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Abstract

Genomic DNA sequences have both deterministic and random aspects and exhibit
features at numerous scales, from codons to regions of conserved or divergent gene
order. Genomic signatures work by capturing one or more such features efficiently into
a compact mathematical structure. We examine the unique manner in which
oligonucleotides constitute a genome, within a graph-theoretic setting. A de Bruijn
chain (DBC) is a kind of de Bruijn graph that includes a finite Markov chain. By
representing a DNA sequence as a walk over a DBC and retaining specific information at
nodes and edges, we obtain the de Bruijn chain genomic signature θdbc, based on graph
structure and the stationary distribution of the DBC. We demonstrate that the θdbc

signature is information-rich, efficient, sufficiently representative of the sequence from
which it is derived, and superior to existing genomic signatures such as the dinucleotide
odds ratio and word frequency-based signatures. We develop a mathematical
framework to elucidate the power of the θdbc signature to distinguish between
sequences hypothesized to be generated by DBCs of distinct parameters. We study the
effect of order of the θdbc signature, genome size, and variation within a genome on
accuracy. We illustrate its superior performance over existing genomic signatures in
predicting the origin of short DNA sequences.

Introduction

The genome G of an organism is a set of long nucleotide sequences modeled, within a
formal language framework, as strings over ΣDNA = {A,C,G, T}, the DNA alphabet. Every
genome has a unique constitution of nucleotides that encode specific phenotypic traits
and regulate the cellular and biological processes of that organism. Unique features of
a genomic sequence that are globally conserved and can be captured in the form of
mathematical structures can serve as signatures for that genome. Since G itself differs
from one organism to another, it can serve as a unique mathematical structure
representing an organism. However, a genome is typically quite large (e.g., billions of
bases for the human genome) and also demonstrates slight differences from one
individual of a species to another. Fix a genomic sequence H that is a substring of
some string in G. Intuitively, a genomic signature for an organism is a mathematical
structure θ(H) derived from H , which, ideally, can be efficiently computed, is
significantly smaller to represent than H , and, if H is sufficiently representative of G,
can accurately identify the original organism. The intent is that the signature of other
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large substrings from G be highly similar to θ(H) and distinguishable from signatures of
other organisms. A genomic signature is judged along two, typically antagonistic,
dimensions: (1) the amount of compression achieved by θ(H), and (2) its effectiveness
in identifying the genome.

The term “genomic signature” must not be confused with the term “gene expression
signature” [1, 2] although the two terms have been used interchangeably in a few
works [3–7]. A gene expression signature is a distinct conserved model of gene
expression patterns observed in a set of genes during specific biological phenomena or
environmental conditions [1, 2]. Normark et al. [8] have used the term “genomic
signature” to represent long term genomic effects of the loss of sex and recombination
on asexual eukaryotic genomes. Cannon et al. [9] have used it to represent probe
sequences that are short (25 bp and less) primers that are hyperdispersed in a
probability space of sequences and generated without the knowledge of the target
genome, while scientists who study the effects of ionizing radiation on genomes use
the term to indicate radiation-induced genomic changes such as gene copy number and
intrachromosomal aberrations [10, 11]. For the purposes of this paper, a genomic
signature, as defined in the previous paragraph, is a unique mathematical structure
strictly computed from sequence data and conserved for reasonably large (≥ few
kilobases) subsequences of a genome for a wide range of subsequence lengths.

In this paper, we propose a novel genomic signature called the de Bruijn chain
signature θdbc. A de Bruin chain (DBC) is a de Bruijn graph with an underlying finite
Markov Chain. We derive the θdbc signature by thinking of a genomic sequence at hand
as a walk over a suitably defined DBC. We then include characteristic properties of the
stationary distribution of the underlying Markov chain and the manner in which the DBC
disintegrates on deleting edges by a systematic method, as components of the θdbc

signature. By definition, the θdbc signature retains features of genomic sequences that
are different from features retained by word-count based signatures explored in related
literature. Here, we explore the properties of the θdbc signature and several other
genomic signatures with an emphasis on the identification of short unknown DNA
sequences.

The species from which a genomic sequence is derived is its origin. A genomic
sequence X of unknown origin is to be analyzed. We visualize X as an overlap of
numerous successive short sequences of pre-defined length w each, in a specific
manner. The order is the above word length w at which a genomic sequence is analyzed.
A pre-defined signature θw(X), at order w, is computed from X and compared to the
same signature at the same order w for all available species. The correlations between
θ(X) and the existing signatures are used to predict the origin of X . We demonstrate
that the θdbc signature performs better than its competitors, the dinucleotide odds ratio
θdor and the word count vector θwcv . We further illustrate that combining the strengths
of the θdbc signature and the θdor signature results in higher accuracy of origin
identification while distinguishing between distant species.

Some applications of genomic signatures are as follows. A database of signatures of
all fully or partially sequenced genomes can be constructed. Apart from being a beneficial
public resource, such a database will enable identification of the origin and/or closest
relatives of segments of unknown DNA. An exhaustive databasewill lead to the discovery
of new species and their placement on the tree of life [12]. A sequence identification
gadget constructed using this database and the algorithms we propose can be used as
a household utility for testing food products for infectious microbial growth, screening
insects for parasites, and understanding the origin and properties of plants and animals
in the surroundings. Such an instrument will be invaluable to ecologists. It is also possible
to apply genomic signatures to binning metagenomic data.

This paper is organized as follows. The Related Work Section reviews the relevant
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literature. In the Preliminaries Section, we define relevant mathematical concepts and
establish notation. We also introduce graph-based signatures and define the DBC
signature θdbc in this section. In the Results Section, we present evidence of the
efficiency of the θdbc signature in identifying origins of short sequences and illustrate
its superior performance over existing signatures. In the Theory Section, we derive
theoretical bounds that characterize the abilities of the word count vector signature
θwcv and the θdbc signature to differentiate between genomes. Conclusions and future
directions are presented in the Conclusions Section.

Related Work

A DNA word or an oligonucleotide is a short string of predefined order over the DNA
alphabet. Oligonucleotide frequencies have been described as characteristic features
of genomes in many works [13–25]. Karlin and Burge [19] were among the first to use the
term genomic signature. They define the dinucleotide odds ratio (θdor) or relative
abundance, which is the collection of 16 functions defined for dinucleotides XY by

ρXY (H) =
freq (XY,H)

freq (X,H) freq (Y,H)
where freq (x,H) is the frequency of string x as

a substring in H . They observe that ρ values are similar throughout a genome and
compare θdor for a few organisms to demonstrate its capability of distinguishing
organisms. Karlin et al. [20] observe that individual components of the θdor vector
typically range from 0.78 to 1.23. They use a normalized L1-distance, called
delta-distance (δ), to distinguish between species. The δ-distance between the θdor

signatures of sequences H1 and H2 is defined as

δ (H1, H2) =
1000

16

∑
XY ∈S2

|ρXY (H1)− ρXY (H2)|. Campbell et al. [26] compare θdor

signatures of prokaryotic, plasmid, and mitochondrial DNA. Gentles and Karlin [27]
examine the θdor signature in sequences of eukaryotic genomes and chromosomes,
including human chromosomes 21 and 22, Saccharomyces cerevisiae, Arabidopsis
thaliana, and Drosophila melanogaster. Jernigan and Baran [18] demonstrate empirically
that the δ-distance between θdor signatures of strings sampled within a genome is
approximately preserved over a wide range of string lengths, while it varies for strings
sampled from different genomes.

The second most widely-used method in the literature to visualize and study the
composition of and separation between DNA sequences is the Chaos Game
Representation (CGR) signature [28–30]. Mathematically, the Chaos Game is an iterated
function system that uses a two-dimensional heat-map-style plot to provide a visual
representation of composition of a given DNA sequence through tiled geometrical
patterns that sharpen with increasing DNA word lengths. Deschavanne et al. [15]
constructed CGR images from oligonucleotide frequencies and built the application
GENSTYLE [15, 17], which predicts the approximate origin of a sequence using
L1-distances to oligonucleotide frequency vectors of all genome sequences in the
Entrez database, thus formally introducing CGRs as a genomic signature.

The simple word count vector has also been used as a genomic signature in various
works. The application TETRA (Teeling et al. [22]) uses tetranucleotide frequencies to
calculate similarity between sequences. For bacterial species, Coenye and
Vandamme [14] correlate δ with 16S rDNA sequence similarity and DNA-DNA
hybridization values. For 57 prokaryotic genomes, Sandberg et al. [21] compare G+C
content, oligonucleotide frequency, and codon bias. Dufraigne et al. [16] and van Passel
et al. [23] employ oligonucleotide frequencies to identify regions of horizontal gene
transfer (HGT) in prokaryotes. Carbone et al. [13] correlate the ecological niches of 80
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Related Work

4

Eubacteria and 16 Archaea to codon bias used as a genomic signature.
The genomic signatures outlined above demonstrate that signatures differ among

species, but, with the exception of the dinucleotide odds ratio, no one else formally
addresses the amount of variation, identification of unknown DNA, and the effect of
short available sequence length on these signatures. As part of our DNA Words
program investigating mathematical invariants derived from genomes, we examine the
finest scale in graph-theoretic terms, while integrating DNA word graph structure with
Markov chain properties. One frequently exploited observation is that a string over ΣDNA

defines a walk in a suitably defined de Bruijn graph. Closely related is the
correspondence of such a string to an Eulerian tour in a suitably defined multigraph.
Applications include DNA physical mapping, DNA sequence assembly, and multiple
sequence alignment problems [31–35]. In Heath and Pati [36], we explore purely
graph-based genomic signatures and compare their performance with the word count
vector and the dinucleotides odds ratio signatures. We identify a graph-based signature
that is competitive with the dinucleotides odds ratio (most efficient among existing
signatures), performing marginally better. Subsequently [37], we introduce the de Bruijn
chain signature θdbc and demonstrate that it performs better than all existing genomic
signatures with emphasis on target identification from short DNA segments. This
signature performs much better than oligonucleotide frequency vectors in
differentiating among diverse genomes. In this work, we propose a mathematical
framework for characterizing the ability of the θdbc signature to distinguish between
genomes using short genomic segments. We examine the effect of different orders on
the efficiency of the θdbc signature. We also study relationships among efficiency,
genome variation, and genome size. Also, see our subsequent work [38, 39] and Pati’s
dissertation [40].

