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ABSTRACT

In recent years, many researchers have focused on using convolutional neural 
networks to perform human activity recognition as evidenced by the emergence of a 
number of convolutional neural network architectures such as LeNet-5, AlexNet and 
VGG16 and modern architectures such as ResNet, Inception V3, Inception-ResNet, 
MobileNetV2, NASNet and PNASNet. The main characteristic of a convolutional 
neural network (CNN) is its ability to extract features automatically from input 
images, which facilitates the processes of activity recognition and classification. 
Convolutional networks indeed derive more relevant and complex features with 
every additional layer. In addition, CNNs have achieved perfect classification on 
highly similar activities that were previously extremely difficult to classify. In this 
paper, the researcher evaluated modern convolutional neural networks in terms of 
their human activity recognition accuracy, and she compared the results with the 
state-of-the-art methods. In this research, the researcher used two public data sets, 
HMDB (Shooting gun, kicking, falling to the floor, and punching) and the Weizman 
dataset (walking, running, jumping, bending, one hand waving, two-hand waving, 
jumping in place, jumping jack, and skipping). The experimental results indicated that 
the CNN with NASNet architecture achieves the best performance of the six CNN 
architectures on both human activity data sets (HMDB and Weizman).

I. INTRODUCTION

The use of deep learning methods in human activity recognition has become the 
focus of many researchers. The strength of deep learning lies in its ability to extract 
features automatically in a task-dependent manner. It avoids reliance on heuristic 
handcrafted features and scales better, making it suitable for more complex behavior 
recognition tasks. Furthermore, the convolution neural network is sufficiently fast 
to online human activity recognition. A large number of deep learning techniques 
have been developed and successfully applied to recognition tasks. Szegedy from 
Google, Inc. proposed the Inception architecture for image classification [1]. He 
and Zhang from Microsoft introduced residual units in residual networks [2], and 
Szegedy and Ioffe combined residual connections with the Inception architecture 
to create the Inception V4 or Inception- ResNet architecture [3]. Subsequently, Zoph 
and Vasudevan from Google introduced the idea of building the architecture on a 
small data set and then transferring the result block to another, larger data set. 
They applied this idea to introduce NASNet [4]. Liu and Zoph used the idea behind 
NASNet and modified it to create the progressive PNASNet [5]. Finally, Sandler and 
Howard used the idea of deep convolution layers to build MobileNet, which can be 
used to make smaller models more efficient [6]. 
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Many researchers have applied deep learning in human activity recognition based 
on its ability to extract features automatically in a task-dependent manner. Plotz, 
Hammerla, and Olivier discussed the utilization of a few feature learning methods, 
including deep learning in activity recognition systems [7]. Zeng et al. demonstrated 
an algorithm for human activity recognition using mobile sensors [8]. Yosins and 
Jeffclune demonstrated a method to quantify feature transferability from each 
layer of a neural network. They showed that transferability is negatively affected 
by two issues: optimization difficulties, which is caused by splitting networks in 
the middle of fragilely co-adapted layers and the specialization of higher layer 
features to the original task at the expense of performance on the target task [9]. 
Yang and Nguyen proposed a method to build a new deep architecture for CNNs to 
investigate multichannel time series data. The advantages of this method are that 
it performs feature extraction in a task-dependent manner and that the extracted 
features have discriminating power with respect to the classes of human activities 
[10]. Zeng and Menshoel proposed a CNN-based feature extraction approach that 
extracts scale-invariant and locally dependent characteristics from an acceleration 
time series. The CNN-based approach outperformed the previous state-of-the-art 
approaches [11]. 

Most human activity recognition techniques using CNNs are sensor-based techniques 
that require wearable sensors to be attached to the limbs and torso of a person. 
However, this solution is impractical for human activity recognition. Instead, the only 
useful way of recognizing human activity in public places is through surveillance 
videos. Sensor-based methods can be used for older people in homes to discover 
cases of faintness or falling but cannot be used in public places. Thus, the only 
available approach is to analyze surveillance videos.

There is a problem when comparing different approaches of human activity 
recognition because of differences in the data pre-processing operations, data sets, 
segmentation techniques and classification models. The contribution of this paper 
is that it studied the effectiveness of using CNNs for human activity recognition 
and found these techniques to be dependent on the quality of the images used in 
terms of individual or group activity. This study enables the researcher to evaluate 
and compare the different CNN architectures used for human activity recognition. 
She applies her framework to conduct comparative studies on two public data sets: 
HMDB and Weizman. The remainder of this paper is organized as follows: Section 
1 provides an introduction. Section 2 describes the various methods. Section 3 
presents the experimental results, and Section 4 concludes the paper.

