascendant

P P if g is decendant

 

 

  

  

     

(17) 

for 0  and for only one value of uncertain 

parameter q . 

proof: It can be written 

( , ) ( ) ( )r iP j q qP j qP j     

and 

2

( ) ( )
( )

( ( ) ( ))

r i

r i

qP j qP j
g

q P j P j

  


 


 


. 

Then  

2 2 2

1
. r i

r i

P Pdg

dq q P P





 

So ( )g   is monotonic if (17) satisfies. 

The procedure for calculating the family of 
stabilizing PID controllers is summarized in the 
below algorithm. 

Algorithm 2. 

1. Determine            and            for    

from      plots using Remark 2. 

2. Using Algorithm 1, calculate the family of 

stabilizing PID controllers for two 

plants         and             Determine the 

common space of PID parameters between two 

calculated family. The family of stabilizing PID 

controllers for uncertain plant        is a 

subspace of this common space. 

3. Calculate the exact family of stabilizing PID 

controllers using the approach proposed in 

Remark 1. 

Now it can be shown that the problem of satisfying 
some performance specifications for uncertain plant 
       could be transformed to problem of robust 
stabilizing the uncertain plant        with additional 
virtual uncertain parameter. 

Many performance attainment problems for 
uncertain plant        can be cast as the 
simultaneously stabilization of the uncertain plant 
and the family of real and complex plants [11]. For 
example an   -norm achievment on the 
complementary sensitivity function, that is 
‖        ‖   , is equivalent to simultaneously 

stabilizing the uncertain plant           as 
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           (  
 

 
       )                                     (18) 

where   is a virtual uncertain parameter and      is 
a weight selected by designer. 

Let the family of stabilizing PID parameters for 
uncertain plant        can be calculated from 

Algorithm 1 and Let          in (18) be a real 

rational function. If      corresponding to (18), 
varies monotonically by monotonic varying the 
virtual uncertain parameter  , for any   and any   , 
then the family of stabilizing PID controllers for 
uncertain plant        that satisfy the   -norm 
specification on the complementary sensitivity 
function, is a subspace of PID controllers obtained 
from simultaneously stabilization of two plants  

                                 [  
 

 
    ]                                (19) 

           [  
 

 
    ]                                                (20) 

and the exact family can be obtained using the 
approach proposed in Remark 1.              

IV. A REVIEW ON THE APPLICATIONS OF 

THE PROPOSED APPROACH 
In this section, some applications of the proposed 
method are presented. In fact, it is illustrated that 
some control objectives can be cast as robust 
stabilizing of a plant with an uncertain parameter. 
For example: 

Example 1: Performance achievement 
Many performance achievement problems for 

uncertain plant ( , )P s q can be cast as the 

simultaneously stabilization of the uncertain plant 
and the family of real and complex plants. Some of 
these performance achievement problems for 
nominal plant are listed in [11]; for example, the 

problem of H -norm achievement on the 

complementary sensitivity function is equivalent to 
simultaneously stabilizing the plant P(s) and the 
family of real plants 

min max( , , ) : { , }, {0,2 }CP s q q q q     

and the exact family can be obtained using some 

test points. The other specifications such as H -

norm achievement on the sensitivity function and 
phase margin can be satisfied by the same 
approach. 

Example 2: Robustness against loss of 
effectiveness in actuator  
Fig. 3 Shows the feedback structure of a plant with 
PID faced to loss of effectiveness in actuator where 

L  is the parameter corresponding to loss of 

effectiveness and belongs to (0,1] . Obviously this 

structure can be cast as a plant with an uncertain 

parameter, i.e., ( , )P j L  with PID where L q  is 

the uncertain parameter. There is similar case when 
loss of effectiveness happens in sensors. Thus the 

family of robust PID controllers for plants faced to 
loss of effectiveness can be calculated by the 
approach proposed in the previous section. For this 
special case, the problem of controller synthesis 
could be handled easily using Corollary 1. 

Example 3: Robustness in plants with a 
dominant uncertain parameter 
Some plants that are faced to parameter variations 
can be approximated by plants with a dominant 
uncertain parameter. Obviously the proposed 
approach can be applied in this case to calculate 
the family of robust stabilizing PID controller. 
 

