
Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 1

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

UNVEILING INSIGHTS FROM UNSTRUCTURED WEALTH: A
COMPARATIVE ANALYSIS OF CLUSTERING TECHNIQUES ON
BLOCKCHAIN CRYPTOCURRENCY DATA

Ramzi A. Haraty1 and Salma Sobeh2

1,2 Department of Computer Science and Mathematics Lebanese American University Beirut,

Lebanon

Emails: { rharaty@lau.edu.lb, salma.sobeh@lau.edu}

ABSTRACT

In today’s era of the fourth industrial revolution, individuals are confronted with
an overwhelming deluge of information on a daily basis. The digital landscape is
teeming with diverse data streams, encompassing realms such as IoT, social media,
healthcare, business, cryptocurrencies, and cybersecurity. This phenomenon
presents challenges due to the considerable storage capacity demanded by these
extensive datasets, culminating in the complexities of executing time-consuming
and labor-intensive tasks like analytical, processing, and retrieval operations. In
addressing this conundrum, artificial intelligence, particularly machine learning and
deep learning, emerges as a pragmatic solution. Clustering, an unsupervised learning
technique, assumes a pivotal role by discerning a specific number of clusters to
effectively categorize data through coherent grouping. Consequently, clustering
finds relevance across numerous domains and applications dealing with vast
datasets. This comprehensive survey meticulously scrutinizes seven prominent
clustering methodologies—namely k-means, G-means, DBSCAN, Agglomerative
hierarchical clustering, Two-stage density (DBSCAN and k-means) algorithm, Two-
levels (DBSCAN and hierarchical) clustering algorithm, and Two-stage MeanShift and
k-means clustering algorithm—undertaking a rigorous comparison using a genuine
dataset: The Blockchain dataset, encompassing prominent cryptocurrencies like
Binance, Bitcoin, Doge, and Ethereum. The assessment encompasses various
metrics, including silhouette coefficient, Calinski-Harabasz, Davies-Bouldin Index,
time complexity, and entropy.

Index words: Clustering, k-means, G-means, DBSCAN, Agglomerative clustering,
Two-stage density clustering, and Two-stage (MeanShift and k-means) clustering
algorithm.

I. INTRODUCTION

Nowadays, we find ourselves in a time characterized by the prevalence of big
data in which almost everything has been digitalized and is connected to a data
source [1], [2]. People are confronted with an overwhelming rush of information
and data from many services and resources that were previously inaccessible just
a few decades ago. It is, thanks to the tremendous improvements, the internet’s
enormous development, and powerful data servers that have happened. Clients can
access a wide variety of internet resources and services, which generate a ton of

Received on, 20 July 2023 - Accepted on, 28 November 2023 - Published on, 28 January 2024

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 2

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

data on individuals, things, and their interactions. This data includes a wide range of
categories, including data from the Internet of Things, social media, cybersecurity,
businesses, blockchain, smartphones, healthcare, and more. Although this
abundance of data has great potential for both people and corporations, there are
also difficulties and consequences. The sheer amount of data necessitates large
amounts of storage space, which complicates and extends the time required for
analytical activities, processing operations, and retrieval operations.

As a result, machine learning (ML), a subset of artificial intelligence (AI), has seen
substantial growth in the field of data analysis and computation. which is known for
its capacity to enable systems to learn and improve via experience without explicit
programming, has emerged as a prominent technology in the current era of the
fourth industrial revolution [3].

Machine learning (ML) has gained widespread recognition as the dominant
technology in the fourth industrial revolution. Its popularity stems from the fact
that ML empowers systems to acquire knowledge and refine their performance
through experiential learning, without the requirement for explicit programming.
Thus, ML algorithms are essential for intelligently using these data, analyzing it, and
developing related real-world applications.

Generally, the efficiency and productivity of ML solutions are influenced by various
factors, such as the data’s features and type, along with the effectiveness
of the employed learning algorithms. ML encompasses various methodologies,
such as supervised, unsupervised, semi-supervised, and reinforcement learning.
Additionally, deep learning, derived from artificial neural networks, forms a subset
of ML approaches and offers intelligent data assessment capabilities [4].

To intelligently make use of the data, clustering is one of the solutions. Clustering
data aims to create good-quality clusters. Classifying or grouping these data into
a set of categories or clusters is an important part of dealing with them, for they
would be extremely beneficial to everyone from regular users to researchers and
businesspeople, as they deliver an effective tool for dealing with huge datasets.

The process of clustering entails the partitioning of data into distinct groups of
similar objects. Each group, known as a cluster, comprises objects that exhibit
similarities amongst themselves while being distinguishable from objects in other
clusters. Clustering achieves simplification while representing data even if it loses
some fine features. Some clusters represent many data objects. Data modeling
sets clustering in different perspectives from historical, statistical, numerical, and
mathematical analysis. Clusters correspond to hide patterns in machine learning,
finding clusters is an unsupervised learning technique, and the results represent
a data concept. Data mining manages huge datasets that force clustering and
examine additional severe computational requirements. Data mining analysis is one
of the first steps in clustering to identify groups of related data sets that can be
used as a starting point for investigating additional relationships.

Clustering techniques are mainly used to group similar data points into clusters
based on certain features or characteristics. These algorithms are particularly useful
in scenarios where you want to uncover patterns, similarities, or natural groupings
within your data without having explicit labels for each group. Specific scenarios
where clustering algorithms find applications include:
•	 Customer Segmentation: In marketing, clustering algorithms can be used to

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 3

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

segment customers into different groups based on their purchasing behavior,
preferences, demographics, or other attributes. This helps businesses tailor
their marketing strategies to specific customer segments.

•	 Image Segmentation: In computer vision, clustering algorithms can be applied
to segment images into different regions based on color, texture, or other
visual features. This is used in tasks like object detection, where the algorithm
separates different objects in an image.

•	 Anomaly Detection: Clustering can be used to identify anomalies or outliers in
a dataset. By grouping most of the data points together, anomalies become
more evident as they often do not fit well into any cluster.

•	 Document Classification: Clustering can help categorize documents based on
their content. For example, news articles could be clustered into topics such
as politics, sports, entertainment, etc.

•	 Genetic Analysis: In bioinformatics, clustering algorithms are used to group
genes with similar expression patterns or sequences, which can help in
understanding the relationships between different genes.

•	 Social Network Analysis: Clustering can be used to identify communities within
social networks. This is particularly helpful in understanding how individuals
are connected or to detect groups with similar interests.

The primary objective of this study is to provide readers with a comprehensive
analysis of diverse techniques employed in data clustering. Algorithms that are
under study are as follows: k-means, G-means, DBSCAN, agglomerative hierarchical
clustering, two-stage density (DBSCAN and k-means) clustering algorithm, two-
levels (DBSCAN and hierarchical) clustering algorithm, and two-stage MeanShift
and k-means clustering algorithm. This research analyzes all these seven clustering
techniques based on metrics like silhouette coefficient, Calinski-Harabasz, Davies-
Bouldin Index, time complexity, and entropy and compares them with a brand-
new real dataset mainly the blockchain technology that includes Binance Bitcoin,
Ethereum, Doge, and Dash Coin. Figure 1 shows the approach for cluster analysis
using four fundamental steps.