II. CONVOLUTIONAL NEURAL NETWORKS

In 2012, the convolutional neural network architecture called AlexNet proved 
successful at a large variety of computer vision tasks such as object detection 
[12], segmentation [13], video classification [14], human pose estimation [15], object 
tracking [16] and super resolution [17]. These successes encouraged researchers 
to find even better-performing convolutional neural networks. In 2014, researchers 
utilized deeper and wider networks to improve the quality by building VGG [18] and 
GoogLeNet [19], which achieved high performance in the ILSVRC-2014 classification 
challenge. However, they found that executing classical convolutional neural 
networks such as AlexNet, VGG and GoogleNet requires numerous calculations; for 
example, AlexNet used 60 million parameters, VGG used 20 million parameters and 
GoogleNet employed 5 million parameters. Consequently, in recent years, researchers 
have focused on finding new CNN architectures to reduce the computational cost. 
Many new architectures have appeared, such as ResNet, Inception, Inception- 
ResNet, MobileNet, NASNet and PNASNet.
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A)  Inception

The main objectives when building optimal convolutional neural networks is to obtain 
high performance with low computational overhead. The inception architecture 
[1] has proven to be highly tunable because the researcher was able to change 
the number of filters in the various layers to optimize the training speed without 
affecting the quality of the trained network. However, the layer sizes must be 
tuned carefully to balance the computational burden of the various models and 
their sub-networks. One of the main advantages of the inception architecture is 
that it allows the number of units to increase at each stage without introducing 
an uncontrolled computational complexity. Additionally, the researcher can avoid 
computational difficulties by determining the width of each stage and choosing the 
appropriate number of stages to limit the use of computational resources. Another 
benefit of the inception architecture is that it intuitively aligns with the idea that 
visual information should be processed at various scales and then aggregated so 
that the next stage can abstract features from the different scales simultaneously. 

The network includes different modules such as a naive module and a module to 
perform dimension reduction; these modules are stacked upon each other with a 
stride of 2 max pooling layers that halve the resolution of the grid. During training, 
to maintain efficient use of memory, inception modules are used only for the higher 
layers, while the lower layers are treated in a traditional convolutional fashion. 
It is preferable to use an incorporation module with dimension reduction over a 
naive module because the naive version suffers from one large problem: its 5 x 5 
convolutions can be expensive on top of a convolutional layer with a large number 
of filters even when the number is fairly modest.
           

Fig. 1. Inception module Naive version and dimension reductions version
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B) Inception V3 

Inception V3 was introduced in 2015. It uses the inception block introduced in 
GoogleNet. ImageNet reduced the top-5 error rate (The Top-5 error is the portion 
of test images for which the correct label is not among the five labels the model 
considers most likely) to 5.6% (for a single model) and to 3.6% (for an ensemble 
model). It uses Normalization, Image distortions as open issues and RMS prop 
for gradient descent. It has 25 million parameters and is trained on 8 GPUs for 2 
weeks. Its deep architecture consists of inception blocks. All the operations inside 
the inception blocks use a stride of 1 and sufficient padding to output the same 
spatial dimensions (W x H) as the feature map. Four different feature maps are 
concatenated on depth at the end. Inside the inception blocks, the researcher used 
a number of filters such as 5x5, 3x3, 1x1 for the convolution and pooling layers, and 
she added the input to the output using a single 1x1 convolution. Using different 
filter dimensions allows her to capitalize on all the features at the same time. Figure 
1 shows the Inception Module Naive version.
                                

Fig. 2: Residual block

C) ResNet 

Researchers designed ResNet [2] to solve the problem that as network depth 
increases, the accuracy first becomes saturated and then degrades rapidly. A 
ResNet block is either 2 layers deep (which is used in small networks such as ResNet 
18 and 34) or 3 layers deep (used in larger networks such as ResNet 50, 101 and 
152). Figure 2 shows a residual block. The ResNet network converges faster than its 
plain counterpart. ResNet 34 achieved a top-5 validation error rate of 5.71% which 
was better than BN-Inception and VGG. Res Net-152 achieved a top-5 validation 
error rate of 4.49%. An ensemble of 6 models with different depths achieved a 
top-5 validation score of 3.57%. ResNet 152 includes 152 layers. Figure 3 shows 
ResNet152 architecture, a few 7x7 convolutional layers and the rest are 3x3, batch 
normalization, max and average pooling layers. In total, this model has 60 million 
parameters and requires training on 8 GPUs for 2-3 weeks. The output channels 
are created by adding a small delta F(x) to the original input channels x, and F(x) is 
represented as a weight layer followed by ReLU activation and one weight layer. In 
this way, thousands of layers can be stacked, and the gradients do not vanish. Table 
I shows the Top-5 error rate for different ResNet architectures.
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            TABLE I: Top5 error for different ResNet architectures           
            

