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Abstract

The importance of pedigrees is translated by geneticists as a tool for diag-
nosing genetic diseases. Errors resulting during collection of data and missing
information of individuals are considered obstacles in deducing pedigrees, espe-
cially larger ones. Therefore, the reconstructed pedigree graph evaluation needs
to be undertaken for relevant diagnosis. This requires a comparison between
the derived and the original data. The present study discusses the isomorphism
of huge pedigrees with labeled and unlabeled leaves, where a pedigree has hun-
dreds of families, which are monogamous and generational. The algorithms
presented in this paper are based on a set of bipartite graphs covering the pedi-
gree and the problem addressed is parameter tractable. The Bipartite graphs
Covering the Pedigree (BCP) problem is said to possess a time complexity of
f(k).mod(X)O(1) where f is the computing function that grows exponentially.
The study presents an algorithm for the BCP problem that can be catego-
rized as a polynomial-time-tractable evaluation of the reconstructed pedigree.
The paper considers pedigree graphs that consist of both labeled and unlabeled
leaves that make use of parameterized and kernelization algorithms to solve the
problem. The kernelization algorithm executes in O(k3) for the BCP graphs.

Keywords: Pedigree Graphs, Isomorphism, Parameterized Algorithm,
Kernelization Algorithms, Bipartite graphs Covering Peigrees (BCP) Problem

1. Introduction

Recently, an enormous amount of populace genotype data produced from a
Single-Nucleotide Polymorphism (SNP) in genomes were collected. The amount
of such data are expected to rise rapidly in the near future. The populace
genotype data relationships are normally represented using a family tree or
pedigree. A pedigree depicts the relationship amongst the family members and
portrays a specific trait, abnormality, or a disease commonly shared by them
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through inheritance [1]. A pedigree is always of great interest and importance
to scientists. For example, pedigree analysis can be be used for initiating a
country-wise exchange of germplasm [2]. Further, it can also serve to devise
strategies accordingly. Approaches to reconstruct pedigree are multi-fold. One
such way is to construct using genetic data of survivors and backtracking to
identify the ancestral origins [3, 4, 5, 6]. Reconstruction methods incorporate
comparing the derived pedigree against the original, as both possess the same
set of individuals and genetic data but are mutually exclusive in their inferred
ancestors. The existing methods used to compare pedigrees are very low on
accuracy [7, 8, 9].

A team of researchers have developed a method for comparing the topology
of pedigrees with labeled individuals [10], where they studied the following two
main pedigree graph comparison aspects:

• Evaluation of the reconstructed pedigree in comparison with the original,
and

• Examination of the inferred and true ancestors for isomorphism or exhi-
bition of dissimilitude

The authors employed the edit distance algorithm. Both problems are said to
be computationally complex and NP-hard. The edit-distance problem is APX-
hard, meaning that there is a Polynomial Time Approximation Scheme (PTAS)
reduction from every problem in APX to the former and is highly specific in the
case of graph matching.

Chen, in his research presented models for a pedigree with labeled leaves [11].
Labeled leaves represent individuals that have available DNA on which genotyp-
ing or sequencing can be performed without relying on genealogical structure.
He also compared two pedigrees with labeled leaves only. Avoiding pedigrees
with leaves missing the data of the biological father, that are unlabeled leaves,
in turn, has considerably lowered the accuracy in the results [12]. Jiang, on the
other hand, presented his research work to evaluate pedigrees with unlabeled
leaves and proved it to be GI-hard and Fixed-Parameter Tractable (FPT) [13].
The large running time of this method is the major drawback hampering its
comparison to arbitrary 2-generation pedigrees. Similarly, Amar et al. studied
the isomorphism for large unlabeled sub-pedigree, but only up to 7-generation,
by using two traits and proved that the fixed parameters are tractable [14].
Recently, [15] developed the PedigreeNet viewer which was able to generate a
pedigree network of 4706 maize lines and 5487 relationships.

A lot of practical work recently carried out show the massive importance
of pedigrees. Among the most recent work done is Xie et al. [16], where the
studied a chinese pedigree for retinal vasculopathy and how cerebral leukoen-
cephalopathy can be deduced. Also, in [17] developed an R package that uses
pedigree and genomic data to analyze genetic connectedness. Pedigree analysis
also extends to plants, in [18], the authors studied 7 generation pedigrees on
peaches.
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country-wise exchange of germplasm [2]. Further, it can also serve to devise
strategies accordingly. Approaches to reconstruct pedigree are multi-fold. One
such way is to construct using genetic data of survivors and backtracking to
identify the ancestral origins [3, 4, 5, 6]. Reconstruction methods incorporate
comparing the derived pedigree against the original, as both possess the same
set of individuals and genetic data but are mutually exclusive in their inferred
ancestors. The existing methods used to compare pedigrees are very low on
accuracy [7, 8, 9].

A team of researchers have developed a method for comparing the topology
of pedigrees with labeled individuals [10], where they studied the following two
main pedigree graph comparison aspects:

• Evaluation of the reconstructed pedigree in comparison with the original,
and

• Examination of the inferred and true ancestors for isomorphism or exhi-
bition of dissimilitude

The authors employed the edit distance algorithm. Both problems are said to
be computationally complex and NP-hard. The edit-distance problem is APX-
hard, meaning that there is a Polynomial Time Approximation Scheme (PTAS)
reduction from every problem in APX to the former and is highly specific in the
case of graph matching.

Chen, in his research presented models for a pedigree with labeled leaves [11].
Labeled leaves represent individuals that have available DNA on which genotyp-
ing or sequencing can be performed without relying on genealogical structure.
He also compared two pedigrees with labeled leaves only. Avoiding pedigrees
with leaves missing the data of the biological father, that are unlabeled leaves,
in turn, has considerably lowered the accuracy in the results [12]. Jiang, on the
other hand, presented his research work to evaluate pedigrees with unlabeled
leaves and proved it to be GI-hard and Fixed-Parameter Tractable (FPT) [13].
The large running time of this method is the major drawback hampering its
comparison to arbitrary 2-generation pedigrees. Similarly, Amar et al. studied
the isomorphism for large unlabeled sub-pedigree, but only up to 7-generation,
by using two traits and proved that the fixed parameters are tractable [14].
Recently, [15] developed the PedigreeNet viewer which was able to generate a
pedigree network of 4706 maize lines and 5487 relationships.

A lot of practical work recently carried out show the massive importance
of pedigrees. Among the most recent work done is Xie et al. [16], where the
studied a chinese pedigree for retinal vasculopathy and how cerebral leukoen-
cephalopathy can be deduced. Also, in [17] developed an R package that uses
pedigree and genomic data to analyze genetic connectedness. Pedigree analysis
also extends to plants, in [18], the authors studied 7 generation pedigrees on
peaches.
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This research focuses on the algorithm for large pedigree isomorphism prob-
lem that requires the connected components in a given Family F to constitute
a graph. Vertices of the graph can be separated into two sets that are dissim-
ilar and independent, with edges connecting these two disjoint sets of vertices.
The disjoint sets of vertices and edges interconnecting them contain labeled and
unlabeled leaves, and are represented as an isomorphism problem, between the
reconstructed and the original pedigree. In this paper, an algorithm is proposed,
for the bipartite graphs constituting the pedigree for which leaves are labeled
and unlabeled. The algorithm is executed in polynomial time, given that the
bipartite graphs in the family are bound by a constant. Along with the above,
a kernelization problem whose time complexity increases linearly is presented
that returns an instance of size O(k3).

The following are the definitions based on which this research has been
conducted:

Definition 1 A pedigree G = (P, X, g, l) consists of a directed and
acyclic graph where P denotes set of vertices and edges represented as: P =
(I (P);E (P));
the gender function denoted as g and represented as: g : I (P) → {male, fe-
male}
X the set of labelled vertices and that which is denoted as X ⊆ I (P) and
l denoted for injective labelling as l : X → N
where N is the graph size and the set of vertices in P have an in-degree of either
0 or 2 and if (a, v1) and (b, v1) ∈ E
then g(a) �= g(b).

The set of vertices and directed edges represent the parent-child relationship
in this graph and the graph is acyclic in nature. A monogamous vertex ”v”
in graph P and pedigree G is defined to be that vertex which mates with the
opposite gender vertex exactly once and is formally defined as a v �= v

′
where

(v, x) and (v
′
, x) ∈ to E(P ) for some x in the set of vertices I (P) is exactly one.

If all the vertices in that graph mate with exactly one other vertex of opposite
gender then the pedigree is said to be monogamous.

