Nutritional and toxicological importance of nickel, copper and zinc elements in spirulina platensis

Nagwa El‑Agawany, Mona Kaamoush, Hamida El Salhin

Abstract


The presence of heavy metal ions in water is hazardous to one's health and the environment. Algae are frequently exposed to heavy metal pollution as a result of industrial waste dumping into water environments. Spirulina platensis, a significant kind of algae utilized commercially (especially for fish feeding) as a good source of protein, amino acids, minerals, vital unsaturated fatty acids, and a number of vitamins, was selected for this study because of its high nutritional value. This study examined how S. platensis responded to five different concentrations of the three heavy metals (nickel, copper, and zinc) in terms of its growth, fatty acid IR spectra, content, and total soluble protein profile. The remaining four doses (two higher and two lower) for each element were selected to evaluate the findings of 5 different concentrations of the three heavy metals because the EC50 for those three was almost at 2.0 mg/l. Compared to zinc and nickel, copper demonstrated a greater growth inhibitory impact as determined by optical density. Cu2+ was more noticeable than Zn2+ and Ni2+ when compared to control cells in the IR spectra, which showed the creation of new molecules and the lack of other compounds. Total fatty acids decreased under stress at all concentrations examined, while saturated fatty acids outnumbered unsaturated fatty acids. Cu2+ stress resulted in a more marked destructive effect of the heavy metal ions the protein profile than Zn2+ or Ni2+ stress.

Full Text:

PDF

References


Abdel-Latif, H.M.R. ; El-Ashram, S,; Sayed, A.E.H.; Alagawany,M. Shukry,M.; Dawood M.A.O. Kucharczyk,D.(2022). Elucidating the ameliorative effects of the cyanobacterium Spirulina (Arthrospira platensis) and several microalgal species against the negative impacts of contaminants in freshwater fish: A review. Aquaculture. Vol. 554:738155.

Ahmed E. A. M. (2010). Impact of Tributyltin (TBT) on metabolism of some marine algae. Ph.D. Thesis. Faculty of science, Alazhar University. Egypt.

Akbarnezhad M. , Mehrgan M.S., kamali A.; Baboli M.J.(2019). Effects of microelements (Fe, Cu, Zn) on growth and pigment contents of Arthrospira Spirulina platensis .Iran Hournal of fisheries Sciences.vol.19: (2).pages 653-668.

Alam, M. Z., Ahmad, S., Malik, A., & Ahmad, M. (2010). Mutagenicity and genotoxicity of tannery effluent used for irrigation at Kanpur, India. Ecotoxicology and Environmental Safety, 73(1620), 1628.

Al-Osaimi M. (2010). Impact of salinity stress on growth and some important metabolites of Spirulina platensis (A cyanobacterium). M.Sc. Thesis. Faculty of Science. Alex. University.

Anne L., Luciane Maria C., Cristiane C., Eliane C.(2016). Potential application of microalga Spirulina platensis as a protein source. Review. wileyonlinelibrary.com. DOI 10.1002/jsfa.7987.

Arunakumara K.K.I.U. and Xuecheng Z.(2008). Heavy metal bioaccumulation and toxicity with special reference to microalgae.J. Ocean Univ. China., 7 (1):pp. 25-30.

Balaji S. , Kalaivani T. , Rajasekaran C. , Shalini M. , Vinodhini S. , Sunitha Priyadharshini S. and Vidya A. G. (2015). Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis .Environmental Monitoring and Assessment. Vol. 187, 325.

Becker W.(2004).Microalgae in human and animal nutrition. A. Richmond (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Publishing Ltd.

Ben-Amotz A., Tornabene T. G. and Thomas W. H. (1985). Chemical profile of selected species of microalgae with emphasize on lipids. J. Phycol., 21: 72-81.

Bligh E. G. and Dyer W. M. (1959). Rapid method for lipid extraction can. J. Bio Chem. Physiol. 35: 911 - 915.

Budi R. M. S., Rahardja B. S. and Masithah E, D. (2020). Potential concentration of heavy metal copper (cu) and microalgae growth Spirulina plantesis in culture media. IOP Conf. Series: Earth and Environmental Science 441: 012147.

Chernikova A. A. , Tsoglin L. N. , Markelova A. G. , Zorin S. N. , Mazo V. K. and Pronina N. A. (2006). Capacity of Spirulina platensis to accumulate manganese and its distribution in cell. Russian Journal of Plant Physiology . vol. 53, pages 800–806.