The initial stage involves either feature extraction or feature selection. Feature
selection entails choosing distinctive features from a pool of candidates, while
feature extraction employs transformations to generate valuable and distinct
features from the original ones [6]–[8]. Both processes are essential for achieving
successful clustering in various applications. A well-chosen set of features can
significantly reduce workload and make the resultant design process much easier.

Fig. 1. The clustering procedure [5].

The second step is the clustering algorithm design or selection. The clustering
results are directly affected by the algorithm used to cluster the data. Because
the literature has a large number of alternative solutions, it is critical to thoroughly
analyze the characteristics of the underlying problem before selecting or designing
a suitable technique [9].

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 4

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

Consequently, the chosen algorithm’s application must be validated. A clustering
method will always discover a division given a dataset. The key is to split the data
in such a way that the initial problem can be solved. As a result, effective clustering
estimation criteria for the clustering results are necessary. External, internal, and
relative indices are the three well-known ideas in this context [10]it is difficult
to define a unified approach to address the clustering problem and thus diverse
clustering algorithms abound in the research community. These algorithms, under
different clustering assumptions, often lead to qualitatively different results. As
a consequence the results of clustering algorithms (i.e., data set partitionings.
The selection of appropriate evaluation criteria is equally critical to the evaluation
findings, and it is highly dependent on both the underlying data and the clustering
technique used. The clustering results must be interpreted in the final step. The
final goal is to derive relevant insights from the original data to address and solve
the original data clustering challenge.

A. CONTRIBUTION

The contribution of this work is to examine closely seven clustering data algorithms:
k-means and G-means that belong to center-based clustering, DBSCAN, two-stage
density clustering algorithm (DBSCAN and k-means), two-level clustering algorithm
(DBSCAN and hierarchical) and two-stage MeanShift and k-means clustering
algorithm which is under density-based clustering, and Agglomerative hierarchical
clustering since these algorithms are the most valid and commonly used in the
literature [11-17]. Also, to study these algorithms in terms of several metrics:
silhouette coefficient, Calinski-Harabasz, Davies-Bouldin Index, Time complexity,
and entropy. These metrics have not been done altogether before on these five
algorithms. Moreover, the researchers compared the algorithm over a real dataset
– the Cryptocurrencies data; it is a new dataset that also has not been applied to
these clustering algorithms based on the previously mentioned metrics.

The rest of the paper is structured as follows: in section 2, the researchers state
the background of clustering algorithms briefly, with the related works on these
clustering algorithms. Section 3 is about the seven clustering algorithms and how
they work in detail. In section 4, the researchers go in-depth with experimental
results and comparisons between these six techniques over real datasets. In
conclusion, section 5 serves as the final section encompassing the summary and
future works.

II. RELATED WORK

Clustering is a significant field of research for computer scientists, as well as
for pattern recognition and statistical fields. There have been several studies on
algorithms that have been improved or developed; however, this chapter will focus
on five main categories of clustering techniques [18]:
1. Partitioning/Centroid-based clustering algorithms
2. Density-based clustering algorithms
3. Hierarchical clustering algorithms
4. Grid-based clustering algorithms
5. Model-based clustering algorithms

Every category has its strengths and weaknesses. Hence, clustering algorithms
produce more intuitive cluster assignments based on the input data. Figure 2
illustrates the various algorithms within each category.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 5

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

Fig. 2 Taxonomy of clustering algorithms

A. PARTITIONING CLUSTERING

Partitioning approaches or centroid-based methods are the famous types of
clustering techniques with k-means being the most well-known example. The data is
partitioned into a series of mutually exclusive divisions using partitioning methods.
The user almost always identifies the number of partitions for these algorithms, and
they frequently apply a distance-based heuristic. Other than k-means, examples of
partitional clustering include k-medoids, CLARA, and G-means, fuzzy c-means which
belongs to fuzzy partitioning clustering, etc. [19]

K-MEDOIDS:

The k-means clustering algorithm is vulnerable to outliers and noise because of its
reliance on the mean point as the center of each cluster, which can be influenced
by extreme values. In contrast, k-medoids clustering is more robust against outliers
and noise as it selects a specific object from the dataset as the center of the cluster
centroid, known as the medoid. Medoid is mainly the median in statistics with the
minimum sum of dissimilarity to the other objects in the cluster [20]. A common
technique for k-medoids clustering is Partitioning around Medoids (PAM). It chooses
k representative points to create initial clusters and then proceeds to better cluster
representatives. After that, it analyzes all possible pairings of representative and
non-representative points, and for each pair, it calculates the quality of the resulting
clustering. An initial representative point is substituted with the new point, which
reduces the distortion function the most. The set of optimal points for every cluster
produces the new corresponding medoids at each iteration. PAM is not scalable
for huge datasets; hence, some algorithms, such as Clustering LARge Applications
(CLARA), have been suggested to increase efficiency [21].

CLARA:

In [22], the CLARA method was developed as an extension to PAM to deal with large
datasets. The method chooses the relevant set of medoids by sampling data points
from the dataset and applying the Partitioning Around Medoids (PAM) algorithm to
each sampled point. Using an objective function, the evaluation of these medoids
is done by measuring the average dissimilarity between each object in the dataset

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 6

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

and the medoid of the cluster. This process of selection and clustering is repeated
for a specific number of iterations. Finally, the clusters associated with the set of
medoids that yield the lowest value for the objective function are chosen [20].

FUZZY C-MEANS:

According to [23], in fuzzy clustering, unlike the standard k-means, each data point
has a chance of being associated with multiple clusters rather than exclusively
belonging to a single cluster. In fuzzy c-means clustering, every point is assigned a
weight indicating its affiliation with each cluster. This means that a point exhibits
a variable degree of connection or linkage to the clusters, which is determined by
the inverse distance to the cluster center, rather than being tightly constrained to
a single cluster. The fuzzy c-means process works as follows [24]:
•	 Assume that there are k clusters.
•	 Randomly set the k-means μk connected with the clusters and calculate the

probability that each data point xi is affiliated with a specific cluster k.

•	 Using the association probabilities assigned to each data point, recompute
the cluster’s center by taking into account the weighted average of the
data points. When the required number of iterations has been completed or
convergence has been reached, the iteration process should come to an end.

For datasets with overlapping characteristics, fuzzy c-means clustering outperforms
the k-means algorithm by producing superior results.