Fig. 3. ResNet152

Fig. 4. Inception-ResNet architecture
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D) Inception-ResNet  

This architecture is the result of combining the inception architecture with residual 
connections [3]. By empirical evidence, the researchers found that training with 
residual connections accelerates the training of an inception network. Several 
versions of residual inceptions exist, but when the number of filters exceeded 1,000, 
instabilities appeared in residual variants, the network died early in the training, 
and after a few tens of thousands of iterations, the last layer before the average 
pooling started producing only zeros. Reducing the learning rate or adding extra 
batch normalization did not solve these problems. Scaling the residuals by factors 
between 0.1 and 0.3 before adding them to the accumulated layer activations 
seemed to stabilize the training. Figure 4 shows the Inception-ResNet architecture.

E) MobileNetV2 

The architecture of MobileNetV2 [6] contains an initial fully convoluted layer with 
32 filters followed by 19 residual bottleneck layers, as described in Table II. ReLU6 is 
adopted as the activation function, and a 3 x 3 kernel size is utilized as is standard 
in modern networks. Dropout and batch normalization are also used during training. 
The networks have a constant expansion rate except for the first layer. When the 
expansion rates are between 5 and 10, the performance curves are nearly identical. 
Larger networks achieve slightly better performance with a larger expansion rate 
but smaller networks perform better with slightly smaller expansion rates [6]. In 
MobileNetV2, the convolution is split into two layers. The first is called a depthwise 
convolution, and the second is called a pointwise convolution. The depthwise 
convolution applies a single convolutional filter per input channel to perform 
lightweight filtering. The pointwise convolution computes a linear combination of 
the input channels to buildnew features. Figure 5 shows MobileNetV2 architectures.

TABLE II:
MobileNetV2: Each row describes a sequence of 1 or more identical layers, repeated n times. 
In the same sequence, all layers have the same number of output channels c. All layers use 
a stride of 1 except the first layer, which has a stride of s. The expansion factor t is always 
applied to the input size. All the spatial convolutions use 3 x 3 kernels. (this cannot be a title 

for the table; just use heading and keep the explanation to the body of
 the research)
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Figure 5. MobileNetV2 architectures

F) NASNet 

NASNet [4] development began when Google AI introduced the AutoML project to 
automate the design of machine learning models. They found that AutoML can design 
small neural networks that perform at levels equal to those of neural networks 
designed by human experts. These small neural networks have achieved strong 
performances on small academic data sets such as CIFAR-10 (Data set consists of 
60000 (32 x 32) colour images in 10 categories with 6000 images per category) and 
Penn Treebank. The designers also tried to apply the AutoML method to larger data 
sets such as ImageNet image classification and COCO object detection, which are 
two of the largest data sets for computer vision. However, the designers found that 
if naively applying AutoML directly to ImageNet required many months of training; 
therefore, they redesigned the search space so that AutoML can find the best layer 
and then repeat it many times to create a final network. 

The designers performed architectural searches on CIFAR10 and transferred the 
best architecture to ImageNet image classification and COCO object detection. Using 
this approach, AutoML can find the layers that not only work best on small data 
sets such as CIFAR10, but also work well on large data sets such as ImageNet image 
classification and COCO object detection. 

These two layers were combined to form the NASNet architecture. In NASNet although 
the general structure is predefined as a series of normal cells (convolutional cells 
that return a feature map of the same dimension) and reduction cells (convolutional 
cells that return a feature map where the height and width of the feature map 
are reduced by a factor of two), blocks are not defined Or cells previously by the 
authors instead, they are searched by the reinforcement learning search method. 