Chu F. E. and Dupuy D. J. (1980). The fatty acid composition of three unicellular algal species used as food sources for larvae of the American oyster. Lipids. 15: 356 - 364.

Cohen Z. and Cohen S. (1991). Preparation of eicosapentaenoic acid (EPA) concentrate from porphyridium cruentun. JAOCS. 68: 16 - 19.

Dempester T. A. and Sommerfeld M. R. (1998). Effects of environmental conditions on growth and lipid accumulation in Nitzclive communiz. (Bacterio phyceae).J. Phycol. 34: 712 - 721.

Dowidar N. M. (1983) Primary production in the central Red Sea off Jeddah. Bull. Nat. Inst. Oceanogr. And Fish., AR.E. 9: 160 - 170.

Dubinsky Z., Berner T. and Aaronson S. (1978). Potential of large-scale algal culture for biomass and lipid production in arid lands. Biotechnology and Bioengineering Symposium. 8: 51- 68.

El‑Agawany N. I. · Kaamoush, M. I. A.(2022). Role of zinc as an essential microelement for algal growth and concerns about its potential environmental risks. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-20536-z

El Taher A. M. (2012). Copper and zinc toxicity in Chlorella vulgaris: Response of growth; some metabolic and antioxidants activity. M.Sc. Thesis. Fac. of Sci. Alex. Univ. Egypt.

El-Maghrabi D. M (2002): Studies on the production of some important fatty acids from Algae. Ph.D. Thesis. Fac. of Sci. Alex. Univ. Alex. Egypt.

El-Sheikh M. M., El-Naggar A. H., Osman M. E. H. and Haider A. (1999). Comparative studies on the green algae Chlorella homosphaera and Chlorella vulgaris with respect to oil pollution in the River Nile. J. Union arab Biol. Cairo. 7(B): Physiology and algae, 117 - 136.

Fulda S., Mikkat S., Schroder W. and Hagemann M. (1999). Isolation of salt – induced periplasmic proteins from Synechocystis sp. Strain pcc 6803. Arch. Microbiol. 171: 214 - 217.

Garcia J.L., DeVicente M., Galan B.(2017). Microalgae, old sustainable food and fashion nutraceuticals Microb. Biotechnol., 10 (5):pp. 1017-1024.

Hanan M. K., Kamal H. S., Mostafa M. E., and Dorea I. E.(2015). Algal Diversity of the Mediterranean Lakes in Egypt. International Conference on Advances in Agricultural, Biological & Environmental Sciences (AABES-2015) July 22-23, 2015 London.

Hoyos M. E. and Zhang S. (2000). Calcium independent activation of salicylic acid-induced protein Kinase and 40- Kilodalton protein Kinase by hyperosmotic stress. Plant Physiol. 122: 1355 - 1363.

Jorge A. V.; Barbara C. B.; Gabriel M. ; Luiza M.; Michele G. ; B. Greg M.(2019). Operational and economic aspects of Spirulina-based biorefinery. Bioresource Technology.Vol.(292), 121946.

Kaamoush, M.; El‑Agawany, N.; El Salhin, H. and El‑Zeiny, A. (2022). Monitoring effect of nickel, copper, and zinc on growth and photosynthetic pigments of Spirulina platensis with suitability investigation in Idku Lake. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-21328-1

Kansiz M., Heraud P., Wood B., Burden F., Beardall J. and Mc Naughton D. (1999). Fourier transform infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochemistry. 52: 407 - 417.

Lupatini, A.L.. Colla, L.M Canan, C. Colla E.(2017). Potential application of microalga Spirulina platensis as a protein source.J. Sci. Food Agric., 97.pp. 724-732.

Meenakshi B. (2007). Bioremediation of oils: Role of Cyanobacteria. In Biotechnological Applications of Microalgae. Narosa Publication House New Delhi. 211-243.

Nethravathy M. U., Jitendra G. Mehar, Sandeep N. Mudliar, Ajam Y. Shekh.(2019).Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Vol. 18, Iss. 6. P: 1882-189.

Muysa M. ; Sui Y. ; Schwaiger B. ; Lesueur C. ; Vandenheuvel D. ; Vermeir P. ; and Siegfried E.Vlaeminck.(2019). High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology. Vol. (275), Pages 247-257.

Noctor G. and Foyer C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Mol. Biol. 49: 249 - 79.