B. DENSITY-BASED CLUSTERING

Density-based clustering views the data as a representation of a fundamental
density function, with the areas having more points; thus, the areas with higher
density, are the ones where the underlying function is more expected to yield
results. These algorithms seek to cluster data points by locating local density peaks
and causing nearby points to converge in these areas [25]. DBSCAN is regarded as
one of the most popular density-based clustering approaches [15], also there are
several algorithms like OPTICS, DBCLASD, DENCLUE, etc.[26]

OPTICS:

The DBSCAN algorithm’s operating concept is shared by the OPTICS technique [27],
which depends on the two parameters eps and Minpts, but the approach is intended
to eliminate one of the DBSCAN algorithm’s primary weaknesses: the challenge of
locating meaningful clusters in data with various densities. To do this, the data
points are linearly arranged so that contiguous ordering results from placing
adjacent points closer to one another. Additionally, each point is given a unique
distance that represents the ideal density level for cluster selection, making it
challenging for Turnitin or other similar tools to find similarities between points that
are part of the same cluster. This is known as a dendrogram. So, there is no need to
set the suitable parameter carefully, and the result is a hierarchical outcome. But
the parameter is specified in the algorithm as the largest radius considered. It is ideal
to set it very large; however, this results in expensive computational expenses. The
OPTICS density algorithm permits the choice of hierarchical structure and complex
shape clusters. The hierarchical structure can be built easily using a reachability
diagram.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 7

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

DBCLASD:

The DBCLASD density-based technique [26] assumes that the distribution of
items inside a cluster is equal. Without requiring input parameters, this method
dynamically determines the number and arrangement of clusters in a dataset.
Notably, this method is especially helpful for managing huge datasets. DBCLASD
gradually adds points from its neighbors to an initial cluster. The procedure is
repeated until the resulting cluster’s closest neighbor distances match the required
distance distribution. A point that is not already a member of a cluster but is being
considered for cluster membership is referred to as a candidate point. Candidates
are categorized as unsuccessful candidates and will be reevaluated at a later time
if they fail the initial cluster membership test. A cluster’s contents may eventually
move to another cluster as time passes. DBCLASD takes around twice as long to run
as DBSCAN. Unlike DBSCAN, it is adaptable to changes in parameters; however, it is
not appropriate for non-spatial data objects.

DENCLUE:

DENCLUE (DENsity-based CLUstEring) [28] is a particular application of Kernel Density
Estimation (KDE), a non-parametric technique for locating areas of data points
with a high density of observations. This method was designed by the DENCLUE
developers primarily for the categorization of large multimedia databases that
contain a lot of noise and clustering of high-dimensional feature vectors. As can
be seen in Figure 3, DENCLUE generally goes through two stages: the pre-clustering
stage and the clustering stage. A database map in the shape of a hyper-rectangle
is built in the first phase to speed up the computation of the density function.
The second stage identifies clusters from highly populated cubes in which the
number of points surpasses a threshold decided in parameters and their adjacent
populated cubes. To calculate the density function, which is calculated as the total
of these influence functions, this algorithm analyzes the mutual effect between
points. Numerous influence functions change the separation between two points,
including those covered in [28]. The authors, however, paid particular attention to
the Gaussian function. The approach locates the density attractor for each point in
the database, which equates to the local maximum of the density function, to find
clusters. The Hill Climbing algorithm determines this maximum using the gradient
ascent method [29]. Attracted points are the collection of points that make up the
trajectory leading to the density attractor. Then, clusters are built by taking into
account both the density attractors and the points they attract.

Fig. 3 The DENCL UE process [28]

C. HIERARCHICAL CLUSTERING

Hierarchical approaches function by forming a cluster hierarchy. It is a top-level
cluster that contains all of the data points, followed by a series of sub-clusters
that becomes more specific. It’s divided into two types agglomerative and divisive

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 8

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

clustering. CURE, BIRCH, and CHAMELEON are algorithms under hierarchical clustering
[17].

CURE:

Fig. 4. The CURE architecture

The CURE algorithm was created with the idea that it may be used to cluster extremely
large databases, hence the name CURE. This algorithm is an agglomerative hierarchical
clustering technique, that falls between the center-based and all-point extremes.
The CURE method divides the data into smaller clusters using random sampling.
Then, each cluster is subjected to computations to be compared to the others. Any
two clusters are merged if their similarity is less than a predetermined threshold.
Recalculating the mean of each point yields the centroid of the newly combined
cluster, just like in k-means. Until all clusters that cannot be further merged are
found, this iterative procedure continues. CURE demonstrates robustness against
outliers and can identify clusters with asymmetrical geometries and large-size
changes. However, this is an approximation approach, where many of the outcomes
in real-world situations were disappointing [30]. The CURE process is depicted in
Figure 4.

BIRCH:

Large databases can be handled with BIRCH, which is another hierarchical
agglomerative clustering algorithm [31]. The number of input/output operations
was kept to a minimum. Using a tree structure to first divide objects into clusters,
The BIRCH approach first uses a tree structure to partition objects into hierarchical
clusters and then it uses several clustering methods to further refine the clusters.
It clusters incoming data points gradually and adaptively to achieve the optimum
clustering quality while taking into account resource limits like memory and
processing time. Given the resources at hand, the BIRCH algorithm dynamically and
progressively groups incoming data points, aiming to produce high-quality clustering
outcomes. To create trustworthy clusters, the BIRCH technique is broken down into
four steps. To reprToers, it provides two concepts: clustering feature and clustering
feature tree (CF tree). A height-balanced tree known as a CF tree.

CHAMELEON:

 Fig. 5 The CHAMELEON framework

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 9

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

A dynamic model is used by the hierarchical algorithm CHAMELEON [32] to determine
how similar two clusters are to one another. The dynamic model’s merging mechanism
makes it easier to find cohesive and organic clusters. As long as a similarity matrix
can be created, the CHAMELEON methodology for dynamic cluster modeling can
be used with any form of data. The algorithm is broken down into three stages:
first, a k-nearest neighbors’ graph is built from the original dataset; second, graph
partitioning techniques are used to separate the data points of the k-nearest
neighbors into sub-clusters. The final clusters are formed by repeatedly merging
the sub-clusters obtained in the preceding stage. This method has proven to be
effective for locating clusters in two dimensions with various shapes, densities,
and sizes; hence, it overcomes the constraints of previous algorithms. Figure 5
illustrates the framework of CHAMELEONS.

D. GRID-BASED CLUSTERING

With Grid-based clustering, operations are carried out on complete cells rather than
individual data points by dividing the data space into a grid with a fixed number
of cells. Due to the smaller number of things to process, this approach frequently
takes less time to process than other approaches. Since the procedures are
independent of the data point count and solely depend on the number of cells,
scaling these methods typically does not affect the amount of data points. This
method is demonstrated by grid-based clustering algorithms such as STING, CLIQUE,
and OPTI GRID [33].

STING:

The STING algorithm is a technique that divides a given spatial region into rectangular
cells using a grid system [34]. Each level of the hierarchical structure that these
cells create corresponds to a different resolution. Higher-level cells at each level
are further divided to produce lower-level cells. Ahead of time, each cell’s statistical
data are calculated, saved, and used to answer inquiries. The user must set the
density parameter, which determines the clustering quality, which is a noteworthy
downside of this strategy. The following describes how the STING algorithm works:
1. Select a foundational level.
2. Using the database’s instructions as a guide, build a grid-like structure and

produce.
3. parameters for each cell.
4. Find the likelihood confidence interval for each cell at the given level.
5. Continue to the next level of the structure and repeat step 3 for the pertinent

cells in the higher-level layer if the level you are on is not the final one.
6. Find the relevant cells that meet the query criteria if a query condition is

found, and then obtain the appropriate regions.
7. The linked cells’ data is processed, and the results that satisfy the query’s

conditions are presented.