A pedigree G = (P,X, g, l) is generational if there exists Q : I (P) → N
and Q(v) = 1, where v has an in-degree of 0, and there exists an edge (u, v) in
E (P), such that the in-degree of v is more than 0 and Q(v) = Q(u) + 1. Then
Q indicates the generation for v which is nothing but a numeral.

Definition 2 Two pedigree graphs G = (P,X, g, l), G0 = (P
′
, X

′
, g

′
, l

′
),

with labelled and unlabelled leaves are said to be isomorphic when the following
condition holds true. There exists a gender function g : I(P ) → (male, female),
for the labelled and unlabelled leaves, the gender is unknown and there exists
a bijection, i.e. one to one and onto mapping between the two sets. It is
represented as : ψ : V → V

′
, if for every v ∈ V the gender of v i.e. g(v)

matches the gender of v in the other set, i.e g′(v) and (x, v) ∈ E if, ψ(x) ψ(v)
∈ E

′
.
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where N is the graph size and the set of vertices in P have an in-degree of either
0 or 2 and if (a, v1) and (b, v1) ∈ E
then g(a) �= g(b).
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opposite gender vertex exactly once and is formally defined as a v �= v

′
where

(v, x) and (v
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Q indicates the generation for v which is nothing but a numeral.
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, X

′
, g

′
, l

′
),

with labelled and unlabelled leaves are said to be isomorphic when the following
condition holds true. There exists a gender function g : I(P ) → (male, female),
for the labelled and unlabelled leaves, the gender is unknown and there exists
a bijection, i.e. one to one and onto mapping between the two sets. It is
represented as : ψ : V → V

′
, if for every v ∈ V the gender of v i.e. g(v)

matches the gender of v in the other set, i.e g′(v) and (x, v) ∈ E if, ψ(x) ψ(v)
∈ E

′
.

3

Definition 3 Maximum : 3-Dimensional Matching : Given a labelled pedi-
gree graph P constituting of sets of disjoint paths of size n, termed A, B and
C, and a set of triples Y ⊆ A × B × C. M is defined as the subset of Y such
that every 2 triples in M are disjoint and cardinality of mod[M ] is maximized.
Given an instance of two pedigree P and P

′
. An arbitrary fixed order of el-

ements is taken into consideration i.e. Y = A ∪ B ∪ C and use the assigned
order. For each triplet t = (xi, yj, zk) a sub pedigree containing (xi, yj , zk) of
the pedigree P as follows:

• A female individual is created with (xi, yj , zk) for a leaf of P .

• Create parents wt
h,m

t for (x, y, z) and h is the generation of the pedigree
for 2 ≤ mod (A ∪B ∪ C)

• For each mt
1,m

t
2 and wt

2 are the parents who are created upto generation
h and for each wt

1 create parents ut
1 and vt1 upto generation h. P now

contains Y sub pedigrees and each has a unique leaf.

• Next P
′
is initialized as a copy of P and the stated condition is 1 ≤ h ≤

mod (A ∪B ∪ C).

• t1, t2, t3 sharing h items in mod (A ∪ B ∪ C) and ut
1..........u

t
n are merged

and vt1..........v
t
n are merged to form sub-pedigree with max isomorphism.

Problem Definition Suppose there exists a derived pedigree graph. Hence,
a framework to compare large real and induced pedigrees will be discussed. A
sample pedigree is shown in Figure 1. To compare the two pedigrees, the sub
pedigrees of this graph have to be taken into consideration. The sub pedigrees
are represented in Figure 2. Where, Figure 2(a) and 2(c) constitute labelled
leaves, whereas 2(b), 2(d) and 2(e) show unlabelled leaves. These sub pedigrees
exude generational and monogamous trait. Considering the pedigree graph
shown in Figure 1, it will be subsequently proved in 3 that that there exists
isomorphism upto the 3rd generation. If there exists an isomorphism between
the deduced and the original pedigree with both labeled and unlabeled leaves,
it will be validated. This can help geneticist to use it as an essential tool
to diagnose the genetic disease. Thus, the problem statement is as follows:
The reconstructed or obtained graph of a large pedigree can be validated by
evaluating the existence of isomorphic traits between its sub-pedigrees that are
bound by the linearly increasing time complexity of O(k3).

The problem described can be formally defined as follows.

INSTANCE
A family F0 = (VF0, EF0) consisting of k0 disjoint sub-families, and a real

pedigree graph P = (Vp, Ep), with the same number of individuals jVF0j =
jVP j, and a large sub-family Kp,d.

SOLUTION

4
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a framework to compare large real and induced pedigrees will be discussed. A
sample pedigree is shown in Figure 1. To compare the two pedigrees, the sub
pedigrees of this graph have to be taken into consideration. The sub pedigrees
are represented in Figure 2. Where, Figure 2(a) and 2(c) constitute labelled
leaves, whereas 2(b), 2(d) and 2(e) show unlabelled leaves. These sub pedigrees
exude generational and monogamous trait. Considering the pedigree graph
shown in Figure 1, it will be subsequently proved in 3 that that there exists
isomorphism upto the 3rd generation. If there exists an isomorphism between
the deduced and the original pedigree with both labeled and unlabeled leaves,
it will be validated. This can help geneticist to use it as an essential tool
to diagnose the genetic disease. Thus, the problem statement is as follows:
The reconstructed or obtained graph of a large pedigree can be validated by
evaluating the existence of isomorphic traits between its sub-pedigrees that are
bound by the linearly increasing time complexity of O(k3).

The problem described can be formally defined as follows.

INSTANCE
A family F0 = (VF0, EF0) consisting of k0 disjoint sub-families, and a real

pedigree graph P = (Vp, Ep), with the same number of individuals jVF0j =
jVP j, and a large sub-family Kp,d.

SOLUTION

4

Figure 1: A large pedigree containing labeled and unlabled leaves.

Figure 2: (a) and (c) constitute of labelled leaves whereas (b), (d) and (e) have unlabelled
leaves.

F0 is a sub-pedigree of G up to three-generations. This study discusses the
isomorphism of huge pedigrees with labelled and unlabeled leaves, where the
pedigree has hundreds of families, that are monogamous and generational.

The main contributions of the paper are as summarized in the points below:

• The problem of comparing large pedigree graph is defined.

• Algorithms for solving the problem are designed.

• Faster kernelization algorithms for solving the problem are designed.

• Theorems and lemmas for proving and analyzing the proposed algorithms
are given.

• The importance of pedigrees to geneticists is highlighted.

This paper is organized in a way that succeeding sections present the problem
and the results followed by implications and limitations of the study. Section 2
summarizes the methods used in this paper. The algorithms are presented in
Section 3 along with their analysis. Finally, Section 4 concludes and sets future
directions.

5
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Figure 1: A large pedigree containing labeled and unlabled leaves.

Figure 2: (a) and (c) constitute of labelled leaves whereas (b), (d) and (e) have unlabelled
leaves.

F0 is a sub-pedigree of G up to three-generations. This study discusses the
isomorphism of huge pedigrees with labelled and unlabeled leaves, where the
pedigree has hundreds of families, that are monogamous and generational.

The main contributions of the paper are as summarized in the points below:

• The problem of comparing large pedigree graph is defined.

• Algorithms for solving the problem are designed.

• Faster kernelization algorithms for solving the problem are designed.

• Theorems and lemmas for proving and analyzing the proposed algorithms
are given.

• The importance of pedigrees to geneticists is highlighted.

This paper is organized in a way that succeeding sections present the problem
and the results followed by implications and limitations of the study. Section 2
summarizes the methods used in this paper. The algorithms are presented in
Section 3 along with their analysis. Finally, Section 4 concludes and sets future
directions.

5

2. Methods

Kernelization algorithms aim at data reduction, by reducing the input to a
function of the parameter. Hence, they will be used to remove the sub-families
from the reconstructed pedigree till end and the similarity between the sub-
pedigrees of the original and the reconstructed pedigree will be established.
The algorithms execute in polynomial time across large pedigree graphs and
the total number of individuals in sub-pedigrees would be bounded by O(k3).

The researchers have considered a set of BCP graphs. The parameterized
algorithms are used to solve the BCP problem and the kernelization algorithm
is applied repeatedly, whenever there is a sub-family that has to be removed.
At the end of the process, no sub-families can be removed. At this stage the
instances of each pedigree are evaluated to identify the isomorphism. This
methodology can help in diagnosing the genetic diseases across the generations
in large pedigrees containing both labeled and unlabeled leaves. Using bipartite
graphs for which the CUPB algorithm runs in polynomial time; instead of the
Fixed Parameter Tractable algorithm, significantly reduces the time required to
compare pedigrees till the second generation. However, this is not possible owing
to large amounts of missing datasets leading to difficulty in reconstruction. Also,
due to the low-level accuracy while reconstructing the pedigree and detecting
the isomorphic trait.