Piorreck M., Baasch K.H., Pohl P.(1984).Preparatory experiments for the axenic mass-culture of microalgae. 1. Biomass production, total protein, chlorophylls, lipids and fatty-acids of fresh-water green and blue green-algae under different nitrogen regimes. Phytochemistry, 23 (2):pp. 207-216.

Pyne,S.; Bhattacharjee,P.; Srivastav, P. (2017).Microalgae (Spirulina platensis) and its bioactive molecules: review. Indian J. Nutr., 4 :pp. 1-6.

Radwan S. S. (1978). Sources of C20 polyunsaturated of fatty acids for Biotechnological use. Appl. Microbiol. And Biotechnol. 35: 421 -430.

Ragaza,J.A.; Sakhawat H. M. Meiler,K.A.; Velasquez,S.F.; Kumar,V.(2020). A review on Spirulina: alternative media for cultivation and nutritive value as an aquafeed. Aquaculture:12, 2371–2395.

Roessler P. G. (1989). Purification and characterization of acetyl. CoA carboxylase from the diatom Cyclotella cryptica. In aquatic species Program Annual Review Meeting. Solar Energy Research Institute, Golden, Colorado, PP. 125 - 138.

Saad, L. (2003). Environmental concern down this earth day. Gallup News Service. Poll Analyses, 17 April. Available at http://www.gallup.com/poll/releases.

Salah El-Din R. A. (1994). Contribution to the biological and phytochemical studies of marine algal vegetation on the coasts of Red-Sea and Suez-Canal (Egypt). Ph.D. Thesis. Botany Department. Faculty of Science. Al-Azhar University, Cairo Egypt.

Sanjib Bhattacharya.(2020). The Role of Spirulina (Arthrospira) in the Mitigation of Heavy-Metal Toxicity. Journal of Environmental Pathology, Toxicology and Oncology. pages 149-157.

Simonopoulos A. P. (1991). Omega-3 fatty acids in health and disease and in growth and development. Am. J. Chin. Nutr. 54: 438 - 463.

Sinha R. P. and Hader D.P. (1996). Response of a rice field cyanobacteria Anabaena sp. To physiological stressors. Environ. Exp. Bot. 36(2): 147-155.

Tadros M. G. (1985). Screening and characterizing oleaginous microalgal species from the Southeastern United States. In Mc-Intosch R.P. (Ed). Aquatic Species Program Review: Proceedings from the March 1983 Principal Investigators Meeting, Publ. SERI/ CP-231-2700. Solar Energy Research Institute, Golden, Colorado, pp. 28 - 42.

William E Connor.(2000). Importance of n−3 fatty acids in health and disease. The American Journal of Clinical Nutrition, Volume 71, Issue 1. Pages 171S–175S.

Williams D. H. and Feleming I. (1996): Spectroscopic methods in organic chemistry (5th ed). London: Mc Graw- Hill International Ltd.

Xu X. Q., Tran V. H., Kraft G. and Beardall J. (1998). Fatty acids of six Codium species from South East Australia. Phytochemistry. 84: 1335 - 1339.

Xu X., Haallett S. G., Sheppard J. and Watson A. K. (1997). Application of the Plackett-Burman experimental design to evaluate nutritional requirements for the production of Colletotrichum coccoides spores. Appl. Microbiol. Biotechnol. 47: 301 - 305.

Zarrouk C. (1966). "Contribution a l'Etude d'une Cyanophycre sur la Croissance de la Photosynthrse de Spirulina maxima". Stech et Gardner (ed.), Geitler, These, Paris.

Zheng G. , Li C. , Guo L. , Ruo W. , Wang S.(2012). Purification of Extracted Fatty Acids from the Microalgae Spirulina. Journal of American Chemist,s Society.Vol.(89), Issue 4. Pages :561-566.

Zinicovscaia I., Cepoi L., Rudi L., Chiriac T., Grozdov D., Vergel K.(2021). Effect of zinc-containing systems on Spirulina platensis: bioaccumulation capacity and biochemical composition. Environmental Science and Pollution Research. 14457-6.




DOI: http://dx.doi.org/10.21622/MARLOG.2023.12.666

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nagwa El‑Agawany, Mona Kaamoush, Hamida El Salhin

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

The International Maritime Transport and Logistics Journal (MARLOG)

E-ISSN: 2974-3141
P-ISSN: 2974-3133

Published by:

Academy Publishing Center (APC)

Arab Academy for Science, Technology and Maritime Transport (AASTMT)

Alexandria, Egypt