CLIQUE:

CLIQUE clustering algorithm employs a density and grid-based method, which
means a subspace clustering technique, to determine the cluster by using a density
threshold and several grids as input parameters [35]. It is specifically intended to
handle datasets with several dimensions. Due to its grid-based methodology and
effective application of the apriori principle, CLIQUE is very scalable. Large datasets
and datasets with many dimensions can be properly handled. The technique begins

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 10

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

by splitting the data space into grids with equal-sized units for each dimension.
Then, it determines which data points within dense units exceed a predetermined
threshold value. Once the algorithm discovers dense cells along one dimension, it
attempts to determine dense cells along two dimensions, and so on until all dense
cells throughout the full dimension are discovered. The method then finds the
largest set cluster of connected dense cells after discovering all dense cells in all
dimensions. Finally, the CLIQUE algorithm creates a description of the cluster. The
apriori technique is then used to construct clusters from all dense subspaces.

OPTIGRID:

A grid-based clustering algorithm called OPTIGRID [26] was created to handle
problems posed by high-dimensional data. Its main goal is to lessen the negative
effects of dimensionality in these data fields. When working with high-dimensional
data, OPTIGRID indicates the efficiency constraints of other approaches like BIRCH
and STING. The technique finds the best hyperplanes for each dimension using data
projections, leading to an ideal grid-based partitioning. The kernel density function
is employed to estimate density. OPTIGRID uses contracting projections, which are
linear transformations applied to all points, to effectively identify cutting planes. An
upper bound on the planar density of a point is given by its density in the contracting
projection, indicated by x. All of the predictions in dataset D are first calculated by
OPTIGRID using a set of contracting projections that are defined. The best cutting
planes are represented by the set BEST CUT. The cluster is saved in dataset D if
BEST CUT is supplied; if not, the cutting planes with the greatest BEST CUT score
are selected. Then, all the points x from D are arranged into a multidimensional grid
called G. Then, clusters are picked out of grid cells with a high density of people and
added to a cluster set C. It takes O(N) time to finish the entire procedure.

E. MODEL-BASED CLUSTERING

Model-based clustering is a statistical method to cluster data [36]. It is built to
model an unknown distribution as a grouping of simpler ones. It chooses a specific
model for every cluster and finds out the appropriate fitting for the model. The
following four criteria are used to classify model-based clustering:
1. The number of grouping components, including finite and infinite mixture

models.
2. Multivariate normal models or Gaussian mixture models (GMMs) are included

in the clustering kernel
3. The estimation method
4. The dimensionality includes classes of factorizing algorithms

SOM (Self-Organizing Feature Map), EM (Expectation Maximization), and COBWEB are
a few examples of model-based clustering techniques.

SOM:

Self-organizing maps, or SOMs, are neural networks made up of a single layer with
a group of units arranged in an n-dimensional grid (such as 1D, 2D, or 3D, etc.).
SOMs are also known as Kohonen maps. SOMs generate low-dimensional projection
representations of high-dimensional data distributions while preserving the
similarity relationships between the data objects. The concept of self-organizing
maps follows three processes:

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 11

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

Competitive Process: For each input pattern vector fed to the map, each neuron in
the map computes a discriminant function value. The best matching unit (BMU), or
neuron that most closely resembles the input pattern vector, is crowned the winner.

Cooperative Process: The winning neuron (BMU) decides where a nearby group of
activated neurons will be in space. Then, these nearby neurons cooperate.

Synaptic Adaptation: Activated neurons can change the weights of the discriminant
function associated with the input pattern vector to change the values of the
function.

To assess how closely neurons and the input vector resemble one other, distance
measurements are used. To determine how close the input pattern and SOM units
are to one another, a number several distance measures are employed, including
correlation, block distance, Euclidean distance, and direction cosine. The squared
Euclidean distance, however, is typically the most frequently used metric in real-
world applications. A neighborhood function is used by neurons to collaborate
within a grid layout.

Self-organizing maps function in training and mapping modes, similar to many artificial
neural networks. Using an input dataset in the “input space,” a lower-dimensional
representation of the input data is created during the training phase and is referred
to as the “map space.” The produced map is put to use in the mapping process to
categorize additional input data.

EXPECTATION–MAXIMIZATION:

Iterative methods like the Expectation-Maximization (EM) algorithm consist of two
steps: E and M [37]. The expected log-likelihood is estimated using the most recent
parameter estimates in the E step using a function. The expected log-likelihood
obtained in the E step is then maximized in the M step to determine the parameters.
The estimated parameters are then employed in the following E phase to establish
the distribution of latent variables. If the underlying probability distribution structure
of the latent variables is understood, EM can be used to forecast the values of
latent variables that are not directly observable but can be inferred from the values
of other observed variables. Numerous unsupervised clustering techniques are built
on EM, as shown in Figure 6 below.

Fig. 6 The flow chart for the EM algorithm

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 12

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

COBWEB:

COBWEB is a well-known and simple approach to incremental conceptual learning
[38]. It generates a classification tree with hierarchical clustering. Each node relates
to an idea and offers a probabilistic description of that idea. A new object’s class
can be predicted using the classification tree, and missing attribute values can be
inferred. COBWEB uses four main processes to build the classification tree. The
approach is chosen based on the category utility that is obtained from the resulting
categorization. The subsequent actions comprise:
1. Combining Two Nodes requires replacing two nodes with a new node that

has children that represent both sets of combined children from the original
nodes. All objects classified under the old nodes’ attribute-value distributions
are described in the new node.

2. Splitting a Node: In this procedure, a node is replaced by its progeny, which
produces several child nodes.

3. A new node that corresponds to the object being added is created by this
action, which is known as adding a new node.

4. Navigating an Object through the Tree: This operation uses the COBWEB
algorithm to classify the object and the subtree contained within the node, as
well as to determine the best path across the tree.

VI. THE ALGORITHMS

There are different approaches to performing clustering, and there are many
categories for clustering techniques. Selecting an appropriate clustering algorithm
for a dataset can be challenging due to the various choices available, as each
category has its strengths and weaknesses. Several crucial factors, including
cluster characteristics, dataset features, outlier presence, and the number of data
objects, impact this decision [11]. Thus, the researchers concentrate in this work
on conducting a detailed study of seven clustering algorithms k-means, G-means,
DBSCAN, agglomerative clustering, two-stage density clustering (DBSCAN and
k-means), two-level (DBSCAN and hierarchical) clustering algorithm and two-stage
MeanShift and k-means clustering algorithm under three categories, because they
are the most immaculate and widely used in the literature in computer science. So,
the researchers compare these algorithms in key performance indicators that have
not been done before at this level for all these seven algorithms.