There has been little advancement in the concept of genomic signatures since our
work, though there has continued to be investigations into comparing genomic
sequences for similarity and dissimilarity. Konstantinidis and Tiedje [41] and Goris et
al. [42] proposed to measure the similarity of two genomes through the average amino
acid content (AAI) and the average nucleotide content (ANI); ANI is measured via a
heuristic that employs either BLAST [43] or MUMmer [44]. Pritchard, et al. [45] provide a
flexible implementation of the ANI heuristic through the Python tool pyani. Initially using
ANI as the basis of genome comparisons, Vinatzer and Heath [46–51] have developed
the Life Identification Number (LIN) concept that provides a framework for identifying
and naming all sequenced genomes. Broder [52] introduced the MinHash concept for
measuring the similarity of documents; it provides an estimate of the Jaccard similarity
between the word contents of two documents. Ondov et al. [53] adapted MinHash to
estimate a distance between two genomes using the set of k-mers present in the two
genomes. The k-mer and MinHash concepts have been further developed by numerous
researchers since then [54–57].

Preliminaries

An alphabet Σ is a finite, non-empty set of symbols. The binary alphabet is ΣB = {0, 1},
while the DNA alphabet is ΣDNA = {A,C,G, T}. A string or word x over Σ is a finite
sequence x = σ1σ2 · · ·σw of symbols from Σ; its length |x| is w. A single chromosome in
a genome is typically written as the string over Σ of nucleotides on one DNA strand. A
genomic sequence is a chromosomal sequence or any substring of it. An organism’s
genome G is the set of all its chromosomal sequences.

For strings x and y, occ (x, y) is the count of occurrences of x as a substring of y. If

|x| ≤ |y|, the frequency of x in y is freq (x, y) =
occ (x, y)

|y| − |x|+ 1
. Fix a word length w ≥ 1.
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5

Let l = 4w . The order-w state space is Sw = Σw
DNA, the set consisting of the l words of

length w. For 1 ≤ i ≤ l, let xi be the ith element of Sw in lexicographic order.
The order-w de Bruijn graph DBw = (Sw, E) over alphabet Σ is a directed graph,

where (xi, xj) ∈ E when xiσ = ιxj , for some σ, ι ∈ Σ; such an edge is labeled σ
(see [58]). Figure 1 depicts the de Bruijn graphs of order 3 over the binary alphabet
ΣB = {0, 1}. As observed, the vertex set of the binary de Bruijn graphs of order 3 is the
set ({000, 001, 010, 011, 100, 101, 110, 111}) of all binary strings of length 3. The vertex set
of the DNA de Bruijn graph of order 2 is
{AA,AC,AG,AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT}.

001

010 101

011

110100

0000

0001

1000

0011

0100

1110

1111

0111

0100

0011

000 111

1101

0010

1010

0101

1001 0110

Fig 1. The order-3 de Bruijn graph on the binary alphabet; the red line indicates a walk in
the graph traced by the sequence 0001110111000101.

Let H ∈ Σ∗
DNA have length |H| = n; we think of H as a long genomic sequence that

traces a walk in DBw . The vertex count of xi in H is vc (xi, H) = occ (xi, H), while the
edge count of edge (xi, xj) ∈ E in H , where xiσ = γxj , is
ec ((xi, xj), H) = occ (xiσ,H). The order-w word count vector θwcv

w (H) of H is the
l-vector having components occ (xi, H), in lexicographic order. The corresponding
order-w word frequency vector is the l-vector having components freq (xi, H), in
lexicographic order. In Figure 1(b), for instance, the word count vector is
⟨2, 2, 1, 2, 1, 2, 2, 2⟩. Nucleotide frequencies vary among organisms, while, as Fickett et
al. [59] observe, the frequencies of A’s and T’s (and hence of G’s and C’s) are
approximately constant within a single genome.

Now consider the Markov chain underlying the above de Bruijn graph
DBw = (Sw, E). That Markov chain has state space Sw and a sparse transition
probability matrix with nonzero transition probabilities only for edges in DBw ; such a
Markov chain is called an order-w de Bruijn chain (DBC). In this paper, we use DBCs in
modeling of genomic signatures, based on the following intuition. Let DC be an order-w
DBC with l × l transition probability matrix P = (pij); here, pij is the probability of a
one-step transition from state xi to state xj [60]. P is sparse, with at most 4 nonzero
entries per row. The order-w DBC, DCw(H), for genomic sequence H has transition
probabilities

pij =
ec ((xi, xj), H)

occ (xi, H)
, occ (xi, H) > 0. Genomic sequences are sufficiently large and

diverse in their composition to ensure occurrence of all words in Sw for reasonably small
w ∈ [1..5]. Any DBC generating such a sequence is irreducible. We also assume that
DBCs generating genomic sequences are aperiodic with finite state space, and hence,
recurrent non-null. Thus, we assume that all DBCs are ergodic and hence that there is
a unique stationary distribution π = (πi) on Sw satisfying πP = π [60]. Ergodicity may
not hold in the case of a short genomic sequence consisting of systematic repeats of a
small number of length-w words.

For a genome G and a genomic sequenceH taken from G, a genomic signature forH
is a function θ , mapping H to a mathematical structure θ(H). Ideally, θ(H) is efficiently
computable and can identify sufficiently large substrings that come from G and
accurately identify the origin genome G of H from a set of genomes by using θ(H).
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Fig 1. The order-3 de Bruijn graph on the binary alphabet; the red line indicates a walk in
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Previously, we [36, 37] defined several signatures computed from the structure of the
DBC and evaluated these and other signatures, such as the word frequency vector
(θwfv) and the dinucleotides odds ratio signature (θdor). We studied the behavior of the
θdbc signature and presented associated empirical results [37].

Let H ∈ Σ∗
DNA have length |H| = n. Fixing word length w ≥ 1, we obtain DBw(H),

with associated vc (xi, H) and ec ((xi, xj), H). Let ψ ≥ 0 be an integer threshold. Let
E≤ψ = {(i, j) ∈ E | ec ((i, j), H) ≤ ψ}, be the set of edges with counts at most ψ. Then
edge deletion is the process of deleting edges in E≤ψ from DBw , while varying ψ from
0 to Ξ = max{ec ((i, j), H) | (i, j) ∈ E} and deleting edges with tied counts in arbitrary
order. As ψ increases from 0 to Ξ, the number of isolated vertices increases from 0 to
l. Define the ordered vertex isolation frequency vector θovif as the l-vector whose ith

component is the frequency of the last edge whose deletion isolates vertex labeled with
the ith string in lexicographic order. The de Bruijn chain signature θdbc is the 2l-vector
π̂w · θovifw /4w−1, where π̂w is the estimated stationary distribution for the order-w de
Bruijn chain and ‘·’ represents vector concatenation. Figure 2 illustrates the construction
of the θdbc signature.
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Fig 2. Construction of the θdbc signature.

For example, consider the E. coli K12 genome. The order-2 transition matrix for this
sequence is as follows:
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Therefore, the θdbc2 signature for this species is the concatenation of the above two
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Our results have indicated that the performance of θdbc is better than the individual
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performances of π̂ and θovif . Visualize the components of the θovifw signature as
weights on the edges of an edge cover of DBw(H). In the edge cover, each vertex
remains connected through the strongest edge (edge with highest frequency) incident
on it. Figure 3 illustrates this point. For two vector-based signatures θ1 and θ2, d (θ1, θ2)
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Fig 3. Edge cover example. (a) The binary de Bruijn graph of order 3. (b) The edge cover from which values for individual
components of θovif3 are taken.

is the L1 metric in l-dimensional real space and R(θ1, θ2) is the Pearson correlation
coefficient.

Here, we describe the algorithm used to detect the origin of unknown genomic
sequences using the θdbc signature and study its performance with varying sequence
length. We also propose a mathematical framework for characterizing the θdbc

signature (see Theory Section) and explore more properties of this signature while
comparing it with the θdor and θwcv signatures (see Results Section).