Section 3 presents the algorithm, a set of Bipartite graphs Covering the Pedi-
gree (BCP), and it is shown to be fixed-parameter tractable that can be solved
in |n|0(1). Moreover, parameterized algorithms and kernelization algorithms for
the problem defined are also presented.

3. Results

This section presents the algorithms developed to solve the defined problem,
along with the analysis of each algorithm.

3.1. A Set of Bipartite Graphs Covering the Pedigree Graphs (BCP)

Before formulating the problem solution, it is required to introduce some
definitions before using the concept. Let (F0, P ) be an illustration of a BCP
problem, where the total number of individuals in the family F0 is equal to
the number of individuals in pedigree P . It is required to prove that the total
number of subfamilies in F0 forms a sub-pedigree of P . As per the research
conducted in [14], F0 becomes a sub pedigree of P if and only if removal of K
- 1 edges from pedigree P transforms it into F0. The approach taken in this
paper is the creation of sub families, succeeded by pairing of sub families using
PairBipartite, which ensures that if the family F ∗ comprises of a sub-family
that is constituted of a connected component, then it is possible to identify
a sub-family in F0 and conclude its image in F ∗. The proof to the above is
illustrated below:

Input Two families F0 and F ∗ have the same number of individuals, where F0

6
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3. RESULTS
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2. Methods

Kernelization algorithms aim at data reduction, by reducing the input to a
function of the parameter. Hence, they will be used to remove the sub-families
from the reconstructed pedigree till end and the similarity between the sub-
pedigrees of the original and the reconstructed pedigree will be established.
The algorithms execute in polynomial time across large pedigree graphs and
the total number of individuals in sub-pedigrees would be bounded by O(k3).

The researchers have considered a set of BCP graphs. The parameterized
algorithms are used to solve the BCP problem and the kernelization algorithm
is applied repeatedly, whenever there is a sub-family that has to be removed.
At the end of the process, no sub-families can be removed. At this stage the
instances of each pedigree are evaluated to identify the isomorphism. This
methodology can help in diagnosing the genetic diseases across the generations
in large pedigrees containing both labeled and unlabeled leaves. Using bipartite
graphs for which the CUPB algorithm runs in polynomial time; instead of the
Fixed Parameter Tractable algorithm, significantly reduces the time required to
compare pedigrees till the second generation. However, this is not possible owing
to large amounts of missing datasets leading to difficulty in reconstruction. Also,
due to the low-level accuracy while reconstructing the pedigree and detecting
the isomorphic trait.

Section 3 presents the algorithm, a set of Bipartite graphs Covering the Pedi-
gree (BCP), and it is shown to be fixed-parameter tractable that can be solved
in |n|0(1). Moreover, parameterized algorithms and kernelization algorithms for
the problem defined are also presented.

3. Results

This section presents the algorithms developed to solve the defined problem,
along with the analysis of each algorithm.

3.1. A Set of Bipartite Graphs Covering the Pedigree Graphs (BCP)

Before formulating the problem solution, it is required to introduce some
definitions before using the concept. Let (F0, P ) be an illustration of a BCP
problem, where the total number of individuals in the family F0 is equal to
the number of individuals in pedigree P . It is required to prove that the total
number of subfamilies in F0 forms a sub-pedigree of P . As per the research
conducted in [14], F0 becomes a sub pedigree of P if and only if removal of K
- 1 edges from pedigree P transforms it into F0. The approach taken in this
paper is the creation of sub families, succeeded by pairing of sub families using
PairBipartite, which ensures that if the family F ∗ comprises of a sub-family
that is constituted of a connected component, then it is possible to identify
a sub-family in F0 and conclude its image in F ∗. The proof to the above is
illustrated below:

Input Two families F0 and F ∗ have the same number of individuals, where F0

6

is a collection of disjoint sub families.

Parameter K, where K = K0 - F ∗ and K0 and K∗ are the number of connected
components in F0 and F ∗. The number of edges in F ∗ that are not in F0 would
be equal to the number of edges which when removed would transform F ∗ to
F0 family.

Lemma 1 Let Fi be a family with K tuple leaves (l1, l2, ........lk) in the same
family. Let the labelled leaves be denoted from 1 ≤ i ≤ s and the unlabelled
leaves be s + 1 ≤ i ≤K. If u and v are two individuals and u �= v, and u and v
are connected by edges (lu1, ........lus), (lvs+1, ........lvk), and are not equal, then
u and v are parents of the children (lui)i=1 to s and (lvi)i=s+1 to k.

The sub family algorithm then takes into account the leaves and their corre-
sponding information of parents and labels and separates them into sub families
km,n.

3.1.1. Sub-Family Algorithm (F, km,n)

Input: Instance of sub-pedigree F , where g is the gender function and g =
{male, female} or g = null. X belongs to the set of vertices (I(P )), which are
leaves, wi are the labelled leaves, 1 ≤ i ≤K, and t is the set of unlabelled leaves.
A set of sub-families km,n is created as follows :

1. Let u be an individual in a sub-pedigree F

2. For all the individuals in this sub-pedigree F

3. If u has out degree = {wi} and in-degree = ∅ then

{
If wi ∈ X //(marks the presence of labelled leaves) then

Store m ← u and n ← lwi;

Elseif wi−t ∈ X and wt ∈ X // (marks the presence of unlabelled
and labelled leaves) then

Store m ← u and n ← lwi and nt null

Else Store m ← u and n ← g(null); // marks the presence of
unlabelled leaves only
}

4. Else Delete m+ n from F // here u is a leaf and its parent is v

5. If F �= � then return to step 2;

6. Else Stop

7
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is a collection of disjoint sub families.

Parameter K, where K = K0 - F ∗ and K0 and K∗ are the number of connected
components in F0 and F ∗. The number of edges in F ∗ that are not in F0 would
be equal to the number of edges which when removed would transform F ∗ to
F0 family.

Lemma 1 Let Fi be a family with K tuple leaves (l1, l2, ........lk) in the same
family. Let the labelled leaves be denoted from 1 ≤ i ≤ s and the unlabelled
leaves be s + 1 ≤ i ≤K. If u and v are two individuals and u �= v, and u and v
are connected by edges (lu1, ........lus), (lvs+1, ........lvk), and are not equal, then
u and v are parents of the children (lui)i=1 to s and (lvi)i=s+1 to k.

The sub family algorithm then takes into account the leaves and their corre-
sponding information of parents and labels and separates them into sub families
km,n.

3.1.1. Sub-Family Algorithm (F, km,n)

Input: Instance of sub-pedigree F , where g is the gender function and g =
{male, female} or g = null. X belongs to the set of vertices (I(P )), which are
leaves, wi are the labelled leaves, 1 ≤ i ≤K, and t is the set of unlabelled leaves.
A set of sub-families km,n is created as follows :

1. Let u be an individual in a sub-pedigree F

2. For all the individuals in this sub-pedigree F

3. If u has out degree = {wi} and in-degree = ∅ then

{
If wi ∈ X //(marks the presence of labelled leaves) then

Store m ← u and n ← lwi;

Elseif wi−t ∈ X and wt ∈ X // (marks the presence of unlabelled
and labelled leaves) then

Store m ← u and n ← lwi and nt null

Else Store m ← u and n ← g(null); // marks the presence of
unlabelled leaves only
}

4. Else Delete m+ n from F // here u is a leaf and its parent is v

5. If F �= � then return to step 2;

6. Else Stop

7

3.1.2. Pairing Sub-Families in F 0 and F ∗

F ∗ has a connected set of sub families as a bipartite graph. If F0 is a sub-
pedigree of F ∗, then a sub family of F0 can be directly mapped to a sub family
of F ∗. This is done by Pair Bipartite algorithm. An example is shown in Figure
3.

Select the largest sub-family Kp,d that belongs to F ∗ and map with a sub
family from F0. In case of labelled leaves, leaves with similar labels are retained
while those that are unlabelled have edges removed to transform the sub family
of F0 into a sub family of F ∗. Kp,d is transformed into Kv,w as shown in the
example Figure 4.

Figure 3: In the case of a labeled leaves: Determine the similar leaves between two sub-
families from F0 and F ∗ and remove the leaves with different labels.