THESE SEVEN CLUSTERING ALGORITHMS ARE UNDER THREE PROMINENT
CATEGORIES WHICH ARE THE FOLLOWING:
1. Centroid-based/Partitional clustering
2. Density-based clustering
3. Hierarchical clustering

CENTROID-BASED CLUSTERING (K-MEANS, G-MEANS CLUSTERING, AND
MEANSHIFT):

In the centroid-based clustering technique, objects are grouped into clusters
depending on how close they are to a central vector that defines the clusters. To
determine cluster membership, the squared distance from the central vector is
reduced [12]. In plainer terms, a cluster is a collection of points where each point
is closer to its own cluster’s center than it is to any other cluster’s center. The
average of all the locations within a cluster, known as the centroid, is used to

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 13

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

determine the cluster’s center. k-means is a well-known instance of a centroid-
based approach, in which clusters are formed around a central point called the
centroid. The centroid is calculated as the average of all the points within the cluster,
considering continuous features [13]. The k-means clustering algorithm has distinct
characteristics. One notable feature is that the number of clusters (k) must be
predetermined, which sets it apart from other clustering techniques. Nonetheless,
this can be seen as a drawback, as determining the appropriate number of clusters
is not always straightforward. Furthermore, k-means clustering is not hierarchical
in nature and does not allow for overlapping clusters. Another centroid-based
clustering technique known as G-means clustering [14] offers an improved approach
which automates the process of determining the number of clusters by utilizing a
normality test. This algorithm relies on a statistical test that assesses whether a
given data sample follows a Gaussian distribution. Unlike k-means, G-means takes a
hierarchical approach instead of requiring a pre-defined number of clusters (referred
to as ‘k’). It begins with a smaller number of clusters and iteratively tests if the data
associated with a cluster centroid exhibits Gaussian characteristics. If not, then the
algorithm splits the cluster to refine the clustering process.

MeanShift is also a centroid-based clustering algorithm. MeanShift iteratively
allocates the points to the clusters by moving the data points to their nearest cluster
centroid. In contrast to k-means, this algorithm eliminates the need to predefine the
number of clusters as it dynamically determines the appropriate number based on
the given data.

DENSITY-BASED CLUSTERING (DBSCAN):

Density-based clustering involves identifying clusters as regions containing high-
density points, which are distinguished from other clusters by low-density regions.
This method is particularly suitable for handling scenarios that involve noise and
outliers [15]. DBSCAN is a highly popular density-based approach for clustering data.
It is effective in identifying clusters of varying sizes and shapes within extensive
datasets that contain noise and outliers. Unlike conventional methods that require
an estimation of the number of clusters beforehand, DBSCAN groups data points
based on their distances from one another, typically using the Euclidean distance
metric and a minimum point threshold. The algorithm constructs circular regions
around each data point with a radius called Eps and then classifies the points into
three distinct types: core points, border points, and noise points [16].

HIERARCHICAL CLUSTERING (AGGLOMERATIVE CLUSTERING):

Hierarchical clustering, referred to as hierarchical cluster analysis, is a method that
groups similar objects into clusters. The outcome is a collection of distinct clusters,
with each cluster containing objects that are most similar to one another. This
clustering approach is categorized into two types [17]:
1. Agglomerative Hierarchical Clustering: This method starts from individual

clusters and gradually merges pairs of clusters as it progresses up the
hierarchy. Thus, at each step clusters are added or merged. Hence, this
algorithm is also called additive hierarchical clustering.

2. Divisive Hierarchical Clustering: In contrast to agglomerative clustering, this
technique follows a top-down approach. It begins with a single cluster and
iteratively divides it as it traverses down the hierarchy. So, at each step, it
divides the farthest point in the cluster, and it keeps on repeating this method
until every cluster only has one single point.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 14

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

The widely known technique is Agglomerative Clustering. It’s used in the industry
and will be explained and tested in this work.

In this section, the researhers explain in-depth the seven prominent clustering
algorithms which are the k-means, G-means, DBSCAN, agglomerative clustering,
two-stage density clustering algorithm, and two-level clustering algorithm (DBSCAN
and hierarchical clustering) along with two-stage MeanShift and k-means clustering
algorithm.

A. K-MEANS CLUSTERING

An unsupervised machine learning method called k-means clustering is used to
categorize groups of data objects inside a dataset. It is one of the first and most
extensively used clustering techniques. It is simple to implement in Python because
of its popularity and simplicity. The basic idea behind k-means is to divide the data
into k clusters, where each cluster contains data points that are comparable to other
data points in that cluster. The other clustering techniques assign a set of rules
according to how the data should be clustered together. As was already indicated,
one well-known use of the centroid-based technique is k-means. The steps of the
k-means algorithm are shown in Figure 7 and are as follows [39]:
1. The appropriate number of clusters, k, should be determined.
2. Choose k sites at random to act as the initial centroids.
3. Based on the Euclidean distance between each point and the cluster centroids,

assign each point to the nearest cluster centroid.
4. the newly generated clusters’ centroids should be recalculated.
5. Keep on repeating the third and fourth steps until the centroids of newly created

clusters stay the same for the distances between all the elements of their clusters.

Fig. 7 The k-means clustering pseudocode

The within-cluster sum of squared errors (SSE), also known as cluster inertia, is
minimized using the k-means clustering technique. SSE stands for the sum of the
squared differences between each sample and the centroid of the cluster to which
it was assigned. The cluster analysis at each stage minimized the total SSE with SSE_
total = SSE1 + SSE2 + SSE3 + SSE4 …. + SSEn. The total sum of squared errors (SSE)
needs to be minimized as the objective function. The k-means clustering algorithm
differs from previous clustering techniques in several ways, one of which is the
need to specify the number of clusters (k) in advance. This predetermined choice
of k can be considered a disadvantage, though, as it isn’t always clear how many
clusters the data should be split up into [41]. Moreover, k-means are not hierarchical,
and clusters do not overlap.
Total SSE = Σ Σ (distance(xi, ci))2

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 15

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

WHERE:

•	 Total SSE: The sum of squared errors for all clusters.
•	 xi: Each data point.
•	 ci: The centroid (mean) of the cluster to which xi belongs.
•	 distance (xi, ci): The distance between data point xi and the centroid ci of the

corresponding cluster.

This method makes use of a plot of a reduction in variation versus the number of
clusters (k) to establish the ideal value of k. A plot of the squared sum of errors
(SSE) about the number of clusters (k) can also be produced. Such a plot is shown in
Figure 8, where the elbow point denotes the ideal number of clusters [42]. The elbow
point is defined as the point at which, after passing a predetermined threshold, the
cluster inertia or SSE starts to drop linearly.

Fig. 8 The plot of SSE versus the number of clusters

The k-means algorithm involves two main steps in each iteration: assigning data
points to clusters and updating cluster centroids. In each iteration, every data point
is assigned to the nearest cluster centroid, which takes O(k*n) time, where “k” is the
number of clusters and “n” is the number of data points. Then, the cluster centroids
are updated based on the assigned points, taking O(k*d) time, where “d” is the
number of dimensions of the data points. The algorithm typically converges after
a certain number of iterations, which can vary depending on factors like the initial
centroids, data distribution, and convergence criteria. The number of iterations is
denoted as “T.” Therefore, the overall time complexity of the k-means algorithm is
approximately O(T*k*n*d).

k-means clustering has several applications within the domain of finance and
cryptocurrency due to its ability to group similar data points and uncover patterns.