NASNet achieved a prediction accuracy of 82.7% [4] on the validation set, and it 
performed 1.2% better than all previous models, including Inception V2, V3, Xception, 
Inception V4, Inception-ResNet V2 and PollyNet. NASNet can be resized to produce 
a group of models that achieve good accuracy at a low computational cost. Figures 
6 and 7 show a schematic of the best performing reduction cell in NASNet with 4,5 
blocks identified using CiFAR-10.
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Fig. 6. Reduction cell of the NASNet architecture, 4 blocks, with CIFAR-10 identification

Fig. 7. Reduction cell of the NASNet architecture, 
5 blocks, with CIFAR-10 identification

Fig. 8. Cell structure of the progressive 
neural architecture, with 5 blocks

G) Progressive Neural Architecture Search (PNAS) 

PNAS [5] has achieved state-of-the-art classification accuracies on ImageNet and 
CIFAR-10. PNAS has several advantages over other techniques; for example, it can 
be trained faster due to its simple structures, allowing the researcher to factorize 
the search space into a collection of smaller search spaces and to potentially 
create models with many more blocks. PNAS is 5 times more efficient than is the 
reinforcement learning (RL) method [20] in terms of the number of models evaluated, 
and it is 8 times faster in terms of total computation. PNAS is a surrogate-based 
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search method. Surrogate-based optimization is a method that depends on learning 
a surrogate function that expresses a relationship between sampled models and 
validation errors. PNAS achieved high performance on the CIFAR-10 data set. It 
performs a progressive scan of the neural architecture search space. The validation 
errors are collected by training the selected architectures for several epochs; 
then, the top performing architectures are chosen at each step of the algorithm. 
These errors are used to train the surrogate function that predicts the validation 
error of subsequent architectures. The surrogate function reduces the number of 
architectures that actually need to be trained, thus allowing an efficient exploration 
of the search space. To achieve the best results requires 100 GPUS working for 2 
days. PNAS is more efficient than either NAS or previous methods, which depend 
on up to 800 GPUs working for a month. Figure 8 shows the cell structure of PNAS.

III. EXPERIMENTAL RESULTS

In this section, the researcher presents and evaluates 286 videos from two data 
sets: HMDB [21] and Weizman [22]. The eighty-six videos from the Weizman data set 
include nine activities (bending, jumping jacks, jumping, jumping in place, running, 
skipping, walking, waving one hand and waving two hands), and the 200 videos 
from the HMDB data set include four activities (falling to the floor, punching, kicking 
and shooting a gun). The researcher divided the data set into two parts: 50% for 
training and 50% for testing where it is optimized. She evaluated the performance 
of six CNN network architectures, namely, ResNet, Inception V3, Inception-ResNet, 
MobileNetV2, NASNet and PNASNet for recognizing human activities. 

For the CNNs, the ResNet block is either 2 layers deep (used in small networks such 
as ResNet 18 and 34) or 3 layers deep (used in larger networks such as ResNet 50, 
101 and 152). She used a 3-layer deep architecture in ResNet152 and noticed that 
ResNet converges faster than its plain counterpart. For the Inception architectures, 
the researcher used Inception V3 and We also tested Inception-ResNet V2, which 
achieved slightly better results, and MobileNetV2. The main difference between 
the MobileNet architecture and a traditional CNN is that instead of a single 3×3 
convolutional layer, followed by batch normalization and ReLU, MobileNets splits the 
convolution into two 3x3 depth-wise and point-wise convolutional layers. 
In addition, the researcher also tried large NASNet and PNASNet architectures to 
choose the best combination of layers and connections that reach higher accuracy 
on human activity recognition tasks and where it is not guaranteed that a network 
that works well on one problem can work well on another. Because significant 
changes may be required to achieve accurate results, the researcher needed to 
select parameters such as the learning rate and initialization values carefully to 
avoid overfitting problems. Figure 9 shows the CNN model using a Tensor Flow 
diagram.

Fig. 9. Overview of the CNN model with Tensor Flow
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A) Data sets Description

This section includes a complete description of each data set used. The researcher 
conducted her experiments on two data sets: HMDB [21] and Weizman [22]. The HMDB 
data set was collected from various sources, mostly movies, but a small proportion 
comes from public databases such as the Prelinger Archive, YouTube and Google 
videos. The HMDB data set contains 6,849 clips divided into 51 action categories, 
each containing a minimum of 101 clips. These data set include suspicious behaviours 
such as falling to the floor, punching, kicking and shooting a gun because the goal 
of this work was to recognize suspicious behaviors to prevent crimes before they 
happen. The Weizman data set includes 10 types of activities (walking, running, 
jumping, galloping sideways, bending, one hand waving, two-hand waving, jumping 
in place, jumping jacks and skipping). Each action is performed by nine actors. In 
total, the researchers selected 86 video sequences, each with a spatial resolution 
of 180 × 144 pixels and a frame rate of 50 frames per second.