PairBipartite(F0,F
∗,Kp,d)

Input : F0, F
∗ are sub families and Kp,d is the sub family

// t = the number of labelled leaves in the sub-family in F ∗

// b = the set of sub families in F0

b = Sub Family Algorithm(F0, Kv,w)
Suppose b is the set of sub families in F0 and the sub families are smaller than

Kp,d;
If b = null then F0 is not a sub pedigree of F ∗

Else the largest sub family Kv,w in F0 is selected
{ If there exists labelled leaves in the sub family then
Remove d−w leaves (i.e. leaves that are in d and not in w) and have different

labels such that
Kp,w becomes a sub family of F ∗

Else if there exists labelled and unlabeled leaves in a sub family present in set
b then

8
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Figure 4: Mapping two sub-families with unlabeled leaves by using the MCIP algorithm in
Amar et al. [14]

Remove d−w leaves in Kp,d those whose names are null or have different names
Else if unlabelled leaves are present in the sub family then
Remove d− w edges;
Convert Kv,w in F0 and Kp,d in F ∗ that forms the sub families of F ′

0 and F ∗

Initialize empty set E(f1), I(f1)
Suppose v is marked as the male vertex where v ≥ 2;
Suppose w is marked as the female vertex where w ≥ 0;
F1 the new sub-family is designated as (I(f1), E(f1))
Generation 1: I(f1) ← v ∪ w
Generation 2: replace each edge between v and w by a new leaf vertex which
is marked as female
E(F1) ← E(f1) ∪ {(v, vw), (w, vw)}

Repeat the steps to convert the sub treeKp,w in F ∗ into f2 denoted by (I(f2), E(f2)),
Match f1 and f2 using the MCIP algorithm as discussed by Jiang [13] to ex-
hibit isomorphism across pedigrees and levels. Justifying that evaluation of the
reconstructed pedigree exuding the isomorphic behaviour to the original can be
used by geneticists accordingly.

The validity of the Algorithm Bipartite is embedded in Lemma 2, which
presents an assumption and substantiates it with a proof:

Lemma 2 (F0,F
∗,Kp,d) outputs two sub-families F0′ and F ∗′

which are sub
pedigrees of F0 and F ∗, respectively. Then F0 is a sub pedigree of F ∗ if and only
if F0′ is a sub pedigree of F ∗′

.

Proof. Initially the sub family algorithm (F0, Km,n) is executed to determine
all the sub families in F0 and store the information of the sub families.

”If b = null, then F0 is not a sub pedigree of F ∗” can be proved through
contradiction. Consider that σ denotes isomorphic mapping from F0 to a sub

9

pedigree of F ∗. Then σ would chart a vertex or an individual in F0 to the
parent of sub family Kv,w in F ∗. The possible cases that v can be either parent
or leaf of the sub family Kp,d proves that F0 has a sub family not larger than
Kp,d. This contradicts the proposition that b is null. Let there be two sub

families that are denoted as outputs F0′ and F ∗′
. Execution of the Step 4 of the

Pair Bipartite Algorithm removes some edges from F ∗ and then removes two
identical families, one from F0 and F ∗. So F0′ and F ∗′

can be written as F0′ =
F0/Kv.,w and F ∗′

= F ∗/Kv,w and in the case of F ∗′
all the edges incident to

d in Kp,d but not to w in Kv,w are removed. This proves that F0′ and F ∗′
are

sub pedigree of F0 and F ∗. Since the F0′ and F ∗′
are the sub pedigrees of F0

and F ∗, if an identical sub family is removed then if F0 is not a sub pedigree of
F ∗, then F0′ cannot be a sub pedigree of F ∗′

.
Now, if F0 is a sub-pedigree of F ∗ and σ is an isomorphic mapping from F0

to a sub-pedigree of F ∗, the mapping σ must map a sub-family in F0 to the
sub-family in F ∗. Select the largest sub family Kv,w from the sub pedigree F0

and perform the following operations :

• In case of the labelled leaves, the number of edges that have to be removed
is d−w edges, where edges starting from d and connecting w leaves should
be of the same gender, otherwise they have to be removed.

• In case of unlabeled leaves, remove d− w edges

• In case of labelled and unlabelled leaves in the sub family, save the edges
with common gender and remove the edges which traverse to unlabelled
leaves.

If the two sub families are similar, then it is validated that a sub family in F0

can be mapped onto sub family of F ∗. To validate isomorphism, it is required
to prove that Kv,w1 and Kp,w1 are isomorphic if two levels of sub families are
isomorphic. The sub family Kv,w converts into a new form by assigning males
to all individuals v and females to individuals w. The new sub family is formed
by creating new individuals vw1, vw2 that are marked as female and the set of
edges denoted as
E(f1) ← E(f1) ∪ {(v, vw), (w, vw)} in kv,w1 and the set of edges in new sub
family sub(f2) takes the form
E(f2) ← E(f2) ∪ {(v, vw), (w, vw) in Kp,w1.

Mapping is applied by using (MCIP) algorithm between f1 and f2 to prove
the isomorphism as described by Jiang [13]. For all other sub families in F0

mappings are similar to that of σ.
Let the mapping be σ and let it map the sub families in F0 to their matching

families in F ∗. The mapping σ and σ are the same on all other individuals in F0.
The mapping induced by σ on individuals of F0′ = F0/Kp,w is an isomorphic

mapping from F0′ to a F ∗′
= F ∗/Kp,w. Hence, F0′ is a sub pedigree of F ∗′

which proves the lemma.
Algorithm PairBipartite and Lemma 2 have helped prove that if there exists

a connected component in F ∗ which is a sub family then a sub family also exists

10
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pedigree of F ∗. Then σ would chart a vertex or an individual in F0 to the
parent of sub family Kv,w in F ∗. The possible cases that v can be either parent
or leaf of the sub family Kp,d proves that F0 has a sub family not larger than
Kp,d. This contradicts the proposition that b is null. Let there be two sub

families that are denoted as outputs F0′ and F ∗′
. Execution of the Step 4 of the

Pair Bipartite Algorithm removes some edges from F ∗ and then removes two
identical families, one from F0 and F ∗. So F0′ and F ∗′

can be written as F0′ =
F0/Kv.,w and F ∗′

= F ∗/Kv,w and in the case of F ∗′
all the edges incident to

d in Kp,d but not to w in Kv,w are removed. This proves that F0′ and F ∗′
are

sub pedigree of F0 and F ∗. Since the F0′ and F ∗′
are the sub pedigrees of F0

and F ∗, if an identical sub family is removed then if F0 is not a sub pedigree of
F ∗, then F0′ cannot be a sub pedigree of F ∗′

.
Now, if F0 is a sub-pedigree of F ∗ and σ is an isomorphic mapping from F0

to a sub-pedigree of F ∗, the mapping σ must map a sub-family in F0 to the
sub-family in F ∗. Select the largest sub family Kv,w from the sub pedigree F0

and perform the following operations :

• In case of the labelled leaves, the number of edges that have to be removed
is d−w edges, where edges starting from d and connecting w leaves should
be of the same gender, otherwise they have to be removed.

• In case of unlabeled leaves, remove d− w edges

• In case of labelled and unlabelled leaves in the sub family, save the edges
with common gender and remove the edges which traverse to unlabelled
leaves.

If the two sub families are similar, then it is validated that a sub family in F0

can be mapped onto sub family of F ∗. To validate isomorphism, it is required
to prove that Kv,w1 and Kp,w1 are isomorphic if two levels of sub families are
isomorphic. The sub family Kv,w converts into a new form by assigning males
to all individuals v and females to individuals w. The new sub family is formed
by creating new individuals vw1, vw2 that are marked as female and the set of
edges denoted as
E(f1) ← E(f1) ∪ {(v, vw), (w, vw)} in kv,w1 and the set of edges in new sub
family sub(f2) takes the form
E(f2) ← E(f2) ∪ {(v, vw), (w, vw) in Kp,w1.

Mapping is applied by using (MCIP) algorithm between f1 and f2 to prove
the isomorphism as described by Jiang [13]. For all other sub families in F0

mappings are similar to that of σ.
Let the mapping be σ and let it map the sub families in F0 to their matching

families in F ∗. The mapping σ and σ are the same on all other individuals in F0.
The mapping induced by σ on individuals of F0′ = F0/Kp,w is an isomorphic

mapping from F0′ to a F ∗′
= F ∗/Kp,w. Hence, F0′ is a sub pedigree of F ∗′

which proves the lemma.
Algorithm PairBipartite and Lemma 2 have helped prove that if there exists

a connected component in F ∗ which is a sub family then a sub family also exists

10

in F0 and directly determine its mirror image and all other sub family’s mirror
image in F ∗.