HERE ARE SOME NOTABLE APPLICATIONS WHERE K-MEANS CAN BE
SIGNIFICANTLY PREFERABLE:

1. 1. Customer Segmentation for Investment Services:Customer Segmentation for Investment Services: k-means can be used
to segment customers based on their investment behaviors, risk tolerance,
portfolio preferences, and financial goals. This segmentation can help
financial institutions tailor their investment services and products to different
customer segments, leading to better customer satisfaction and more
effective marketing strategies.

2. 2. Portfolio Optimization:Portfolio Optimization: k-means can be used to group similar assets within a

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 16

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

portfolio based on historical performance, risk factors, and correlations. This
information can be used to optimize portfolio allocation and reduce risk by
diversifying across different clusters of assets.

3. 3. Market Sentiment Analysis:Market Sentiment Analysis: k-means can be used to cluster social media
or news sentiment data related to cryptocurrencies. By grouping similar
sentiment patterns, traders and investors can gauge overall market sentiment
and make predictions about potential market movements.

k-means is preferable in these applications within the finance and cryptocurrency
domains due to its simplicity, scalability, and ability to handle large datasets. It can
quickly reveal patterns and groupings within the data, making it a valuable tool for
understanding market trends, customer behaviors, and risk factors.

THE ADVANTAGES AND DISADVANTAGES OF K-MEANS ARE:

ADVANTAGES OF K-MEANS:

1. Simple: It is simple to implement the k-means method to find unknown
data groupings in complicated datasets. The results are presented in an
understandable and approachable way.

2. Adaptable: The k-means algorithm is extremely adaptable and simple to
modify. Making changes to the cluster assignment permits quick changes to
the algorithm if any problems occur.

3. Appropriate for large datasets: In addition to being appropriate for a variety
of datasets, including those with a large number of data points, k-means also
perform noticeably faster on larger datasets than on smaller ones. Additionally,
the clustering method k-means can produce larger clusters.

4. Efficient: The used algorithm shows effectiveness while partitioning large
datasets. The properties of the clusters have an impact on their performance.
In particular, k-means performs well when dealing with hyper-spherical
clusters.

5. Time complexity: The execution time for k-means segmentation increases
linearly with the number of data parts. k-means takes less time to categorize
similar features in the data than hierarchical algorithms do.

6. Cost of computation: The k-means algorithm excels above other clustering
algorithms in terms of computational efficiency.

DISADVANTAGES OF K-MEANS:

1. Lack of an ideal cluster set: For optimal performance, the clusters should be
preset because the k-means algorithm does not naturally yield an ideal set of
clusters.

2. Regardless of the size variances in the input data, the uniform cluster effect
creates clusters of the same size. It is not designed to handle data of various
densities and sizes.

3. The need to provide k-values: The number of clusters (k) to be produced for
the dataset must be specified upfront according to the k-means clustering
technique.

4. Sensitive to noise and outliers: k-means doesn’t recognize noise and outliers
and gives different results depending on the presence of outliers.

5. Works in assumption: it operates on the assumption that the clusters used are
spherical with an equal number of observations. The spherical assumptions
must be achieved, otherwise, the algorithm cannot operate with large clusters.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 17

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

B. G-MEANS CLUSTERING

G-means is an enhanced version of k-means clustering. It uses a statistical test to
choose an acceptable k for splitting a k-means centroid into two centers [43], [44].
This splitting decision is determined by conducting the Anderson-Darling statistical
test for assessing the presence of a Gaussian distribution [14]. G-means algorithm
works as follows (as shown in Figure 9):
1. The G-means algorithm begins with a small number of k-means centers and

gradually increases the number of centers. Initially, clustering is performed
using k-means with k = 1, as depicted in Figure 10.

2. Then this algorithm finds the points in that cluster’s neighbor (adjacent to the
centroid) to check its quality. Since there is only one cluster at first, G-means,
the algorithm continues by running k-means with k = 2 and the supplied
points, identifying the two clusters that occur. The neighborhood is clustered
by creating a vector connecting these two clusters, which is a key step in the
process. Following that, all nearby points were projected onto this vector via
G-means, as shown in Figure 11.

3. Execute the Anderson–Darling test to check whether the sample in each
cluster made in 2 follows the Gaussian distribution or not (as shown in Figure
12).

4. In each iteration of the algorithm if the sample of data follows the Gaussian
distribution, the two candidate clusters are rejected and the original one is
kept else the candidate clusters substitute the original one (in the example
shown in Figure 13 the distribution is bimodal, hence the test fails. So, the
original is discarded and the two candidate clusters are accepted.

5. G-means finishes its work and no further clusters are added after every
cluster has a Gaussian distribution, as seen in Figure 14.

THE CLUSTER CREATION PROCESS IN G-MEANS CAN BE ILLUSTRATED AS
FOLLOWS:

•	 Initial Cluster: All data points are initially grouped into a single cluster.
•	 k-means and Statistical Test: Apply k-means to the cluster and perform a

statistical test. If the p-value – confidence internval - is significant, the cluster
is considered meaningful and no further splitting occurs.

•	 Split Unsignificant Cluster: If the p-value is not significant, the cluster is split
into two smaller clusters along the dimension with the highest between-
cluster variance.

•	 Iterative Process: Continue the process iteratively, performing k-means and
the statistical test on each cluster. Unsignificant clusters are split, while
significant clusters are retained.

•	 Final Clusters: The process concludes when all clusters are statistically
significant and no further splitting is needed.

The use of the confidence interval (p-value) adds a layer of statistical significance
to the clustering process, making G-means more suitable for scenarios where the
number of clusters is uncertain and where meaningful clusters need to be identified
while considering the underlying data distribution.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 18

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

Fig. 9 The G-means algorithm

Figure 10 Vector created between two clusters.

Fig. 11 Initial clusters

Fig. 12 The two clusters and two neighborhoods are formed

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 19

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

The complexity of G-means depends on various factors, including the number of
data points, the number of features, the number of iterations, and the complexity of
the statistical tests being used. A breakdown of the complexity is as follows:

Fig. 13 The distribution is bimodal and fails the test

Fig. 14 The distributions for both clusters look fairly Gaussian

1. Initialization (k-means): O(n*k*d), where n is the number of data points, k is the
number of clusters, and d is the number of features.

2. Iterative Clustering and Splitting:
•	 Iterations: The number of iterations in G-means can vary based on the

data and the stopping criteria. Let’s denote it as ‘i’.
•	 Clustering and statistical tests: For each iteration, the complexity is

similar to a k-means clustering step followed by the statistical tests for
each cluster.

•	 O(n*k*d) for each clustering step.
•	 The complexity of the statistical tests depends on the number of points

in the cluster being tested and the specific test being used.
3. Total Complexity: O(i*n*k*d) + Complexity of statistical tests.