Results

To evaluate the θdbc signature and to compare its accuracy in sequence origin prediction
with that of existing signatures, we used bacterial and eukaryotic genomic sequences.
First, we compiled a list L1 of diverse genomic sequences of various lengths including α-
proteobacteria (APB), infectious bacteria, and eukaryotes (Table 1). Second, we collected

Table 1. List L1 of genomic sequences in the set of diverse species

Species Acronym Sequence length NCBI identifier
R. leguminosarum RL 5.1 Mb NC_008380

E. litoralis EL 3.1 Mb NC_007722
M. leprae ML 3.3 Mb NC_002677.1

N. meningitidis NM 2.2 Mb NC_008767.1
P. falciparum PF chr 12, 2.3 Mb NC_004316.2
P. aeruginosa PA 6.4 Mb NC_002516.2
S. pneumoniae SP 2.1 Mb NC_008533.1

E.coli EC 4.7 Mb NC_000913
C. elegans CE chr 1, 15.3 Mb NC_003279
H. sapiens HS chr 1, 228.7 Mb AC_000044
A. thaliana AT chr 4, 18.8 Mb NC_003075
S. cerevisiae SC chr 4, 1.6 Mb NC_001136

a set of 52 APB genomes including multiple strains of several species to build a collection
of genomic sequences derived from closely related species. Of these 52 sequences, the
20 that were used to randomly sample shorter sequences for origin prediction are listed in
Table 2 (List L2). Two databases of θdbc signatures were constructed; the first database
Ddbc

1 consisted of the signatures for the sequences in L1, while the second database
Ddbc

2 consisted of the signatures for the sequences of the 52 APB, E. coli, and the 4
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a set of 52 APB genomes including multiple strains of several species to build a collection
of genomic sequences derived from closely related species. Of these 52 sequences, the
20 that were used to randomly sample shorter sequences for origin prediction are listed in
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2 consisted of the signatures for the sequences of the 52 APB, E. coli, and the 4
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Table 2. List L2 of genomic sequences in the set of closely-related APB

Species Sequence length NCBI identifier
Wolbachia BM 1.1 Mb NC_006833

R. typhi 1.1 Mb NC_006142
A. marginale 1.2 Mb NC_004842

C. pelagibacter 1.3 Mb NC_007205
A. phagocytophilum 1.5 Mb NC_007797

B. suis chr 1, 2.1 Mb NC_004310
G. bethesdensis 2.7 Mb NC_008343
P. denitrificans chr 1, 2.9 Mb NC_008686

E. litoralis 3.1 Mb NC_007722
S. alaskensis 3.4 Mb NC_008048
H. neptunium 3.8 Mb NC_008358
C. crescentus 4.1 Mb NC_002696
S. pomeroyi 4.2 Mb NC_003911

Jannaschia ssp. CCS1 4.4 Mb NC_007802
R. rubrum 4.4 Mb NC_007643

N. hamburgensis 4.5 Mb NC_007964
M. magneticum 5.0 Mb NC_007626
R. leguminosarum 5.1 Mb NC_008380

R. palustris 5.6 Mb NC_008435
M. loti 7.1 Mb NC_002678

higher eukaryotes from L1. Similar databases Ddor
1 and Ddor

2 corresponding to the θdor

signature, andDwcv
1 andDwcv

1 corresponding to the θwcv signaturewere also constructed.

Characterization of the accuracy of the θdbc signature in origin prediction

We tested the ability of the θdbc signature to distinguish between distant species in [37]
using Ddbc

1 , orders 2 − 5, and sample sequence lengths 10 kb, 25 kb, 50 kb, and 100 kb.
For each ⟨order, length⟩ combination, 100 sequences were randomly sampled from each
organism inL1. For each sampleX , the vector θdbcw (X)was correlated, using the Pearson
correlation coefficient, with all the θdbcw vectors inD1. Accuracywas computed as follows.
For a sample X , the matches to θdbcw (X) were ranked 1, 2, 3, . . . in decreasing order of
their correlation coefficients or increasing order of their distances. In a first hit scenario,
the origin is ranked 1. Depending on the scenario under consideration, the number of first
hits per 100 samples is the accuracy. For fixed order, we found that the accuracy of origin
prediction increases with increasing sample size, reaching 100% first hits at length 100
kb for all species at order 4 (Figure 3 in [37]). Intuitively, a larger sequence encodes more
information about the underlying DBC, which leads to the calculation of a θdbc signature
more representative of the origin. The θdbc signature appeared to be more conserved at
order 4 than at other orders. This coincides with the hypothesis behind the application
TETRA [22], which also attempts to discover the origin of unknown DNA sequences but
does not work well with short sequences. Note that sufficient information about the
underlying DBC of order 4 can only be acquired from sequences of size 50 kb or higher
under our model; this is not helpful in identifying origins of short DNA sequences. A short
sequence contains maximum information about the underlying DBC of order 1. Although
the θdbc1 signature is computable in less time than higher order signatures, it encodes
information about mononucleotides only, which is insufficient to accurately predict origin.
So, for identification of the origin of short DNA sequences, we use the more accurate and
origin-representative order-2 signature θdbc2 .
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origin-representative order-2 signature θdbc2 .
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Figure 4 shows the distributions of the Pearson correlation coefficients between the
θdbc2 signature of a sample sequence and the θdbc2 signatures of other sequences in the
database including those of the origin of the sample sequence. For each species on the x-
axis, there are 2 box and whisker plots generated as follows. 100 samples of length 50 kb
each are randomly sampled from the genome of each species. The correlation of the θdbc2

signature of each sample with the θdbc2 signature of its origin is binned separately from its
correlations with the θdbc2 signatures of all other organisms. The distribution of numbers
in each bin is represented by a box and whisker plot along the y-axis. The smaller box
plots with medians close to 1 and small ranges between the first quartile and the third
quartile represent the distribution of correlations of signatures of sample sequenceswith
the signatures of their origin. The larger box plots with large ranges between their first
and third quartiles and smaller medians represent the distribution of correlations with
species other than the origin. These data demonstrate that the θdbc signature retains
features unique to each organism and can differentiate between the origin and other
species. It is highly conserved within a genome and differs between genomes.
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Fig 4. Performance of θdbc2 . The 12 species are on the x-axis. The small box and whisker
plots near the top (with associated circles) represent the distribution of correlations of
θdbc2 signatures of the 100 samples with the θdbc2 signatures of their respective origins.
The larger box and whisker plots represent the distribution of correlations with θdbc2

signatures of other genomes.

Second, we tested the ability of θdbc to distinguish between genomic sequences from
closely-related species and different strains of the same species usingD2 (57 signatures)
as the database, and the 20 sequences in L2 for sampling. Results are presented for
sample sequences of lengths 10 kb and 50 kb in Figure 5 in [37]. We observed that the
order-2 θdbc signature is better at distinguishing between closely related species than
θdbc signatures of higher order.

The accuracy of θdbc2 for both test cases is summarized in Figure 5. For list L1, a
median accuracy greater than 90% is achieved for sequences as short as 5 kb. Median
accuracy increases steadily with sample size and is 100% at a sample length of 50 kb.
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the signatures of their origin. The larger box plots with large ranges between their first
and third quartiles and smaller medians represent the distribution of correlations with
species other than the origin. These data demonstrate that the θdbc signature retains
features unique to each organism and can differentiate between the origin and other
species. It is highly conserved within a genome and differs between genomes.
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Second, we tested the ability of θdbc to distinguish between genomic sequences from
closely-related species and different strains of the same species usingD2 (57 signatures)
as the database, and the 20 sequences in L2 for sampling. Results are presented for
sample sequences of lengths 10 kb and 50 kb in Figure 5 in [37]. We observed that the
order-2 θdbc signature is better at distinguishing between closely related species than
θdbc signatures of higher order.

The accuracy of θdbc2 for both test cases is summarized in Figure 5. For list L1, a
median accuracy greater than 90% is achieved for sequences as short as 5 kb. Median
accuracy increases steadily with sample size and is 100% at a sample length of 50 kb.
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For the human genome, the θdbc2 signature consistently does not perform well. This issue
is addressed in the Comparison of Performances Section, where we compare different
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11

signatures and discuss conservation of specific features in each genome. Distinguishing
between closely-related species is a harder task than distinguishing between diverse-
species. The signature must capture subtle differences at a much finer scale between
two closely-related sequences to be able to tell them apart. Hence, the reduced accuracy
in case of list L2 is expected. In case of list L1, a median accuracy greater than 84% is
achieved for sequences of length 10 kb, and improves to almost 100% on increasing the
sample sequence size to 50 kb. We note that sample sequences of length 20 kb are
sufficient to predict the origin with reasonably high accuracy.

Comparison of performances of θdbc, θdor, and θwcv signatures

We compared the accuracy of the three signatures θdbc, θdor , and θwcv in predicting the
origin of short DNA segments. The same methods and terminologies as described in
Section have been used. Order 2 signatures were used for several reasons. In Section ,
we found order-2 DBCs to be most representative of the origin in the case of short
sequences and the corresponding θdbc2 to be more quickly computable than higher order
signatures. Also, the θdor signature has an underlying order of 2, hence, using the same
order for its competitors is fair.

First, the ability of all three signatures to distinguish between highly separated
species was tested using the list L1 for sampling and D1 databases for each type of
signature. Shorter sequence samples of lengths 5 kb, 10 kb, and 20 kb were used.
Figure 6(a), (b), and (c) illustrate the results. 100 subsequences were randomly sampled
from each of the 12 diverse species on the x-axis. All three signatures were computed
using each sample and correlated to their respective D1 databases of signatures. The
accuracy of first hits are recorded on the y-axis.