3.1.3. Parameterized Algorithms for the BCP Problem

The algorithm Pair BiPartite can be repeatedly applied as long there are
sub families in F0 for which images can be created in F ∗, while removing sub
families from F0 and F ∗′

till there exists no more sub families. If F ∗ is not
empty, then F ∗ constitutes of a path sp = [u0, u1, u2] of length equal to 2.
If the collection of sub families exist in F0 and if F0 is a sub pedigree of F ∗,
then there will exist at least one edge among the two edges of sp that will be
absent from the isomorphic image from F0 to F ∗. The edge can be removed
and F0 continues to be a sub pedigree of F ∗. Having removed the edge in F ∗, a
branch and search algorithm of time complexity 2k.nO(1) is used, where k is the
parameter of the instance (F0,F

∗), since the number of edges decreases by 1.
The value k here is equal to number of edges in F ∗ minus the number of edges
in F0.

To summarize and simplify the discussion, an isomorphism, σ, from F0 to a
sub-pedigree of F∗, will narrow down to the fact that an edge e in F ∗ is in σ
if the edge e is present in the image of σ. This can further be validated in the
consecutive sections.

Lemma 3 Suppose that (F0,F∗) is the instance of (BCP) containing labeled
and unlabeled leaves, and the edges be e1 = [a,b] and e2 = [b, c], be the two
different edges in F ∗ and they share the common vertex b. If F0 is a sub pedigree
of F ∗, then for every isomorphism, σ, from F0 onto F ∗, there exists at least
one edge e1 or e2 that is not isomorphic or does not have an image in F ∗.

Proof. Let F0 be a sub pedigree of F ∗ and two edges e1 and e2 be the edges
that are in isomorphic mapping from F0 to a sub pedigree of F ∗.

Algorithm Branch-path (F0,F
∗)

Input: (F0,F
∗) is an instance from path covered sub-pedigree

Let u be an individual node that has an out-degree
If u ≤ 1 in F ∗ then return;
Elseif u > 1;
For all distinct edges e1,e2 in u do
Return Branch-path (F0,F

∗/(Eu/e1,e2)) ;
If u does not exist then stop.

Lemma 4 Let (F0,F
∗) be an instance of BCP. Let there be a simple path sp =

[u0, u1, u2] in F ∗, where u0 is a leaf and u2 is an individual of degree 2. If F0, a
sub pedigree of F ∗, constitutes of labelled and unlabelled leaves, then there exists
an isomorphism σ from F0 onto F ∗ such that at least one of the edges in the
path sp is not mapped by σ

Proof. Assume that edges [u0, u1], [u1, u2] are in σ and exhibit isomorphism
from F0 to a sub pedigree of F ∗. This is with reference to the proof of lemma

11
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in F0 and directly determine its mirror image and all other sub family’s mirror
image in F ∗.

3.1.3. Parameterized Algorithms for the BCP Problem

The algorithm Pair BiPartite can be repeatedly applied as long there are
sub families in F0 for which images can be created in F ∗, while removing sub
families from F0 and F ∗′

till there exists no more sub families. If F ∗ is not
empty, then F ∗ constitutes of a path sp = [u0, u1, u2] of length equal to 2.
If the collection of sub families exist in F0 and if F0 is a sub pedigree of F ∗,
then there will exist at least one edge among the two edges of sp that will be
absent from the isomorphic image from F0 to F ∗. The edge can be removed
and F0 continues to be a sub pedigree of F ∗. Having removed the edge in F ∗, a
branch and search algorithm of time complexity 2k.nO(1) is used, where k is the
parameter of the instance (F0,F

∗), since the number of edges decreases by 1.
The value k here is equal to number of edges in F ∗ minus the number of edges
in F0.

To summarize and simplify the discussion, an isomorphism, σ, from F0 to a
sub-pedigree of F∗, will narrow down to the fact that an edge e in F ∗ is in σ
if the edge e is present in the image of σ. This can further be validated in the
consecutive sections.

Lemma 3 Suppose that (F0,F∗) is the instance of (BCP) containing labeled
and unlabeled leaves, and the edges be e1 = [a,b] and e2 = [b, c], be the two
different edges in F ∗ and they share the common vertex b. If F0 is a sub pedigree
of F ∗, then for every isomorphism, σ, from F0 onto F ∗, there exists at least
one edge e1 or e2 that is not isomorphic or does not have an image in F ∗.

Proof. Let F0 be a sub pedigree of F ∗ and two edges e1 and e2 be the edges
that are in isomorphic mapping from F0 to a sub pedigree of F ∗.

Algorithm Branch-path (F0,F
∗)

Input: (F0,F
∗) is an instance from path covered sub-pedigree

Let u be an individual node that has an out-degree
If u ≤ 1 in F ∗ then return;
Elseif u > 1;
For all distinct edges e1,e2 in u do
Return Branch-path (F0,F

∗/(Eu/e1,e2)) ;
If u does not exist then stop.

Lemma 4 Let (F0,F
∗) be an instance of BCP. Let there be a simple path sp =

[u0, u1, u2] in F ∗, where u0 is a leaf and u2 is an individual of degree 2. If F0, a
sub pedigree of F ∗, constitutes of labelled and unlabelled leaves, then there exists
an isomorphism σ from F0 onto F ∗ such that at least one of the edges in the
path sp is not mapped by σ

Proof. Assume that edges [u0, u1], [u1, u2] are in σ and exhibit isomorphism
from F0 to a sub pedigree of F ∗. This is with reference to the proof of lemma

11

3, which states that no edge of the form [u0, z], [z, u2] can be in σ, where z �=
u2. Since u2 has an in-degree 2 in F ∗, the path [u1, u2] is the image of the sub
family of the type Kp,d under σ in F0. u0 is the leaf in F ∗ and image of the
type K1,0 in F0. The isomorphic mapping σ can be modified, such that the sub
family of the type K2,2 in F0 be mapped onto [u1, u2] in F ∗ and the sub family
of the type K1,0 in F0 be mapped to the leaf u0 in F ∗. It then becomes easy to

validate that the final mapping σ
′
is a σ mapping from F0 to F ∗ with the edge

[u0, u1] not in σ
′
.

The incorporation of the above lemma has been done using the BCP-I and
BCP- II algorithms. The algorithms are described as follows:

In the BCP-I algorithm, an instance of the problem is considered in which F0

is a set of sub families and F ∗ is a family. The objective is to find out whether
F0 is a sub pedigree of F ∗.

If F ∗ is null, then F0 is a sub pedigree of F ∗, else if K < 0, then F0 is
not a sub pedigree of F ∗. If it contains a single sub family then PairBipartite
algorithm will be called to reduce the number of individuals in that sub family,
which has same number of individuals in F ∗ and F0. Then both families F0

and F ∗ are tested for similarities or isomorphism. The other criterion within
the PairBipartite can be that F ∗′

contains a simple path of length equal to 2
and F ∗′

can contain labelled and unlabelled leaves where each of the branches
will be processed.

Algorithm BCP-I(F0,F
∗,k)

Input : F0, F
∗ is an illustration of the BCP problem where F0 is a set of sub

families and F ∗ is a family.
Output : F0 is a sub pedigree of F ∗

1. If F0 = ∅ then Stop //(F ∗ constitutes the sub pedigree F0)

2. Else if K < 0 then Stop //(F ∗ does not constitute the sub pedi-
gree F0)

3. If F ∗ contains sub family Kp,d then

4. (F ′
0,F

∗′) = PairBipartite(F0,F
∗,Kp,d); //(k = the difference in

the number of edges between the two )

5. Return to BCP-1(F0′ , F
∗′
);

6. If F ∗ is not empty then a simple path sp = [u0, u1, u2] is chosen
which is of length 2 then

a. If u2 has an out-degree =2 in F ∗ then

Branch-Path(F0,
′ F ∗′

);

Return BCP-I(F0,F
∗\u1,u2,k − 1);

b. Else

Branch-Path (F ′
0,F

∗′);

12
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3, which states that no edge of the form [u0, z], [z, u2] can be in σ, where z �=
u2. Since u2 has an in-degree 2 in F ∗, the path [u1, u2] is the image of the sub
family of the type Kp,d under σ in F0. u0 is the leaf in F ∗ and image of the
type K1,0 in F0. The isomorphic mapping σ can be modified, such that the sub
family of the type K2,2 in F0 be mapped onto [u1, u2] in F ∗ and the sub family
of the type K1,0 in F0 be mapped to the leaf u0 in F ∗. It then becomes easy to

validate that the final mapping σ
′
is a σ mapping from F0 to F ∗ with the edge

[u0, u1] not in σ
′
.