G-means clustering, like other clustering algorithms, can be applied to various
domains within finance and cryptocurrency. Its ability to automatically determine
the optimal number of clusters makes it suitable for scenarios where the underlying
structure of the data might not be well-defined or known in advance. Here are
some applications within the domain of finance and cryptocurrency where G-means

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 20

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

clustering could be useful:
1. 1. Portfolio Diversification:Portfolio Diversification: G-means clustering can help in forming diversified

portfolios by grouping similar financial assets together. This can aid investors
in managing risk and optimizing their investment strategies.

2. 2. Cryptocurrency Analysis:Cryptocurrency Analysis: G-means can be used to analyze different aspects
of cryptocurrency data, such as grouping cryptocurrencies with similar price
trends, trading volumes, or adoption rates.

THE ADVANTAGES AND DISADVANTAGES OF G-MEANS ARE:
ADVANTAGES OF G-MEANS:
1. G-means is a quick and adaptable method that produces results that are

extremely reliable and works well with large datasets.
2. It works well with data that isn’t spherical (stretched-out clusters).
3. G-means excels in precisely estimating the number of clusters and the

locations of possible cluster centers because it may operate without any
previous information - there is no need to indicate the number of clusters that
should be selected from a dataset, the initial centers, or any other parameters.

4. G-means performs well in high-dimensional data.
DISADVANTAGES OF G-MEANS:
1. There’s a chance of overestimating the number of clusters, especially if the

desired model is a Gaussian Mixture Model, which is a well-liked and useful for
displaying spatial data in images.

2. The effects of noise and outliers can affect G-means grouping.

C. DBSCAN CLUSTERING:

The clustering method known as DBSCAN, or density-based spatial clustering of
applications with noise, bases its operations on the density of data points that
refers to unsupervised learning techniques [45]. It discovers high-density core
samples and expands clusters from them. This method is unlike k-means, it doesn’t
need to provide the number of clusters k previously. Using a distance metric like
Euclidean distance and a minimum number of points, DBSCAN conducts clustering
by associating points that are close to one another. Additionally, it identifies sites in
regions with low density as outliers. Consequently, compared to k-means clustering,
DBSCAN is less impacted by outliers. The DBSCAN method uses two parameters for
choosing the number of clusters (k) instead of guessing it. The initial parameter,
Epsilon (Eps), denotes the minimal distance necessary between two places to be
regarded as neighbors. So, the two points are supposed to be neighbors if the
distance between them is of utmost Eps. To each point’s density, Eps also specifies
the radius of the circle that is formed around it. The minimal number of points required
to construct a cluster is specified by the second parameter, Minpts. It is a threshold
on the minimum number of points clustered together for a region to be a cluster.
The cluster size is acknowledged only if it exceeds or equals the Minpts threshold.
Therefore, it is significant to know how to choose the values of Eps and Minpts. A
minor change in these values can significantly affect the results created by the
DBSCAN algorithm. Minpts should have a value that is one more than or equal to
the number of dimensions in the dataset (Minpts>=Dimensions+1) or twice the
dimensions (Minpts = Dimension*2). So, taking Minpts as 1 does not make sense
since it will end up with each point being in a distinct cluster, it should be at least 3.

The k-distance measurement graph serves as a tool to pinpoint the optimal Eps
value or the point where the graph exhibits the most pronounced curvature, often

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 21

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

referred to as the “elbow” point. Opting for a lower Eps value yields more clusters,
potentially leading to the identification of additional data points as noise. On the
other hand, opting for a higher Eps value can result in the merging of smaller
clusters into a single larger cluster, potentially causing the loss of finer data details.
The DBSCAN algorithm establishes circular regions with a radius of Eps around
each data point and classifies them into three distinct types: core points, border
points, and noise points, as illustrated in Figure 15. A core point is characterized by
having a minimum of Minpts points within the Eps radius of its surrounding circle. A
border point, in contrast, lacks the required number of points (Minpts) within the Eps
radius. Noise points, which don’t conform to any cluster and do not fit the criteria of
core or border points, are considered outliers that stand apart from the clustering
structure.

Fig. 15 The core, border, and noise points of the DBSCAN cluster

THE PSEUDOCODE FOR THE DBSCAN ALGORITHM IS AS FOLLOWS:

THE FOLLOWING DESCRIBES HOW THE DBSCAN ALGORITHM FUNCTIONS:
1. It starts by choosing a random point (p) from the dataset and checks all

neighbor points at a distance Eps from it. Point (p) is considered as a core point
if Eps-neighbors >= Minpts, p creates the first cluster with its Eps-neighbors.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 22

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

DBSCAN keeps on checking all its member points, finding their respective Eps-
neighbors, and expanding the initial cluster until there are no more points to
be added to this cluster.

2. It creates a new cluster for other core points that are not allocated to the
cluster.

3. It finds and allocates all points that are recursively connected to the core
point cluster.

4. DBSCAN iterates over all unvisited points in the dataset and allocates them to
the closest cluster distance eps from themselves. Locate the point that does
not fit any clusters as a noise point.

DBSCAN is a powerful clustering algorithm that can be particularly useful in the
domain of finance and cryptocurrency due to its ability to identify clusters of varying
shapes and its capability to handle noise effectively. Here are some applications
within finance and cryptocurrency where DBSCAN can be advantageous:
1. 1. Anomaly Detection:Anomaly Detection: DBSCAN can be used to detect anomalies or outliers in

financial data, such as irregular trading patterns, unusual transaction amounts,
or fraudulent activities. It can identify data points that do not belong to any
cluster, which could indicate suspicious behavior.

2. 2. Credit Card Fraud Detection:Credit Card Fraud Detection: In the credit card industry, DBSCAN can help
detect fraudulent transactions by identifying clusters of transactions that
deviate from normal spending patterns. This can improve the accuracy of
fraud detection systems.

3. 3. Risk Assessment: Risk Assessment: DBSCAN can assist in assessing risk in financial portfolios by
identifying clusters of assets with similar risk profiles. This can help investors
and financial institutions manage risk more effectively.

THE ADVANTAGES AND DISADVANTAGES OF DBSCAN CLUSTERING [41]:
ADVANTAGES OF DBSCAN:
1. DBSCAN doesn’t require several clusters to be specified previously.
2. It determines clusters with arbitrary shapes. It can even locate a cluster that

is surrounded by (but not linked to) another cluster.
3. DBSCAN has a concept of noise. It’s sturdy for detecting outliers.
4. DBSCAN only uses two parameters and is mostly unaffected by the

arrangement of the points in the database.

DISADVANTAGES OF DBSCAN [47]:
1. DBSCAN is not entirely deterministic: Depending on the order in which the data

is processed, border points that can be reached from more than one cluster
may belong to either cluster. For the majority of data sets and domains,
this circumstance is uncommon and has minimal bearing on the clustering
outcome: DBSCAN is deterministic on both noise and core points.

2. DBSCAN doesn’t handle data with changing densities and sparse datasets,
because the Minpts-Eps combination cannot be carefully chosen for all
clusters.

3. It can be challenging to choose an adequate distance threshold (Eps) when
the data and scale are not well-defined or understood.