Observe that the θdbc2 signature outperforms the θdor signature for all sequence
lengths by demonstrating better accuracy in the case of 8/12, 9/12, and 8/12 species
for sequence lengths 5 kb, 10 kb, and 20 kb, respectively. The θdbc2 signature also
outperforms the θwcv

2 signature for all sequence lengths by demonstrating better
accuracy in the case of 9/12, 10/12, and 11/12 species for sequence lengths 5 kb, 10
kb, and 20 kb, respectively. The only genomes for which θdbc2 consistently demonstrates
worse accuracy than θdor are NM, EC, and HS. Of particular interest is the HS (Homo
sapiens) genome, where the θdor signature appears to be very well conserved
demonstrating almost 100% accuracy irrespective of the sample sequence length. In
the rest of the genomes (RL, EL, ML, PF, PA, SP, CE, AT, SC), the θdbc2 signature is better
conserved than the θdor signature. Compared with the θwcv

2 signature, the θdbc2

signature consistently performs worse only in case of CE. For all other species, the
accuracy of the θdbc2 signature is better than or equal to that of the θwcv

2 signature.
Consider Figure 7. In Figure 7(a), for each species on the x-axis, the y-axis plots the
number of samples out of 100 for each sequence length, where θdbc2 outperformed the
θdor signature in predicting the origin of the sample. Observe that with decreasing
sequence length, the relative predictive accuracy of θdbc2 increases and is an advantage
over that of the θdor signature. The exceptions are the three species pointed out above
where θdor is more well-conserved than θdbc2 . The same behavior is repeated in the case
of the comparison between prediction accuracies of θdbc2 and θwcv

2 in Figure 7(b) with CE
being the only exception.

Next, we compared the abilities of the three signatures to distinguish between
closely-related species while using the list L2 for sampling and the D2 databases for
each type of signature. Short sequence samples of lengths 5 kb, 10 kb, and 20 kb were
used. Figure 6(d), (e), and (f) illustrate the results. The same method was followed as in
the previous case of diverse species. The accuracy of first hits are recorded on the
y-axis.
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Fig 5. Summary of accuracy of first hits of θdbc2 in both experiments using (a) Species in L1, (b) Species in L2. (c) Listing of
median first hit accuracies of origin prediction for various sample sequence lengths using θdbc2 . The hyphens indicate
placeholders for entries that were computed not for 100 samples, but for a lesser number of samples, and hence, are not
shown here.

For the human genome, the θdbc2 signature consistently does not perform well. This issue
is addressed in the Comparison of Performances Section, where we compare different
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2

Fig 6. Accuracy of first hits of θdbc2 , θdor , and θwcv
2 signatures. 100 Sample sequences of lengths (a) 5 kb, (b) 10 kb, and (c) 20

kb have been used from each species from the list L1 of diverse species on the x-axis. 100 Sample sequences of lengths (d)
5 kb, (e) 10 kb, and (f) 20 kb have been used from each species from the list L2 of closely related APB on the x-axis. The
y-axis represents the number of first hits out of 100. The legends in the plots indicate specific data for each signature.

The database, in this case, contains 52 species from the same family (APB) and 5 other
diverse species. Figure 6(d), (e), and (f) illustrate that the θdbc2 signature outperforms
both θdor and θwcv

2 signatures in the case of all sequence lengths with better predictive
accuracy for 15/20 species against the θdor signature and an average better accuracy
of 16.33/20 species against the θwcv

2 signature. The θdor signature appears consistently
more well-conserved than the θdbc2 signature in the case ofWolbachia. In the comparison
between the θdbc2 and θwcv

2 signatures, the θdbc2 signature is consistently at least as well
conserved as its competitor in all species but that of B. suis. Even in the case of closely-
related species, the relative accuracy of the θdbc2 signature increases with decreasing
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2

Fig 6. Accuracy of first hits of θdbc2 , θdor , and θwcv
2 signatures. 100 Sample sequences of lengths (a) 5 kb, (b) 10 kb, and (c) 20

kb have been used from each species from the list L1 of diverse species on the x-axis. 100 Sample sequences of lengths (d)
5 kb, (e) 10 kb, and (f) 20 kb have been used from each species from the list L2 of closely related APB on the x-axis. The
y-axis represents the number of first hits out of 100. The legends in the plots indicate specific data for each signature.

The database, in this case, contains 52 species from the same family (APB) and 5 other
diverse species. Figure 6(d), (e), and (f) illustrate that the θdbc2 signature outperforms
both θdor and θwcv

2 signatures in the case of all sequence lengths with better predictive
accuracy for 15/20 species against the θdor signature and an average better accuracy
of 16.33/20 species against the θwcv

2 signature. The θdor signature appears consistently
more well-conserved than the θdbc2 signature in the case ofWolbachia. In the comparison
between the θdbc2 and θwcv

2 signatures, the θdbc2 signature is consistently at least as well
conserved as its competitor in all species but that of B. suis. Even in the case of closely-
related species, the relative accuracy of the θdbc2 signature increases with decreasing
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2

Fig 6. Accuracy of first hits of θdbc2 , θdor , and θwcv
2 signatures. 100 Sample sequences of lengths (a) 5 kb, (b) 10 kb, and (c) 20

kb have been used from each species from the list L1 of diverse species on the x-axis. 100 Sample sequences of lengths (d)
5 kb, (e) 10 kb, and (f) 20 kb have been used from each species from the list L2 of closely related APB on the x-axis. The
y-axis represents the number of first hits out of 100. The legends in the plots indicate specific data for each signature.

The database, in this case, contains 52 species from the same family (APB) and 5 other
diverse species. Figure 6(d), (e), and (f) illustrate that the θdbc2 signature outperforms
both θdor and θwcv

2 signatures in the case of all sequence lengths with better predictive
accuracy for 15/20 species against the θdor signature and an average better accuracy
of 16.33/20 species against the θwcv

2 signature. The θdor signature appears consistently
more well-conserved than the θdbc2 signature in the case ofWolbachia. In the comparison
between the θdbc2 and θwcv

2 signatures, the θdbc2 signature is consistently at least as well
conserved as its competitor in all species but that of B. suis. Even in the case of closely-
related species, the relative accuracy of the θdbc2 signature increases with decreasing
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Fig 6. Accuracy of first hits of θdbc2 , θdor , and θwcv
2 signatures. 100 Sample sequences of lengths (a) 5 kb, (b) 10 kb, and (c) 20

kb have been used from each species from the list L1 of diverse species on the x-axis. 100 Sample sequences of lengths (d)
5 kb, (e) 10 kb, and (f) 20 kb have been used from each species from the list L2 of closely related APB on the x-axis. The
y-axis represents the number of first hits out of 100. The legends in the plots indicate specific data for each signature.

The database, in this case, contains 52 species from the same family (APB) and 5 other
diverse species. Figure 6(d), (e), and (f) illustrate that the θdbc2 signature outperforms
both θdor and θwcv

2 signatures in the case of all sequence lengths with better predictive
accuracy for 15/20 species against the θdor signature and an average better accuracy
of 16.33/20 species against the θwcv

2 signature. The θdor signature appears consistently
more well-conserved than the θdbc2 signature in the case ofWolbachia. In the comparison
between the θdbc2 and θwcv

2 signatures, the θdbc2 signature is consistently at least as well
conserved as its competitor in all species but that of B. suis. Even in the case of closely-
related species, the relative accuracy of the θdbc2 signature increases with decreasing
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For each species on the x-axis, the y-axis represents the number of samples out of 100 where the θdbc2 signature outperforms
its competitor.

sequence length as is demonstrated by the data in Figure 8.
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Fig 8. Comparison of relative accuracies of (a) θdbc2 and θdor and (b) θdbc2 and θwcv
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randomly sampled from APB. For each species on the x-axis, the y-axis represents the number of samples out of 100 where
the θdbc2 signature outperforms its competitor.

A more formal statistical comparison of the accuracy of these signatures using the
Wilcoxon signed rank test is summarized in Table 3. While differentiating between
diverse species, for sequence length < 20 kb, the median accuracy of θdbc2 is greater
than the median accuracy of θwcv

2 to a statistically significant extent. While
differentiating between closely-related species, the same can be said for sequence
length < 5 kb. θdbc2

and θdor are more evenly matched than θdbc2 and θwcv
2 in case of diverse species,

whereas in case of closely-related species, the θdbc2 signature clearly outperforms the
θdor signature to a statistically significant extent.

For the order-2 signatures above, Figure 9 summarizes the median accuracy of
prediction of first hits in the case of both lists L1 and L2 and varying sequence lengths
of 5 kb, 10 kb, and 20 kb. Observe that in all cases, the θdbc2 signature outperforms the
θdor signature, which in turn outperforms the θwcv

2 signature.

Combining the powers of θdbc2 and θdor

In the Comparison of Performances Section, we demonstrated that, in predicting the
origin of an unknown DNA sequence, the θdbc2 signature has greater accuracy than the
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For each species on the x-axis, the y-axis represents the number of samples out of 100 where the θdbc2 signature outperforms
its competitor.

sequence length as is demonstrated by the data in Figure 8.
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Fig 8. Comparison of relative accuracies of (a) θdbc2 and θdor and (b) θdbc2 and θwcv
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randomly sampled from APB. For each species on the x-axis, the y-axis represents the number of samples out of 100 where
the θdbc2 signature outperforms its competitor.

A more formal statistical comparison of the accuracy of these signatures using the
Wilcoxon signed rank test is summarized in Table 3. While differentiating between
diverse species, for sequence length < 20 kb, the median accuracy of θdbc2 is greater
than the median accuracy of θwcv

2 to a statistically significant extent. While
differentiating between closely-related species, the same can be said for sequence
length < 5 kb. θdbc2

and θdor are more evenly matched than θdbc2 and θwcv
2 in case of diverse species,

whereas in case of closely-related species, the θdbc2 signature clearly outperforms the
θdor signature to a statistically significant extent.

For the order-2 signatures above, Figure 9 summarizes the median accuracy of
prediction of first hits in the case of both lists L1 and L2 and varying sequence lengths
of 5 kb, 10 kb, and 20 kb. Observe that in all cases, the θdbc2 signature outperforms the
θdor signature, which in turn outperforms the θwcv

2 signature.