The incorporation of the above lemma has been done using the BCP-I and
BCP- II algorithms. The algorithms are described as follows:

In the BCP-I algorithm, an instance of the problem is considered in which F0

is a set of sub families and F ∗ is a family. The objective is to find out whether
F0 is a sub pedigree of F ∗.

If F ∗ is null, then F0 is a sub pedigree of F ∗, else if K < 0, then F0 is
not a sub pedigree of F ∗. If it contains a single sub family then PairBipartite
algorithm will be called to reduce the number of individuals in that sub family,
which has same number of individuals in F ∗ and F0. Then both families F0

and F ∗ are tested for similarities or isomorphism. The other criterion within
the PairBipartite can be that F ∗′

contains a simple path of length equal to 2
and F ∗′

can contain labelled and unlabelled leaves where each of the branches
will be processed.

Algorithm BCP-I(F0,F
∗,k)

Input : F0, F
∗ is an illustration of the BCP problem where F0 is a set of sub

families and F ∗ is a family.
Output : F0 is a sub pedigree of F ∗

1. If F0 = ∅ then Stop //(F ∗ constitutes the sub pedigree F0)

2. Else if K < 0 then Stop //(F ∗ does not constitute the sub pedi-
gree F0)

3. If F ∗ contains sub family Kp,d then

4. (F ′
0,F

∗′) = PairBipartite(F0,F
∗,Kp,d); //(k = the difference in

the number of edges between the two )

5. Return to BCP-1(F0′ , F
∗′
);

6. If F ∗ is not empty then a simple path sp = [u0, u1, u2] is chosen
which is of length 2 then

a. If u2 has an out-degree =2 in F ∗ then

Branch-Path(F0,
′ F ∗′

);

Return BCP-I(F0,F
∗\u1,u2,k − 1);

b. Else

Branch-Path (F ′
0,F

∗′);

12

Return BCP-I(F0,F
∗\(u0,u1),[(k − 1) or (u1,u2)];

Theorem 2 The algorithm BCP-I solves the problem BCP, by determining F0

is a sub-pedigree of F ∗. The parameter ’k’ is the difference between the number
of edges in the two sub-pedigrees F0 and F ∗ with labelled and unlabeled leaves.

Proof
Input: (F0, F

∗) as an instance of the BCP problem. Families F0 and F ∗ have
equal number of individuals. The algorithm terminates execution in case of no
individuals are in F ∗ (F ∗ = Ø, for k < 0. Hence, F0 is not a sub pedigree of
F ∗.

If F ∗ contains a sub family Kp,d within its family, then according to lemma

3 (F ′
0 F

∗′
) is returned by the algorithm Pair BiPartite(F ′

0 F
∗;Kp,d) and is solved

by recursively calling BCP-I (F0,F
∗,k).

Now, if F ∗′
contains a path sp = [u0, u1, u2] and u0 is the leaf, then if u2 in

F ∗′
is an individual of degree 2, by lemma 4, if F0 is a sub pedigree of F ∗, then

there exists an isomorphism from F0 to F ∗ where edge (u1,u2) is not in σ.
Therefore if F0 is a sub pedigree of F ∗ then F0 is also a sub pedigree of F ∗\

(u1,u2). If the degree of the individual, say u2, is larger than 2 then lemma 3 can
prove that with every isomorphism mapping σ from F0 onto F ∗ either (u0,u1)
or (u1,u2) is not in σ or no edges in the set of edges belonging to individual u2

is in σ. Thus, if F0 is a sub pedigree of F ∗ then the algorithm will return a YES
else will return a NO for the instance F0, F

∗.

Theorem 3 The algorithm BCP-I(F0, F ∗) solves the BCP problem in time
O(2.42Kn(k+logn)) where n is the size of an instance which contains labelled
and unlabelled leaves. The parameter k represents the difference between the
number of edges in the sub pedigree F0 and F ∗.

Proof
The sub families in F0 can be organized based on the size of the sub families

using appropriate data structures. The largest sub family Kv,w in F0 for a given
sub family Kp,d in F ∗ can be found in O(log n) time. If F ∗ is not empty then
from u0, which is the leaf node in F ∗, a path of the form [u0,u1,u2] can be
constructed in F ∗ of length equal to 2.

The Branch and Search Algorithm in BCP-I can be described as a bounded
search in which each internal node having more than one child maps to a branch
in the algorithm, and the leaf vertex matches to a decision formulated by the
algorithm. By removing sub families from F0 and F ∗, a path of length 2 is
constructed in F ∗. To find out the sub families by removing edges at each
step from F ∗, the algorithm takes K branching steps, and a time of O(n) to
identify the sub families. The algorithm takes time of O(nlogn) for removing
the matching sub families.

Assume that, u2 has a degree ≥ 2 so that, the subset edges Eu2 contain
at least 2 edges, then a computational path can be traced to each leaf. This is
achieved using the result of the recurrence relation in You et al. [19], this search
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Return BCP-I(F0,F
∗\(u0,u1),[(k − 1) or (u1,u2)];
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is a sub-pedigree of F ∗. The parameter ’k’ is the difference between the number
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Input: (F0, F

∗) as an instance of the BCP problem. Families F0 and F ∗ have
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3 (F ′
0 F

∗′
) is returned by the algorithm Pair BiPartite(F ′

0 F
∗;Kp,d) and is solved

by recursively calling BCP-I (F0,F
∗,k).

Now, if F ∗′
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F ∗′
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∗.
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search in which each internal node having more than one child maps to a branch
in the algorithm, and the leaf vertex matches to a decision formulated by the
algorithm. By removing sub families from F0 and F ∗, a path of length 2 is
constructed in F ∗. To find out the sub families by removing edges at each
step from F ∗, the algorithm takes K branching steps, and a time of O(n) to
identify the sub families. The algorithm takes time of O(nlogn) for removing
the matching sub families.

Assume that, u2 has a degree ≥ 2 so that, the subset edges Eu2 contain
at least 2 edges, then a computational path can be traced to each leaf. This is
achieved using the result of the recurrence relation in You et al. [19], this search
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results in tracing the path to 2.42K leaves.
Finally, the run time of the algorithm BCP-I is O(2.42K n(k + log n)). This

is the time taken to identify sub families and remove them, in addition to the
time to search for the computational paths to the leaves when edges are more
than 2.

A second version of the algorithm which diminishes the time complexity as
per the results reported by [20] is presented as BCP-II. This algorithm executes
in O(bK.nO(1)) where b is less than 2.42, and n is superimposed by a higher
degree polynomial. The BCP-II algorithm is presented in below.

Algorithm BCP-II(F0, F
∗, k)

Input : F0, F
∗ is an illustration of the BCP problem where F0 is a set of sub

families and F ∗ is a family.
Output : F0 is a sub pedigree of F ∗

Parameter: K = K0 − K∗, the difference between the number of edges in F0

and the number of edges in F ∗

If F ∗ = null then Stop // F ∗ constitutes the sub pedigree F0

If k < 0 then Stop// F ∗ does not constitute the sub pedigree F0

Select an individual u1 with the largest out-degree from F ∗

If degree(u1) ≤ c then solve by using [20]
If u1 is a parent P and is in an isolated sub family Kp,d then

(F ′
0,F

∗′
) = PairBipartite (F0, F

∗, Ku,d)
Return BCP-II(F ′

0, F
∗, c, k)

Else select a simple path sp = [u0, u1, u2] of length 2 in F ∗ then
BranchPath(F ′

0,F
∗)

Return BCP (F0, F
∗\(u0,u1), c, k − 1)

OR BCP (F0, F
∗\(u1,u2), c, k − 1)

OR BCP (F0, F
∗\Eu1,c,k-1,Eu1);

Associated with the above algorithm is the theorem and the subsequent
proof that algorithm BCP-II can be executed in a time that is upper bounded
by O(bK.nO(1)) where c is a constant ≥ 1, n is the size of the sub pedigree
instance (F0,F

∗) constituting of labelled and unlabelled leaves, and k denotes
the difference of number of edges.

Theorem 4 The algorithm BCP-II (F0,F
∗,c,k) solves the problem BCP in

time O(bK nO(1)), when there exists a constant c ≥ 1, and n is the size of the
instance (F0,F

∗) with labelled and unlabeled leaves, and k denotes difference in
the number of edges between sub pedigrees F0,F

∗.