B) Hardware and Software Setup

To perform deep learning training on training data with more than 10,000 larger 
images, GPU training techniques must be applied; when the equivalent training is 
performed on a CPU with the same data, it would take weeks to complete the training. 
Therefore, the researcher tried to perform training using a suitable GPU to achieve 
good, fast training. The NVIDIA GeForce GTX 1060 GPU (6 GB version) includes 1,280 
Cuda cores, 6 GB of RAM and a memory bandwidth of 192 GB/sec, allowing training 
to be performed using 100 images per batch without introducing memory failures. 
An Intel i5-8400 CPU was used to control the entire process. The researcher used 
the newest Ubuntu operating system (18.04) with Python because the latter has 
good support for matrix libraries. She used the newest CUDA toolkit (9.2) to control 
the GPU-accelerated processing on our GPU. Finally, to implement the deep learning 
models, she used TensorFlow-GPU 1.8. TensorFlow is the brainchild of Google and 
intended to assist all deep learning researchers and engineers in implementing deep 
learning models. Additionally, TensorFlow comes with a toolkit called Tensor Board. 
The researcher used this tool during training to create real-time charts showing the 
number of steps, the training error, and the validation error, making it easier to know 
where overfitting may happen during the training process and to make comparisons 
between the various DL models. Using TensorFlow code for all the deep learning 
models, the training and validation data sets, and the configuration file for the 
training process makes it easier for researchers to make any required modifications 
in the models during the entire deep learning process. Figure 10 shows the hardware 
and software setup used for these experiments.

Fig. 10. Hardware and software setup
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C) Results

In the first group of experiments, the researcher trained the models using multiple 
images of different human activities. For the CNN Inception architecture, she trained 
using 299 x 299 -pixel images and achieved a recognition accuracy of 86.36% on 
the HMDB data set and 89.9% on the Weizman data set. Additionally, she trained 
the CNN ResNet architecture using 299 x 299 -pixel images and used 224 x 224-pixel 
images for the CNN MobileNetV2 architecture, 331 x 331-pixel images for the NASNet 
architecture and 331 x 331 –pixel images for the PNASNet architecture. The training 
was performed over 30,000 steps, with 100 images per step. She found that by 
adjusting the input image scale, she was able to achieve smaller computational 
budgets and state-of-the-art performances. The best performance of the six 
CNN architectures for human activity recognition was achieved by the NASNet 
architecture, which was best on both the HMDB data set and Weizman data set. 

The performance of PNASNet ranked second after the NASNet performance on the 
HMDB data set, but MobileNetV2 ranked second on the Weizman data set. Tables III 
and VI show recognition rate comparison with different approaches. The difference 
in performance between Weizman and HMDB data sets is due to the differences 
between the two data sets. The Weizman data set videos typically include only 
one person performing one activity in front of a static background, but the HMDB 
data set contains videos of group activities with variable backgrounds, which cause 
some occlusions. When objects are occluded by people or things, some missing 
measurements occur.

Therefore, the researcher preprocessed the images using a Kalman filter to counteract 
the missing measurements, which led to increases in recognition accuracy. Tables 
IV and V show the accuracy scores for human activity recognition in percentages 
by class. The highest accuracy percentages are defined by red rectangles.

TABLE III
COMPARISON OF CNN WITH DIFFERENT ARCHITECTURES WITH STATE- OF-THE-ART METHODS 

FOR WEIZMAN DATA SET
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TABLE IV
ACTION RECOGNITION ACCURACIES (IN PERCENTAGES) BY CLASS ON THE WEIZMAN 

DATA SET 

TABLE V
ACTION RECOGNITION ACCURACIES (IN PERCENTAGES) BY CLASS ON THE HMDB DATA SET

TABLE VI
COMPARISON OF CNN WITH DIFFERENT ARCHITECTURES WITH STATE-OF THE-ART-

METHODS FOR HMDB DATA SET 
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IV. CONCLUSION

In this paper, the researcher presented a comparison between human activity 
recognition accuracy using convolutional neural networks of different architectures 
(ResNet, Inception V3, Inception- ResNet, MobileNetV2, NASNet, and PNASNet). She 
employed two data sets: the HMDB data set contains examples of group activities, 
and the Weizman data set contains examples of individual activities. The experimental 
results indicated that the CNN with the NASNet (Network architecture search) 
architecture achieves the best performance of the six CNN architectures on both 
the human activity data sets (HMDB and Weizman) where NasNet is certainly a more 
advanced technology for searching compact and efficient networks. In addition, 
she compared the results achieved with few of the state of the art methods.
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