Combining the powers of θdbc2 and θdor

In the Comparison of Performances Section, we demonstrated that, in predicting the
origin of an unknown DNA sequence, the θdbc2 signature has greater accuracy than the
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Table 3. Wilcoxon signed rank test results comparing the accuracies of different signatures. For instance, for list L1 and
signatures θdbc2 and θdor , X is an accuracy vector of length 12 for θdbc2 and Y is an accuracy vector of length 12 for θdor . The
null hypothesis being tested here is H0 : median_accuracy(Sign 1)=median_accuracy(Sign 2). The alternate hypothesis is H1 :
median_accuracy(Sign 1)>median_accuracy(Sign 2).

List Sequence
length

Sign 1 (X) Sign 2 (Y) Mean
difference

Signed
rank

p-value (One
sided)

AcceptH1?
(α = 0.05)

L1 5 kb θdbc2 θdor +3.08 37 0.0314 Yes
L1 5 kb θdbc2 θwcv

2 +4.92 58 0.0052 Yes
L1 10 kb θdbc2 θdor +2.75 34 0.0681 No
L1 10 kb θdbc2 θwcv

2 +2.66 31 0.0371 Yes
L1 20 kb θdbc2 θdor +2.08 25 0.1379 No
L1 20 kb θdbc2 θwcv

2 +2.67 32 0.011 Yes

L2 5 kb θdbc2 θdor +8.4 168 0.0009 Yes
L2 5 kb θdbc2 θwcv

2 +7.3 146 0.0017 Yes
L2 10 kb θdbc2 θdor +7.6 152 0.0023 Yes
L2 10 kb θdbc2 θwcv

2 +1.15 23 0.3372 No
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Fig 9. Comparison of median first hit accuracies of origin prediction for θdbc2 , θdor , and θwcv

2 signatures. The x-axis represents
sample sequence lengths. The y-axis represents accuracy of first hits.

θdor and θwcv
2 signatures. The objective of this work is not to introduce yet another

genomic signature. We are interested in exploring aspects of construction of a genome
that make it unique. So far, we have been successful in discovering some such aspects
through the θdbc signature.

To reiterate our observations from Section , the θdbc2 demonstrates high accuracy
when sample sequences of length 20 kb or higher are available, both in differentiating
between far-away species and closely-related species. It is the case when much
shorter samples are present and the accuracy drops. To test whether an even greater
accuracy of origin prediction for short sequences can be achieved, we combined the
θdbc2 and θdor signatures. We tried three different methods of doing the above. We
concatenated the two signatures into one vector and used Pearson correlations to
determine the closest species. This method works no better than using individual θdbc2

signatures. Working with the sum of the Pearson correlation distance and the
normalized L1-distance, separately computed, did not yield better results either.
However, using the product of the Pearson correlation distance and the normalized
δ-distance, separately computed, appears to produce a better accuracy than using the
θdbc2 signature alone, in the case of differentiating between far-away species as
observed in Figure 10.

However, the same method does not demonstrate substantially higher accuracy
than the θdbc2 signature in differentiating between closely-related species. We make
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θdor and θwcv
2 signatures. The objective of this work is not to introduce yet another

genomic signature. We are interested in exploring aspects of construction of a genome
that make it unique. So far, we have been successful in discovering some such aspects
through the θdbc signature.

To reiterate our observations from Section , the θdbc2 demonstrates high accuracy
when sample sequences of length 20 kb or higher are available, both in differentiating
between far-away species and closely-related species. It is the case when much
shorter samples are present and the accuracy drops. To test whether an even greater
accuracy of origin prediction for short sequences can be achieved, we combined the
θdbc2 and θdor signatures. We tried three different methods of doing the above. We
concatenated the two signatures into one vector and used Pearson correlations to
determine the closest species. This method works no better than using individual θdbc2

signatures. Working with the sum of the Pearson correlation distance and the
normalized L1-distance, separately computed, did not yield better results either.
However, using the product of the Pearson correlation distance and the normalized
δ-distance, separately computed, appears to produce a better accuracy than using the
θdbc2 signature alone, in the case of differentiating between far-away species as
observed in Figure 10.

However, the same method does not demonstrate substantially higher accuracy
than the θdbc2 signature in differentiating between closely-related species. We make
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Fig 10. Comparison of the accuracies of the θdbc2 signature and the combination signature θcomb

2 of θdbc2 and θdor in predicting
origins of unknown short sequences from L1. Sequences of lengths (a) 1 kb, (b) 2 kb, (c) 5 kb, and (d) 10 kb have been used.

this observation based on the results in in Figure 11. In fact, in this case, accuracy drops
to less than 25% for most species when the sample sequence length is approximately 1
kb, which is why results corresponding to such short sequences are not shown.
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2 of θdbc2 and θdor in predicting
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Relationship between genome size and accuracy of origin prediction

Next, we explored pairwise relationships between genome size and efficiency of first hits
of the θdbc2 signature using sequence samples of length 10 kb. Figure 12 presents relevant
scatter plots. Plot (a) is for 11 out of 12 genomes in L1 (the human genome was not used
as it was an outlier that disrupted the otherwise observed correlations, because of its
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this observation based on the results in in Figure 11. In fact, in this case, accuracy drops
to less than 25% for most species when the sample sequence length is approximately 1
kb, which is why results corresponding to such short sequences are not shown.
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Relationship between genome size and accuracy of origin prediction

Next, we explored pairwise relationships between genome size and efficiency of first hits
of the θdbc2 signature using sequence samples of length 10 kb. Figure 12 presents relevant
scatter plots. Plot (a) is for 11 out of 12 genomes in L1 (the human genome was not used
as it was an outlier that disrupted the otherwise observed correlations, because of its
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this observation based on the results in in Figure 11. In fact, in this case, accuracy drops
to less than 25% for most species when the sample sequence length is approximately 1
kb, which is why results corresponding to such short sequences are not shown.
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Relationship between genome size and accuracy of origin prediction

Next, we explored pairwise relationships between genome size and efficiency of first hits
of the θdbc2 signature using sequence samples of length 10 kb. Figure 12 presents relevant
scatter plots. Plot (a) is for 11 out of 12 genomes in L1 (the human genome was not used
as it was an outlier that disrupted the otherwise observed correlations, because of its
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Fig 10. Comparison of the accuracies of the θdbc2 signature and the combination signature θcomb

2 of θdbc2 and θdor in predicting
origins of unknown short sequences from L1. Sequences of lengths (a) 1 kb, (b) 2 kb, (c) 5 kb, and (d) 10 kb have been used.

this observation based on the results in in Figure 11. In fact, in this case, accuracy drops
to less than 25% for most species when the sample sequence length is approximately 1
kb, which is why results corresponding to such short sequences are not shown.
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Fig 11. Comparison of the accuracies of the θdbc2 signature and the combination signature θcomb

2 of θdbc2 and θdor in predicting
origins of unknown short sequences from L2. Sequences of lengths (a) 5 kb and (b) 10 kb have been used.

Relationship between genome size and accuracy of origin prediction

Next, we explored pairwise relationships between genome size and efficiency of first hits
of the θdbc2 signature using sequence samples of length 10 kb. Figure 12 presents relevant
scatter plots. Plot (a) is for 11 out of 12 genomes in L1 (the human genome was not used
as it was an outlier that disrupted the otherwise observed correlations, because of its
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large size), while plot (b) is for the 20 APB. Observe that the efficiency of θdbc is negatively
correlated with genome size in both sets, using Pearson correlation coefficients.
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Fig 12. Relationships between genome size and efficiency of first hits of θdbc2 . (a) and (b)
demonstrate results for the 11 species in Table 1 and the 20 APB, respectively.

Theory

In this section, we build a theoretical framework to analyze distances between θdbc2

signatures in terms of the parameters of the DBCs generating them. The results for
higher order θdbc signatures can be derived in a similar manner as θdbc2 signatures. Let
DC be an ergodic, order-2 DBC. LetH be a sequence generated by DC, where |H| = n. If
xi, xj ∈ S2, the probability of transition from state xi to state xj is given by pi,j , while
the stationary probability for xi is π̂xi

.
As defined in the Preliminaries Section, the θdbc2 signature is a concatenation of the

π̂2 signature and the θovif2 /4 signature. First we develop a framework for characterizing
π̂2.

Framework for bounding the distance between π̂2 signatures derived from
sequences generated by the same DBC

Let H be a long DNA sequence generated by an order-w DBC with irreducible transition
matrix P and stationary distribution π̂w(H). Let h be a much shorter subsequence of H
with transition matrix P ′ and stationary distribution π̂w(h). Assuming that P ′ is
irreducible, P ′ is a perturbed form of P . When P and P ′ are close, the distance between
π̂w(H) and π̂w(h) is very small and can be bound.

Solan and Vieille [61] have defined a measure of closeness of P ′ to P . They define ζ

as ζP = minC⊂Sw

∑
s∈C

π̂w(H)P (C̄|s). They state that P ′ is ((ϵ, b))-close to P if for all

pairs of states s, t ∈ Sw , |1− P ′(t|s)/P (t|s)| ≤ b whenever (a) π̂w
s (H)P (t|s) ≥ ϵζP or

(b) π̂w
s (H)P ′(t|s) ≥ ϵζP . Let L =

|Sw|−1∑
i=1

(
|Sw|
i

)
i|S

w|. Then, if b ∈ (0, 1/2|S
w|) and

ϵ ∈
(
0,

b(1− b)

L|Sw|4

)
, for every transition matrix P ′ that is (ϵ, b)-close to P , (i) P ′ is

irreducible and (ii) Its stationary distribution π̂w(h) satisfies |1− π̂w
s (h)/π̂

w
s (H)| ≤ 18bL.