Proof
The algorithm BCP-I, undergoes changes with the inclusion of step 4, as

denoted in the preceding BCP-II algorithm, which requires validation and jus-
tification. In a study conducted by Baumbach et al. [20], they discussed (Star
Cover Tree) SCT problem which constitutes of a tree and a set of stars. These
stars can be connected through edges between them in such a way that the
resulting tree is isomorphic to T. Baumbach et al. [20] have proved that when
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than 2.

A second version of the algorithm which diminishes the time complexity as
per the results reported by [20] is presented as BCP-II. This algorithm executes
in O(bK.nO(1)) where b is less than 2.42, and n is superimposed by a higher
degree polynomial. The BCP-II algorithm is presented in below.

Algorithm BCP-II(F0, F
∗, k)

Input : F0, F
∗ is an illustration of the BCP problem where F0 is a set of sub

families and F ∗ is a family.
Output : F0 is a sub pedigree of F ∗

Parameter: K = K0 − K∗, the difference between the number of edges in F0

and the number of edges in F ∗

If F ∗ = null then Stop // F ∗ constitutes the sub pedigree F0

If k < 0 then Stop// F ∗ does not constitute the sub pedigree F0

Select an individual u1 with the largest out-degree from F ∗

If degree(u1) ≤ c then solve by using [20]
If u1 is a parent P and is in an isolated sub family Kp,d then

(F ′
0,F

∗′
) = PairBipartite (F0, F

∗, Ku,d)
Return BCP-II(F ′

0, F
∗, c, k)

Else select a simple path sp = [u0, u1, u2] of length 2 in F ∗ then
BranchPath(F ′

0,F
∗)

Return BCP (F0, F
∗\(u0,u1), c, k − 1)

OR BCP (F0, F
∗\(u1,u2), c, k − 1)

OR BCP (F0, F
∗\Eu1,c,k-1,Eu1);

Associated with the above algorithm is the theorem and the subsequent
proof that algorithm BCP-II can be executed in a time that is upper bounded
by O(bK.nO(1)) where c is a constant ≥ 1, n is the size of the sub pedigree
instance (F0,F

∗) constituting of labelled and unlabelled leaves, and k denotes
the difference of number of edges.

Theorem 4 The algorithm BCP-II (F0,F
∗,c,k) solves the problem BCP in

time O(bK nO(1)), when there exists a constant c ≥ 1, and n is the size of the
instance (F0,F

∗) with labelled and unlabeled leaves, and k denotes difference in
the number of edges between sub pedigrees F0,F

∗.

Proof
The algorithm BCP-I, undergoes changes with the inclusion of step 4, as

denoted in the preceding BCP-II algorithm, which requires validation and jus-
tification. In a study conducted by Baumbach et al. [20], they discussed (Star
Cover Tree) SCT problem which constitutes of a tree and a set of stars. These
stars can be connected through edges between them in such a way that the
resulting tree is isomorphic to T. Baumbach et al. [20] have proved that when
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the count of unique stars is bounded by a constant k, CTS can be solved in
polynomial time of order O(n2c+3). In this work, simple undirected graphs are
considered. The star constitutes of a set of vertices connected by edges that
define the size with at least one internal vertex.

The following is built on Theorem 2 in [14], and the fact that the bipartite
graph consists of two equal sized stars, such that one of the two stars is present
on the path. Any sub-pedigree with labelled and unlabeled leaves represents a
branch of the sub-pedigree which has a connected component of distinct sub-
families, so that the Tree Edit Distance with insertion and deletion of edges
can be used to solve the BCP problem, where c represents various sizes of sub-
families in F0.

Moreover, if the sub-families in F0 have size bounded by c, then F0 has
at most (c + 1) sub-families of various types inclusive of sub-families without
children having a size of 0. Therefore, the BCP problem can be solved in time
of O(n2c+5). When all the connected components of sub families of size (c + 2)
in F ∗ are linked, such that the sub-families form a new sub pedigree graph with
a definite number of sub-families, and have the same size in F0, are added on
to F ∗, then the algorithm executes in time of O(n2c+9), where the sub-families
in F0 have their size bounded by c.

If an individual has a degree ofr edge (u1) ≤ c, in order to let F0 be a sub-
pedigree of F ∗, no sub-family in F0 can have size exceeding c because u1 is the
individual with the maximum out degree in F ∗. Therefore, from the discussion
above this step is solved in time O(n2c+9) = nO(1), where the polynomial com-
ponent is the complexity of higher degree. If u1 is not an isolated sub-family in
F ∗, then there exists a simple path of length 2.

Applying lemma 4, the complexity for each computational path in the search
takes polynomial time, again the branching of the algorithm gives the recurrence
relation P(X) = 2P(X − 1) + P(X–c), where P(X) defines the number of leaves.

Using the standard method shown by Chen et al. [21], the above recurrence
relation is solved to obtain P(x) = xc−2xc−1−1, with root b > 2, and the total
number of leaves in the search is bK. Thus, the algorithm BCP-II is executed
in bknO(1).

Next the concept of Kernelization is introduced and it is proved that linear
time kernelization algorithm yields a kernel of size O(K3) for the BCP problem.
The theorem to prove the performance of the algorithm follows.

Theorem 5 The problem “A set of Bipartite graphs Covering the Pedigree
graphs (BCP)” is executed in time O((2 + EPSILON)knO(1)), where the con-
stant EPSILON ¿ 0.

Proof
The proof depends on theorems 3 and 4 for solving the algorithms BCP-I and

BCP-II, when EPSILON ¿ 0. Given an instance (F0, P) of the BCP problem, a
reduction rule is applied by the Kernelization algorithm which removes certain
leaves from F0 and P such that there exists a sub family in F0 whose size is
bounded by O(K2). It is said that a K vertex cover has a kernel of size O(K2).
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the count of unique stars is bounded by a constant k, CTS can be solved in
polynomial time of order O(n2c+3). In this work, simple undirected graphs are
considered. The star constitutes of a set of vertices connected by edges that
define the size with at least one internal vertex.

The following is built on Theorem 2 in [14], and the fact that the bipartite
graph consists of two equal sized stars, such that one of the two stars is present
on the path. Any sub-pedigree with labelled and unlabeled leaves represents a
branch of the sub-pedigree which has a connected component of distinct sub-
families, so that the Tree Edit Distance with insertion and deletion of edges
can be used to solve the BCP problem, where c represents various sizes of sub-
families in F0.

Moreover, if the sub-families in F0 have size bounded by c, then F0 has
at most (c + 1) sub-families of various types inclusive of sub-families without
children having a size of 0. Therefore, the BCP problem can be solved in time
of O(n2c+5). When all the connected components of sub families of size (c + 2)
in F ∗ are linked, such that the sub-families form a new sub pedigree graph with
a definite number of sub-families, and have the same size in F0, are added on
to F ∗, then the algorithm executes in time of O(n2c+9), where the sub-families
in F0 have their size bounded by c.

If an individual has a degree ofr edge (u1) ≤ c, in order to let F0 be a sub-
pedigree of F ∗, no sub-family in F0 can have size exceeding c because u1 is the
individual with the maximum out degree in F ∗. Therefore, from the discussion
above this step is solved in time O(n2c+9) = nO(1), where the polynomial com-
ponent is the complexity of higher degree. If u1 is not an isolated sub-family in
F ∗, then there exists a simple path of length 2.

Applying lemma 4, the complexity for each computational path in the search
takes polynomial time, again the branching of the algorithm gives the recurrence
relation P(X) = 2P(X − 1) + P(X–c), where P(X) defines the number of leaves.

Using the standard method shown by Chen et al. [21], the above recurrence
relation is solved to obtain P(x) = xc−2xc−1−1, with root b > 2, and the total
number of leaves in the search is bK. Thus, the algorithm BCP-II is executed
in bknO(1).

Next the concept of Kernelization is introduced and it is proved that linear
time kernelization algorithm yields a kernel of size O(K3) for the BCP problem.
The theorem to prove the performance of the algorithm follows.

Theorem 5 The problem “A set of Bipartite graphs Covering the Pedigree
graphs (BCP)” is executed in time O((2 + EPSILON)knO(1)), where the con-
stant EPSILON ¿ 0.

Proof
The proof depends on theorems 3 and 4 for solving the algorithms BCP-I and

BCP-II, when EPSILON ¿ 0. Given an instance (F0, P) of the BCP problem, a
reduction rule is applied by the Kernelization algorithm which removes certain
leaves from F0 and P such that there exists a sub family in F0 whose size is
bounded by O(K2). It is said that a K vertex cover has a kernel of size O(K2).
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K vertex cover algorithm tries to identify whether a set of vertices in a graph
covers all the edges of the graph or not. As a subsequence, the Kernelization
algorithm takes a space which is upper bounded by O(K3), that is the size of
an instance (F ′

0, P
′) of BCP, where the total number of individuals are bounded

by O(K3), that is the time taken to identify and remove the sub families and
to identify the branch path till the leaf node. Proof of the above algorithm is
done using the method of construction in lemma 5.