 
 

Fig. 3. The feedback structure of plant faced to loss of actuator 
effectiveness with PID 

 

 
 

Fig. 4. The frequency response of motor drive system 

 
V.  SIMULATION ON INDUCTION MOTOR 

The model studied in this section is an induction 
motor drive system introduced in [9, 12] that has the 
similar structure to Fig. 1 in [14] and its nominal 
frequency response is shown in Fig. 4. The 
frequency response of such systems can be 
obtained by virtual sine sweeping [13]. The 
corresponding plot of      is shown in Fig. 5. Since 
    (from (8)), the admissible range of    is 

         . Calculating the       values for    

   and T=1 is resulted to the following inequalities 

{
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Fig. 5. The plot of function g( ) with the line kp=200 

 
Fig. 6. The whole family of stabilizing PID controllers for nominal 

model of induction motor drive system 
 

Therefore the family of robust PID controllers for the 
induction motor drive with uncertainties can be 
calculated by stabilizing the following two plants  

{
                

                          
  

The range of robust stabilizing PID parameters for 
induction motor faced to un-modeled dynamics is 
illustrated in Fig. 7-a.  The admissible range of 
        for all admissible    is shown in Fig. 7-b. 

 
Fig. 7. (a) Robust stabilizing PID parameters for induction motor 
drive faced to un-modeled dynamics; (b) the admissible range of 

(ki,kd) 

 
Fig. 8. The range of admissible (ki,kd)values that satisfy different 

control objectives for kp=50 

 

Now consider the problem of satisfying   -norm on 
the complementary sensitivity function. The 
admissible range of       values that satisfy this 

performance criterion for       is shown in Fig. 8 

together with regions corresponding to nominal 
stability and stability in the presence of un-modeled 
dynamics. The whole range of         values can be 
obtained similarly. 
 
The step responses of closed loop system with 
controllers corresponding to test points marked in 
Fig. 8 are shown in Fig. 9. Applying the PID 
controller that satisfies performance consideration is 
resulted to decreasing the overshoot. Also, the 
control signals corresponding to selected controllers 
are plotted in Fig. 10. It can be seen that the control 
signals drift to zero after the reasonable times. 
  
For better tracking of the proposed approach in this 
paper, the readers can refer to the many academic 
examples implemented in [15]. 
 

VI.  CONCLUSION 
In this paper, a robust control approach presented 
based on a general model for different types of 
electrical motor drives. The problem of robustness 
against un-modeled dynamics in motor drives is 
transformed to the problem of stabilizing a plant with 
an uncertain parameter. It is shown that knowing the 
frequency responses of motor drive system 
corresponding to maximum and minimum values of 
uncertainty is sufficient to calculate the family of 
robust stabilizing PID controllers. In fact, there is no 
need to plant mathematical model. Also it is 
illustrated that the problem of   -norm achievement 
on the complementary sensitivity function can be 
solved by the same approach. Through the paper, it 
is assumed that the frequency response of plant is 
available. Such an assumption is often valid in many 
practical applications. Also, this is an assumption 
that has already been used several times in other 
papers dealing with controller synthesis using 
frequency domain data [5,7,11,13,15-17].  
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There are open doors to extend this approach to 
MIMO and nonlinear systems and to improve the 
performance specifications. Also, it is obvious that 
many of un-modeled dynamics are more 
complicated than the constant parameter   
considered in this paper. So it is of essential interest 
to extend the approach to more complicated types 
of uncertainties. 

 
Fig. 9. Step responses corresponding to controllers that satisfy 

(a) stability for nominal motor drive system, (b) stability for motor 
drive with un-modeled dynamics, (d) stability and performance 

attainment for motor drive with un-modeled dynamics (The unit of 

time t is second) 

 
Fig. 10. The control inputs corresponding to controllers that 

satisfy (a) stability for nominal motor drive system, (b) stability for 
motor drive with un-modeled dynamics, (d) stability and 
performance attainment for motor drive with un-modeled 

dynamics (The unit of time t is second) 
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