A detailed proof of the above lemma can be found in Solan and Vieille [61].
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From the above discussion, it is clear that for a genomic sequence H generated by
order-w DBC DC and its much smaller subsequence h, the stationary distribution of DC
can be accurately represented by π̂w(H) and closely approximated by π̂w(h). Therefore,
the estimated stationary distribution of the DBC that generates a genomic sequence, can
serve as a genomic signature.

Our results [37] (not shown here) suggest that θwfv
w (H) ≈ π̂w(H), and

π̂w(h) ≈ π̂w(H), while θwfv
w (h) might not display such similarity to either θwfv

w (H) or
π̂w(H). This property is conserved for a wide range of lengths of h (tested for ≥ 5 kb).
In Theorem 1, we bound the distance between the stationary distributions derived from
the transition matrices of sequences generated by the same DBC. First, we prove the
following lemma.

Lemma 1. Let H be a genomic sequence of length n generated by an order 2 DBC with
underlying stationary distribution π. Assume that the number of occurrences of a
dinucleotide x has a Poisson distribution with mean nπx. Let π̂x be the random variable
representing the stationary probability of x. Fix τ > 0 and T = nτ . Then

Pr [|π̂x − E [π̂x] | > τ ] < Lπ(x) + Uπ(x), where

Lπ(x) = exp

(
−T 2

2nπx

)
and Uπ(x) =


 e

T
nπx

(
1 + T

nπx

)1+ T
nπx

.




nπx

.

Proof. Let Xx be the random variable representing the number of occurrences of the
dinucleotide x. Then Xx can be expressed as a sum of n− 1 indicator random variables,
each representing the occurrence of x at a given position in the sequence. In particular,

Xx =

n−1∑
i=1

Xx(i), where Pr [Xx(i) = 1] is equal to πx for all i, and E [Xx] ≈ nπx. Now,

Pr [|π̂x − E [π̂x] | > τ ] = Pr [|Xx − E [Xx] | > nτ ] = Pr [|Xx − E [Xx] | > T ] .

Since Xx can be expressed as a sum of independent indicator random variables,
Chernoff’s bounds [62] are applicable. For the lower tail of the above probability, the
applicable Chernoff bound [62] is

Pr [Xx < (1− δ)µ] < e
−µδ2

2 , where µ = E [Xx] .

Using Pr [Xx − E [Xx] < −T ] = Pr [Xx < nπx − T ] = Pr [Xx < (1− δ)nπx] we get,

nπx − T = (1− δ)nπx or δ =
T

nπx
. Therefore, the lower tail probability is bounded as

follows:

Pr [Xx − E [Xx] < −T ] < exp
(
(−nπx/2) · (T/nπx)

2
)
= exp

(
−T 2/2nπx

)
= Lπ(x).

For the corresponding upper tail of the probability, the applicable Chernoff’s bound [62]
is

Pr [Xx > (1 + δ)µ] <
(
eδ

/
(1 + δ)1+δ.

)µ

Using Pr [Xx − E [Xx] > T ] = Pr [Xx > nπx + T ] = Pr [Xx > (1 + δ)nπx] we get

nπx + T = (1 + δ)nπxor δ =
T

nπx
. Therefore, the upper tail probability is bound as

follows:

Pr [Xx − E [Xx] > T ] <
(
e

T
nπx

/
(1 + T/nπx)

1+T/nπx

)nπx

= Uπ(x).

Combining the two tail probabilities proves the Lemma.
□

18

Theorem 1. LetH1 andH2 be genomic sequences of length n independently generated by
the same order 2 DBC with underlying stationary distribution π. Let π̂1 and π̂2 be the order
2 stationary distributions derived from the respective transition matrices of H1 and H2.
Assume that the number of occurrences of a dinucleotide x has a Poisson distribution
with mean nπ̂x. Then for τ > 0 and T = nτ ,

Pr
[
d
(
π̂1, π̂2

)
> 32τ

]
< 2 ·

∑
x∈S2

(Lπ(x) + Uπ(x)) .

Proof. Using the bound for the stationary distribution of each dinucleotide as derived in
Lemma 1 and applying the union bound we have

Pr
[∣∣π̂1 − E

[
π̂1

]∣∣ > 16T/n
]

≤
∑
x∈S2

(Lπ(x) + Uπ(x)) and

Pr
[∣∣π̂2 − E

[
π̂2

]∣∣ > 16T/n
]

≤
∑
x∈S2

(Lπ(x) + Uπ(x)) .

The expected value of π̂x for any x is the same in both sequencesH1 andH2. Therefore,
d
(
(π̂1 − E

[
π̂1

]
), (π̂2 − E

[
π̂2

]
)
)
= d

(
π̂1, π̂2

)
. Using the union bound we get,

Pr
[
d
(
π̂1, π̂2

)
> 32τ

]
= Pr

[
d
(
π̂1 − E

[
π̂1

]
, π̂2 − E

[
π̂2

])
> 32T/n

]

≤ Pr
[
|π̂1 − E

[
π̂1

]
| > 16T/n

]

+ Pr
[
|π̂2 − E

[
π̂2

]
| > 16T/n

]

= 2 ·
∑
x∈S2

(Lπ(x) + Uπ(x)) .

□
The quantity τ is indicative of the amount of separation that can exist in between

two signatures with high probability. The R.H.S. in Theorem 1 is the probability that the
separation exceeds a linear function of τ .

We study the nature of the bound in Theorem 1 as follows. In Figure 13(a), we have
plotted the distribution of T = nτ values using τ values computed from L1 distances
between sequences sampled from the same organism. Sequences of size 10 kilobases
were used. A set of genomic sequences were randomly selected. From each genomic
sequence 100 pairs of subsequences were independently sampled at random, their
stationary distributions were estimated, and the L1 distance between each pair of
stationary distributions was recorded. τ and subsequently, T values were computed
from this distance and their distribution plotted as in Figure 13(a). In Figure 13(b), the
theoretical bounds are simulated for different values of T and the upper bounds on
probability are plotted using n = 10000 and both uniform and non-uniform stationary
distributions. When T > 160 (approximately), the corresponding probability of
separation is very low. This illustrates the strong connection between the bound and
real data from genomes.

Framework for bounding the distance between θovif2 signatures derived
from sequences generated by the same DBC

We begin by characterizing the distribution of the transition probability between two
states. Let t be the transition σ1 . . . σw → σ2 . . . σw+1. Let X and Y be random variables
denoting the number of occurrences of α = σ1σ2 . . . σw+1 and β = σ1 . . . σw respectively

http://dx.doi.org/10.21622/ACE.2021.01.1.007
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Theorem 1. LetH1 andH2 be genomic sequences of length n independently generated by
the same order 2 DBC with underlying stationary distribution π. Let π̂1 and π̂2 be the order
2 stationary distributions derived from the respective transition matrices of H1 and H2.
Assume that the number of occurrences of a dinucleotide x has a Poisson distribution
with mean nπ̂x. Then for τ > 0 and T = nτ ,

Pr
[
d
(
π̂1, π̂2

)
> 32τ

]
< 2 ·

∑
x∈S2

(Lπ(x) + Uπ(x)) .

Proof. Using the bound for the stationary distribution of each dinucleotide as derived in
Lemma 1 and applying the union bound we have

Pr
[∣∣π̂1 − E

[
π̂1

]∣∣ > 16T/n
]

≤
∑
x∈S2

(Lπ(x) + Uπ(x)) and

Pr
[∣∣π̂2 − E

[
π̂2

]∣∣ > 16T/n
]

≤
∑
x∈S2

(Lπ(x) + Uπ(x)) .

The expected value of π̂x for any x is the same in both sequencesH1 andH2. Therefore,
d
(
(π̂1 − E

[
π̂1

]
), (π̂2 − E

[
π̂2

]
)
)
= d

(
π̂1, π̂2

)
. Using the union bound we get,

Pr
[
d
(
π̂1, π̂2

)
> 32τ

]
= Pr

[
d
(
π̂1 − E

[
π̂1

]
, π̂2 − E

[
π̂2

])
> 32T/n

]

≤ Pr
[
|π̂1 − E

[
π̂1

]
| > 16T/n

]

+ Pr
[
|π̂2 − E

[
π̂2

]
| > 16T/n

]

= 2 ·
∑
x∈S2

(Lπ(x) + Uπ(x)) .

□
The quantity τ is indicative of the amount of separation that can exist in between

two signatures with high probability. The R.H.S. in Theorem 1 is the probability that the
separation exceeds a linear function of τ .

We study the nature of the bound in Theorem 1 as follows. In Figure 13(a), we have
plotted the distribution of T = nτ values using τ values computed from L1 distances
between sequences sampled from the same organism. Sequences of size 10 kilobases
were used. A set of genomic sequences were randomly selected. From each genomic
sequence 100 pairs of subsequences were independently sampled at random, their
stationary distributions were estimated, and the L1 distance between each pair of
stationary distributions was recorded. τ and subsequently, T values were computed
from this distance and their distribution plotted as in Figure 13(a). In Figure 13(b), the
theoretical bounds are simulated for different values of T and the upper bounds on
probability are plotted using n = 10000 and both uniform and non-uniform stationary
distributions. When T > 160 (approximately), the corresponding probability of
separation is very low. This illustrates the strong connection between the bound and
real data from genomes.