Lemma 5 Suppose that (F0, P) is an instance of BCP. Let z be any individual
with an out-degree larger than k + 1 in the sub-pedigree F ∗. Then there exists
an isomorphism from F0 to a sub-pedigree of P, where the individual z is the
image of the parent of a sub-family in F0. Moreover, at least degree(z)–k + 1
neighbours of z are leaves in F ∗.

Proof
Let σ be an isomorphism from F0 to a sub pedigree P, such that that there

exists a set Eσ in F ∗ that cannot be in the set Eσ, but if z is the image of a
leaf then it is bounded by 1 only. Also z has a degree ≥ K+1 in F ∗ which
contradicts the assumption that Eσ has only k edges. Hence, z has to be the
image of the internal parent of a sub family in F0.
Kernel BCP (F0,P,Km,n)
Input: F0,P is an instance of BCP
// b is the set of sub families in F0

Output: (F ′
0,P

′)
If the number of individuals in P = 0;
Then stop NO-instance of BCP;
b = Sub-family Algorithm(F0,Kp,w);
T = Sub-family Algorithm (F ∗,Ku,x);
If | b | �= | T | then stop;
F0 is not a sub-pedigree of P
Order the sub-families in F0 by ascending order that makes a gap;
For each two adjacent sub-families Kp,d and Kp,w that d−w > k + 1 do
Arbitrarily remove d−w+K+1) leaf individuals from each sub-family in b and
T;
If the degree of the smallest sub-family in F0 is greater than K+2 then
Return Kernel-BCP (F ′

0, P
′,Km,n)

Return (F0,P)
The kernelization algorithm for BCP is applied repeatedly, whenever there is
a sub-family in F0 that can be removed. At the end of the process, there are
subfamilies that cannot be removed and the researchers obtain equal instances
(F ′

0, P
′) of BCP.

Lemma 6 Suppose that the algorithm Kernel-BCP returns an instance (F ′
0,P

′)
which are sub pedigrees of F0 and P. F0 is a sub pedigree if and only if F ′

0 is a
sub pedigree of P′.

Proof
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K vertex cover algorithm tries to identify whether a set of vertices in a graph
covers all the edges of the graph or not. As a subsequence, the Kernelization
algorithm takes a space which is upper bounded by O(K3), that is the size of
an instance (F ′

0, P
′) of BCP, where the total number of individuals are bounded

by O(K3), that is the time taken to identify and remove the sub families and
to identify the branch path till the leaf node. Proof of the above algorithm is
done using the method of construction in lemma 5.

Lemma 5 Suppose that (F0, P) is an instance of BCP. Let z be any individual
with an out-degree larger than k + 1 in the sub-pedigree F ∗. Then there exists
an isomorphism from F0 to a sub-pedigree of P, where the individual z is the
image of the parent of a sub-family in F0. Moreover, at least degree(z)–k + 1
neighbours of z are leaves in F ∗.

Proof
Let σ be an isomorphism from F0 to a sub pedigree P, such that that there

exists a set Eσ in F ∗ that cannot be in the set Eσ, but if z is the image of a
leaf then it is bounded by 1 only. Also z has a degree ≥ K+1 in F ∗ which
contradicts the assumption that Eσ has only k edges. Hence, z has to be the
image of the internal parent of a sub family in F0.
Kernel BCP (F0,P,Km,n)
Input: F0,P is an instance of BCP
// b is the set of sub families in F0

Output: (F ′
0,P

′)
If the number of individuals in P = 0;
Then stop NO-instance of BCP;
b = Sub-family Algorithm(F0,Kp,w);
T = Sub-family Algorithm (F ∗,Ku,x);
If | b | �= | T | then stop;
F0 is not a sub-pedigree of P
Order the sub-families in F0 by ascending order that makes a gap;
For each two adjacent sub-families Kp,d and Kp,w that d−w > k + 1 do
Arbitrarily remove d−w+K+1) leaf individuals from each sub-family in b and
T;
If the degree of the smallest sub-family in F0 is greater than K+2 then
Return Kernel-BCP (F ′

0, P
′,Km,n)

Return (F0,P)
The kernelization algorithm for BCP is applied repeatedly, whenever there is
a sub-family in F0 that can be removed. At the end of the process, there are
subfamilies that cannot be removed and the researchers obtain equal instances
(F ′

0, P
′) of BCP.

Lemma 6 Suppose that the algorithm Kernel-BCP returns an instance (F ′
0,P

′)
which are sub pedigrees of F0 and P. F0 is a sub pedigree if and only if F ′

0 is a
sub pedigree of P′.

Proof
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The families F0 and P must have the same number of individuals. If P =
Øor the number of sub families in F0 �= P then there is no instance of the BCP
problem. Step 1 and Step 4 of the algorithm handle these cases appropriately.

Assume that sub families in F0 are ordered by the ascending order and there
are two adjacent sub families Kp,d and Kv,w (w < d) in F0 where d – w > k
+ 1, respectively. Images of the sub family in F0 are found in P directly and
some being larger than Kp, d are redundant and their images are removed. This
process is used to reduce the scale of F0 and P for an isomorphism from F0 to
P.

Theorem 6 The Kernel-BCP algorithm is a linear time algorithm that returns
an instance (F ′

0, P
′) for the BCP problem, and the number of individuals in a

new instance is bounded by O (K3), where k represents the count of sub-families
in F0.

Proof
Since the Kernel-BCP algorithm is repeatedly applied whenever there is

a sub-family in an ascending order in F0 that creates a gap when removed.
Therefore, all sub-families that can be removed from F0 are removed in a single
scanning in an ascending order in F0. Once a sub-family which creates a gap is
identified, a set of leaves in F0 and P can be removed in linear time. Then, size
of each sub-family in F0 is not larger than n (n = the size of the sub-families)
and k represents the number of sub-families. The sorting of the sub-families
can be done in O(kn) time, which can be reduced to O(n) by using Counting-
Sort. From the above discussion and lemma (6) and (5), an equivalent instance
(F ′

0,P
′), the total count of individuals in F ′

0 and P′ is bounded by O(K3).

4. Conclusions and Future Work

The study can extend towards the evaluation of reconstructed pedigree
graphs until the third generation limited to the families and sub-families and
also as a generalized algorithm until the seventh generation.

The non-availability of the requisite datasets acted as a limitation to the
practical verification of the study. Although, from the theoretical viewpoint the
algorithms showed promising results.

The evaluation of a large pedigree graph with labeled and unlabeled leaves,
and proving isomorphism with the real pedigree is a problem that has been ad-
dressed critically and the solution has been presented to the geneticist for use.
The paper introduces the problem of comparing labeled and unlabeled pedi-
gree graphs. It also presents the parameterized and kernelization algorithms.
The parameterized algorithms are supported by the standard branch-and-search
process. Kernelization algorithms have a complexity of O(k3) for BCP. For fur-
ther progress in research, the model presented can be generalized to allow the
evaluation of unlabeled sub-pedigree with a large number of individuals and sub-
families up to seven generations. Furthermore, experimental results are needed
to test the applicability of the proposed algorithms. The evaluation of a largely
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reconstructed pedigree with labeled and unlabeled leaves and establishing iso-
morphism with the original shall help in unearthing many genetic facts with
regards to the diseases.

The research compares the labeled and unlabeled pedigrees and sub pedi-
grees with the original and uses the parameterized and kernelization algorithms
to generate promising results as compared to theoretical study. Here, the ker-
nelization algorithm utilizes the concept of reducing the size of the input as a
function of the parameter, thereby removing the sub-pedigrees and sub-families
to prove the isomorphic attribute with the original. The future scope of work is
to incorporate the generalization of algorithms to accommodate multiple gen-
erations of a pedigree.
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reconstructed pedigree with labeled and unlabeled leaves and establishing iso-
morphism with the original shall help in unearthing many genetic facts with
regards to the diseases.

The research compares the labeled and unlabeled pedigrees and sub pedi-
grees with the original and uses the parameterized and kernelization algorithms
to generate promising results as compared to theoretical study. Here, the ker-
nelization algorithm utilizes the concept of reducing the size of the input as a
function of the parameter, thereby removing the sub-pedigrees and sub-families
to prove the isomorphic attribute with the original. The future scope of work is
to incorporate the generalization of algorithms to accommodate multiple gen-
erations of a pedigree.
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