Framework for bounding the distance between θovif2 signatures derived
from sequences generated by the same DBC

We begin by characterizing the distribution of the transition probability between two
states. Let t be the transition σ1 . . . σw → σ2 . . . σw+1. Let X and Y be random variables
denoting the number of occurrences of α = σ1σ2 . . . σw+1 and β = σ1 . . . σw respectively
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Fig 13. (a) Plot of distribution of T values computed using τ values taken from L1 distances between stationary distributions
of sequences from the same genome. The L1 distance between each pair was equated to 32τ . τ , and subsequently T , were
derived and the distribution of T values was computed and plotted. Note that approximately T > 150 indicates a large and
unlikely separation between π̂ signatures of sequences generated by the same DBC. (b) Plot of upper bounds of separation
between stationary distributions of sequences from the same DBC using the theoretical expression derived in Theorem 1.

in a sequence H . The random variable Z representing the estimated probability of the
transition t is

Z =

{
X/Y if Y ̸= 0,
0 otherwise.

Lemma 2 presents an upper bound on the probability of a specified separation between
the frequency of a given transition t and its expected value.

Lemma 2. Assume, for α and β as described above, that, given an occurrence of β, the
occurrence of α is binomially distributed with parameter πα/πβ . Let a sequence H of
length n be given along with a transition t represented by the random variable Z as
defined above. Then for τ > 0,

Pr [|Z/4− E [Z/4] | ≥ τ ] < Lovif (β) + Uovif (β), where

Lovif (β) = e−nπβ

(
exp

(
exp

(
−8τ2

πβ

πα

)
(nπβ)

)
− 1

)
and

Uovif (β) = e−nπβ


exp







e
4τπβ
πα

(
1 +

4τπβ

πα

)1+
4τπβ
πα




πα
πβ

(nπβ)


− 1


 .

Proof. Recall that the θovif2 signature is scaled by 4 to maintain similar orders of
magnitude as the π̂w signature. Let Xα and Xβ be random variables representing the
number of occurrences of strings α and β respectively in H .

Pr [|Z/4− E [Z/4] | ≥ τ ] = Pr

[∣∣∣∣
Xα

4Xβ
− E

[
Xα

4Xβ

]∣∣∣∣ ≥ τ

]

=
∞∑
c=1

Pr

[∣∣∣∣
Xα

4c
− 1

4
E

[
Xα

Xβ

]∣∣∣∣ ≥ τ | Xβ = c

]
· Pr [Xβ = c]

=
∞∑
c=1

Pr

[∣∣∣∣Xα − cπα

πβ

∣∣∣∣ ≥ 4τc | Xβ = c

]
· e

−nπβ (nπβ)
c

c!
.
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Fig 13. (a) Plot of distribution of T values computed using τ values taken from L1 distances between stationary distributions
of sequences from the same genome. The L1 distance between each pair was equated to 32τ . τ , and subsequently T , were
derived and the distribution of T values was computed and plotted. Note that approximately T > 150 indicates a large and
unlikely separation between π̂ signatures of sequences generated by the same DBC. (b) Plot of upper bounds of separation
between stationary distributions of sequences from the same DBC using the theoretical expression derived in Theorem 1.

in a sequence H . The random variable Z representing the estimated probability of the
transition t is

Z =

{
X/Y if Y ̸= 0,
0 otherwise.

Lemma 2 presents an upper bound on the probability of a specified separation between
the frequency of a given transition t and its expected value.

Lemma 2. Assume, for α and β as described above, that, given an occurrence of β, the
occurrence of α is binomially distributed with parameter πα/πβ . Let a sequence H of
length n be given along with a transition t represented by the random variable Z as
defined above. Then for τ > 0,
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Proof. Recall that the θovif2 signature is scaled by 4 to maintain similar orders of
magnitude as the π̂w signature. Let Xα and Xβ be random variables representing the
number of occurrences of strings α and β respectively in H .
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unlikely separation between π̂ signatures of sequences generated by the same DBC. (b) Plot of upper bounds of separation
between stationary distributions of sequences from the same DBC using the theoretical expression derived in Theorem 1.

in a sequence H . The random variable Z representing the estimated probability of the
transition t is

Z =

{
X/Y if Y ̸= 0,
0 otherwise.

Lemma 2 presents an upper bound on the probability of a specified separation between
the frequency of a given transition t and its expected value.

Lemma 2. Assume, for α and β as described above, that, given an occurrence of β, the
occurrence of α is binomially distributed with parameter πα/πβ . Let a sequence H of
length n be given along with a transition t represented by the random variable Z as
defined above. Then for τ > 0,
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Proof. Recall that the θovif2 signature is scaled by 4 to maintain similar orders of
magnitude as the π̂w signature. Let Xα and Xβ be random variables representing the
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Fig 13. (a) Plot of distribution of T values computed using τ values taken from L1 distances between stationary distributions
of sequences from the same genome. The L1 distance between each pair was equated to 32τ . τ , and subsequently T , were
derived and the distribution of T values was computed and plotted. Note that approximately T > 150 indicates a large and
unlikely separation between π̂ signatures of sequences generated by the same DBC. (b) Plot of upper bounds of separation
between stationary distributions of sequences from the same DBC using the theoretical expression derived in Theorem 1.

in a sequence H . The random variable Z representing the estimated probability of the
transition t is

Z =

{
X/Y if Y ̸= 0,
0 otherwise.
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Lemma 2. Assume, for α and β as described above, that, given an occurrence of β, the
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Proof. Recall that the θovif2 signature is scaled by 4 to maintain similar orders of
magnitude as the π̂w signature. Let Xα and Xβ be random variables representing the
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Since Xα can be represented as a sum of independent indicator random variables with
E [Xα] = cπα/πβ , Chernoff bounds [62] are applicable to the probability

Pr
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. Consider the lower tail probability
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.

Using Chernoff’s lower tail bounds as described in the proof of Lemma 1 with µ = E [Xα]

and using
cπα
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πβ
weget, δ =
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. Therefore, the lower tail probability

is bounded as follows:
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Now consider the upper tail probability
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≥ 4τc|Xβ = c

]
= Pr
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Xα ≥ cπα

πβ
+ 4τc|Xβ = c

]
.

Using Chernoff’s upper tail bounds as described in the proof of Lemma 1 and δ = 4τπβ/πα,
the upper tail probability is bounded as:

Pr
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]
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= Uovif (β).

Combining the two tail probabilities proves the Lemma. □
We assume the existence of a maximum transition probability among all probabilities

associated with transitions to or from any given state in Assumption 1.

Assumption 1. Consider an order-2 DBC DC that generates sequence H . Let D̂C be the
DBC reconstructed fromH . Given a state β ∈ Σw

DNA in the DBCDC, define trans(β) as the
set of all transitions of the form β → β[2 · · ·w]σ or σβ[1 · · ·w − 1] → β, for σ ∈ ΣDNA.
For a positive constant s, s > 0, there exists a maximum transition t∗ ∈ trans(β) in DC
such that, for all t ∈ trans(β) \ {t∗}, p(t∗)− p(t) > s, where p(t) denotes the probability
associated with the transition t. For 0 ≤ ς ≤ 1, The probability that the same transition
t∗ is also the maximum probability transition for state β in D̂C is given by

Pr [p(t∗)− p(t) > s] = ς.

Given β ∈ Σw
DNA, we define the maximum β-transition t∗β as the transition in trans(β)

having maximum frequency. The frequency of t∗β is the vertex isolation frequency of β.
Define S(β) as the state at which t∗β starts and E(β) as the state at which t∗β ends. Define
T (β) as the label of t∗β . When t∗β is directed away from β, S(β) = β, E(β) = β[2 . . . w]σ,
and T (β) = βσ, for some σ ∈ ΣDNA. When t∗β is directed into β, S(β) = σβ[1 . . . w − 1],
E(β) = β, and T (β) = σβ, for some σ ∈ ΣDNA.

The L1 distance between the θovif2 signatures of sequences generated by the same
DBC is bounded in Theorem 2.
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Since Xα can be represented as a sum of independent indicator random variables with
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Combining the two tail probabilities proves the Lemma. □
We assume the existence of a maximum transition probability among all probabilities

associated with transitions to or from any given state in Assumption 1.

Assumption 1. Consider an order-2 DBC DC that generates sequence H . Let D̂C be the
DBC reconstructed fromH . Given a state β ∈ Σw

DNA in the DBCDC, define trans(β) as the
set of all transitions of the form β → β[2 · · ·w]σ or σβ[1 · · ·w − 1] → β, for σ ∈ ΣDNA.
For a positive constant s, s > 0, there exists a maximum transition t∗ ∈ trans(β) in DC
such that, for all t ∈ trans(β) \ {t∗}, p(t∗)− p(t) > s, where p(t) denotes the probability
associated with the transition t. For 0 ≤ ς ≤ 1, The probability that the same transition
t∗ is also the maximum probability transition for state β in D̂C is given by

Pr [p(t∗)− p(t) > s] = ς.

Given β ∈ Σw
DNA, we define the maximum β-transition t∗β as the transition in trans(β)

having maximum frequency. The frequency of t∗β is the vertex isolation frequency of β.
Define S(β) as the state at which t∗β starts and E(β) as the state at which t∗β ends. Define
T (β) as the label of t∗β . When t∗β is directed away from β, S(β) = β, E(β) = β[2 . . . w]σ,
and T (β) = βσ, for some σ ∈ ΣDNA. When t∗β is directed into β, S(β) = σβ[1 . . . w − 1],
E(β) = β, and T (β) = σβ, for some σ ∈ ΣDNA.

The L1 distance between the θovif2 signatures of sequences generated by the same
DBC is bounded in Theorem 2.
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Theorem 2. Let H1 and H2 be two genomic sequences generated by the same DBC of
order 2. Let θovif1 and θovif2 be their respective order-2 θovif signatures. Then for any
τ > 0,
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Proof. Using the results from Lemma 2, Assumption 1, and the union bound we get
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)

The component-wise expected values in θovif1 /4 and θovif2 /4 are the same. Therefore,
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.

The theorem follows from the following:
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β∈S2

(
Lovif (β) + Uovif (β)

)
.

□
We now analyze the behavior of the upper bound in Theorem 2 when applied to real

data. For a randomly selected set of genomic sequences, 100 pairs of sequences of
length 100 kb each were randomly and independently sampled from each genomic
sequence. For each pair, their θovif2 /4 signatures were computed and the L1 distance
between them was noted. Figure 14(a) plots the distribution of these distances. Note
that a distance greater than approximately 0.5 marks a large and unlikely separation.
The τ value corresponding to a distance of 0.5 is 0.5/32 = 0.0156, whose corresponding
upper bound of probability is very low as observed in Figure 14(b).

Next, we combine the properties of the π̂2 and θovif2 /4 signatures to derive the
separation between θdbc2 signatures of sequences generated by the same DBC.

Separation between θdbc2 signatures derived from sequences generated by
the same DBC

For sequences hypothesized to be generated by the same de Bruijn chain, Theorem 3
proves that the separation between their θdbcw signatures is less than a specified
threshold with high probability.

Theorem 3. Let DC be an order s DBC. Let H1 and H2 be two genomic sequences of
length n generated independently by DC. Let θdbc1 and θdbc2 be their respective order-w

http://dx.doi.org/10.21622/ACE.2021.01.1.007
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□
We now analyze the behavior of the upper bound in Theorem 2 when applied to real

data. For a randomly selected set of genomic sequences, 100 pairs of sequences of
length 100 kb each were randomly and independently sampled from each genomic
sequence. For each pair, their θovif2 /4 signatures were computed and the L1 distance
between them was noted. Figure 14(a) plots the distribution of these distances. Note
that a distance greater than approximately 0.5 marks a large and unlikely separation.
The τ value corresponding to a distance of 0.5 is 0.5/32 = 0.0156, whose corresponding
upper bound of probability is very low as observed in Figure 14(b).

Next, we combine the properties of the π̂2 and θovif2 /4 signatures to derive the
separation between θdbc2 signatures of sequences generated by the same DBC.

Separation between θdbc2 signatures derived from sequences generated by
the same DBC

For sequences hypothesized to be generated by the same de Bruijn chain, Theorem 3
proves that the separation between their θdbcw signatures is less than a specified
threshold with high probability.

Theorem 3. Let DC be an order s DBC. Let H1 and H2 be two genomic sequences of
length n generated independently by DC. Let θdbc1 and θdbc2 be their respective order-w
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Fig 14. (a) Plot of distribution of L1 distances between θovif2 /4 signatures of sequences from the same genome. τ can be
derived by dividing each L1 distance by 32. Note that approximately 0.5 distance or τ = 0.0156 indicates a large and unlikely
separation between two θovif2 /4 signatures. (b) Plot of upper bounds of separation between θovif2 /4 signatures of sequences
from the same DBC using the theoretical expression derived in Theorem 2. Note that the probability for τ > 0.0156 is 0.006113,
which is low. n = 10000, ς = 0.75, and a uniform stationary distribution were used for computing the bounds in (b).

DBC signatures. Similarly, let π̂1 and π̂2 be their order-2 stationary distributions and θovif1

and θovif2 be their order-2 OVIF signatures, respectively. Then,

Pr
[
d
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θdbc1 , θdbc2
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]
< 2 ·

∑
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)
.

Proof. Note that θdbc2 = π̂2 · θovif2 /4. Using the union bound we have
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> 32τ

]
+ Pr
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)
> 32τ

]
.

The theorem follows using the results from Theorems 1 and 2. □

Separation between θdbc2 signatures of sequences generated by different
DBCs

Let H1 and H2 be genomic sequences of length n, generated independently by two
different order-2 DBCs DC1 and DC2, respectively. Let θdbc1 and θdbc2 be their order-w
DBC signatures. Let π̂1 and π̂2 be their estimated stationary distributions and θovif1 and
θovif2 be their OVIF signatures.

Then, the distance d
(
θdbc1 , θdbc2

)
can distinguish DC1 and DC2. Assumptions 2

formalizes the separation of estimated stationary distributions of genomic sequences
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Fig 14. (a) Plot of distribution of L1 distances between θovif2 /4 signatures of sequences from the same genome. τ can be
derived by dividing each L1 distance by 32. Note that approximately 0.5 distance or τ = 0.0156 indicates a large and unlikely
separation between two θovif2 /4 signatures. (b) Plot of upper bounds of separation between θovif2 /4 signatures of sequences
from the same DBC using the theoretical expression derived in Theorem 2. Note that the probability for τ > 0.0156 is 0.006113,
which is low. n = 10000, ς = 0.75, and a uniform stationary distribution were used for computing the bounds in (b).
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which is low. n = 10000, ς = 0.75, and a uniform stationary distribution were used for computing the bounds in (b).
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The theorem follows. □
We demonstrate Assumptions 2 and 3 using sequences from the species C. elegans

and P. falciparum. Figure 15 presents the distribution of L1 distances between θdbc2

signatures of pairs of 10 kilobase long sequences randomly sampled from the above
two species, respectively. The actual distance between the expected values of π̂1 and
π̂2 is 0.4735. From Assumption 2, we have τ < 0.4735/48 = 0.0099. Using
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and θovif2 0.374622, which leads to τ being less than 0.374622/48 = 0.0078. For these
values of τ , the probability Pr

[
d
(
θdbc1 , θdbc2

)
≥ 2 · 16τ

]
is high.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

10

20

30

40

50

60

70

80

90

L
1
 distances betweeb DBC signatures of C. elegans and P. falciparum

N
u
m

b
e
r 

o
f 
o
c
c
u
rr

e
n
c
e
s

Fig 15. Distribution of L1 distances between θdbc2 signatures of pairs of 10 kilobase long
sequences randomly sampled from the two species C. elegans and P. falciparum.

In Theorem 4, each negative term in the right hand side is very small, making the total
probability on the right hand side a very large value. Theorem 4 states that the probability
that the separation between the θdbcw s of two sequences hypothesized to be generated
by different DBCs exceeds a given threshold is very high.

Time complexity

The θdbc2 for a sequence of length n can be computed in O(n+16 log 16+ 4096) time and
space. In general, the complexity of computing the order-w θdbcw signature for a sequence
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In Theorem 4, each negative term in the right hand side is very small, making the total
probability on the right hand side a very large value. Theorem 4 states that the probability
that the separation between the θdbcw s of two sequences hypothesized to be generated
by different DBCs exceeds a given threshold is very high.
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Fig 15. Distribution of L1 distances between θdbc2 signatures of pairs of 10 kilobase long
sequences randomly sampled from the two species C. elegans and P. falciparum.

In Theorem 4, each negative term in the right hand side is very small, making the total
probability on the right hand side a very large value. Theorem 4 states that the probability
that the separation between the θdbcw s of two sequences hypothesized to be generated
by different DBCs exceeds a given threshold is very high.

Time complexity

The θdbc2 for a sequence of length n can be computed in O(n+16 log 16+ 4096) time and
space. In general, the complexity of computing the order-w θdbcw signature for a sequence
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Fig 15. Distribution of L1 distances between θdbc2 signatures of pairs of 10 kilobase long
sequences randomly sampled from the two species C. elegans and P. falciparum.

In Theorem 4, each negative term in the right hand side is very small, making the total
probability on the right hand side a very large value. Theorem 4 states that the probability
that the separation between the θdbcw s of two sequences hypothesized to be generated
by different DBCs exceeds a given threshold is very high.

Time complexity

The θdbc2 for a sequence of length n can be computed in O(n+16 log 16+ 4096) time and
space. In general, the complexity of computing the order-w θdbcw signature for a sequence
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of length n is O(n+ 4w log 4w + (4w)3). The (4w)3 factor is contributed by the Cholesky
decomposition performed by MATLAB to compute the stationary distribution. For small
w ∈ [1, 4], we observed that the time complexity was dominated by n, as we would
expect.

Conclusions

We have examined genomic signatures from the point of view of accurate identification
of the origin of short unknown DNA sequences. The genomic signatures introduced in this
paper are derived from the structure and properties of de Bruijn chains. When a sample
sequence is sufficiently long, the target organism for the sample can be retrieved by
querying a database of signatures. Given an unknown DNA sequence, its possible high-
level location in the phylogenetic tree can be predicted using the combination of the θdbc2

and θdor signatures, after which its origin and closest relatives can be predicted using
the θdbc signature alone.

We have demonstrated both theoretically and empirically that θdbc is a powerful
signature, able to efficiently identify the origin of an unknown genomic sequence as
short as a few kilobases. This implies that the origin and the closest relatives of an
unknown sequence can be identified with very little actual sequencing. We also
observed the effect of order on efficiency of the θdbc signature. In continuing work, we
are exploring the effect of size of the signature database on short sequence target
prediction efficiency. We are also studying the phylogeny implied by distances between
θdbc signatures and the extent to which this phylogenetic structure is conserved on
random sampling of short sequences for phylogenetic reconstruction.
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