4. It takes too long for DBSCAN to observe each point’s nearest neighbors. The
DBSCAN algorithm has an O(n2) time complexity.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 23

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

D. AGGLOMERATIVE CLUSTERING

Hierarchical clustering is a technique that requires forming clusters with dominant
ordering starting from top to bottom. This clustering method is categorized into two
types [48]:

1. Agglomerative Hierarchical Clustering (as shown in Figure 16)
2. Divisive Hierarchical Clustering (as shown in Figure 17)

Fig. 16 Agglomerative hierarchical clustering.

Fig. 17 Divisive hierarchical clustering

Initially consider every data point as an individual cluster and at every step, merge the
nearest pairs of the cluster. (It is a bottom-up method). At first, every dataset is
considered an individual entity or cluster. At every iteration, the clusters merge with
different clusters until one cluster is formed.

THE ALGORITHM FOR AGGLOMERATIVE HIERARCHICAL CLUSTERING IS:
1. Calculate the similarity of one cluster with all the other clusters (calculate

proximity matrix)
2. Consider every data point as an individual cluster.
3. Merge the clusters which are highly similar or close to each other.
4. Recalculate the proximity matrix for each cluster.
5. Repeat Steps 3 and 4 until only a single cluster remains.

AGGLOMERATIVE HIERARCHICAL CLUSTERING IS A VERSATILE AND WIDELY
USED CLUSTERING TECHNIQUE THAT OFFERS SEVERAL ADVANTAGES IN VARIOUS
DATA ANALYSIS SCENARIOS:
1. 1. Hierarchical Structure:Hierarchical Structure: Agglomerative hierarchical clustering creates a

hierarchy of clusters, resulting in a dendrogram that shows the relationships

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 24

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

between clusters at different levels of granularity. This hierarchical structure
provides insights into the inherent organization of the data, allowing users to
choose the desired number of clusters based on their needs.

2. 2. Flexibility in Number of Clusters:Flexibility in Number of Clusters: Unlike algorithms like k-means that require
specifying the number of clusters upfront, agglomerative hierarchical
clustering doesn’t require this information. It allows you to explore different
levels of granularity in clustering by cutting the dendrogram at different
heights, which can be particularly useful when the optimal number of clusters
is unknown.

3. 3. Diverse Cluster Shapes and Sizes:Diverse Cluster Shapes and Sizes: Agglomerative clustering can handle
clusters of varying shapes and sizes, including non-spherical and irregularly
shaped clusters. This makes it suitable for datasets where clusters might not
be well-separated or have different densities.

Agglomerative hierarchical clustering has various applications within the domain of
finance and cryptocurrency due to its ability to reveal hierarchical structures and
relationships in data. Some suitable applications include credit risk analysis where
agglomerative clustering can group borrowers with similar credit risk profiles. This
can assist lending institutions in categorizing borrowers and setting appropriate
interest rates based on risk levels.

AGGLOMERATIVE HIERARCHICAL CLUSTERING WORKS AS FOLLOWS:
1. Start by treating each data point as its cluster, yielding N clusters.
2. Reduce the number of clusters to N-1 by combining two adjacent data points

into one cluster.
3. Reduce the number of clusters to N-2 by repeatedly fusing the two nearest

clusters into a new cluster.
4. Repeat the preceding step until there is just one cluster left, which is the

clustering result.

As mentioned previously hierarchical clustering merges the most similar points. One
method for determining similarity is to calculate the distance between the cluster
centroids. The closest points are recognized as being similar, and they are then
combined. There is the concept of a proximity matrix in hierarchical clustering. This
matrix saves the distances between each point.

The idea of a dendrogram is used to calculate the number of clusters in hierarchical
clustering. A dendrogram is a tree-like graph that shows how groups have merged.
In the dendrogram, a vertical line is clipped, and a horizontal line is drawn, by setting
a threshold distance. Then, by counting the vertical lines that cross the threshold
line, the number of clusters is calculated (as shown in Figure 18).

Fig. 18 Hierarchical clustering dendrogram

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 25

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

THE ADVANTAGES OF THE AGGLOMERATIVE HIERARCHICAL ALGORITHM [41]:
1. The number of clusters does not need to be predetermined previously. Instead,

a dendrogram can be used to calculate the number of clusters, which helps
with the analysis.

2. It is easy and simple to implement and analyze the results. Unlike k-means
clustering, which calls for pre-specifying the number of groups and maybe
changing it later in light of data analysis for better outcomes, this approach is
much easier to implement and interpret.

3. It has a good capability to visualize data.

ITS DISADVANTAGES INCLUDE:
1. The agglomerative hierarchical clustering technique is slower than other

approaches due to its high temporal complexity. It operates with an O(n2 log
n) time complexity, where n is the total number of data objects.

2. Any prior steps can never be undone by the algorithm. So, if the algorithm
clusters two objects and later discovers any error, it’s impossible to cancel
and count the error happening later.

3. It is sensitive to noise and it’s not scalable for large datasets.

E. TWO-STAGE DENSITY CLUSTERING ALGORITHM (DBSCAN AND K-MEANS)

The two-stage density clustering is an algorithm for identifying clusters in a data set.
It is a two-stage process that combines the strengths of density-based clustering
and k-means clustering to achieve a robust and accurate clustering solution [49].

First stage: First stage: Using a density-based clustering method like DBSCAN is the first phase
of the two-stage density clustering algorithm. The procedure starts by selecting a
random object and looking at the number of objects in the vicinity, as specified by
the radius (eps). If there are more than MinPts objects, the object is identified as a
core point, and its neighborhood serves as the foundation for a new cluster. If the
number of objects is less than MinPts, the object is considered a border point or a
noise point, and it is not part of any cluster. The algorithm then proceeds to the next
object and repeats the process until all objects have been processed. In the DBSCAN
stage, the most commonly used pairwise distance matrix is the Euclidean distance
matrix. However, other distance metrics like Manhattan distance, Cosine similarity,
or custom-defined distance functions can also be used based on the nature of the
data and the problem. The DBSCAN algorithm relies on density estimation to identify
core, border, and noise points. It uses the concept of ε-neighborhoods to determine
the density of points around each data point. The density estimation technique
involves calculating the number of points within a certain radius (ε) from each data
point. Points with a sufficient number of neighbors within ε are considered core
points.

Second stage:Second stage: A k-means clustering technique is used in the second stage of the
two-stage density clustering process. By reducing the sum of squared distances
between each object and its cluster centroid, this stage aims to improve the
clusters discovered in the previous one. The process starts by randomly initializing
the cluster centroids or by using a different method. The cluster centroids are then
updated depending on the average of the items inside each cluster once each object
is allocated to the closest cluster centroid. Until the cluster centroids converge
and stop changing, or until the predetermined maximum number of iterations, this
iterative process is repeated. The following are some benefits of the Two-stage

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 26

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

density clustering algorithm:
1. This method’s ability to identify clusters of varied sizes and shapes without

being constrained by certain patterns or structures is one of its main
advantages, unlike other clustering algorithms that assume spherical clusters
and may not perform well on complex data.

2. Robustness to noise: The algorithm can handle noisy data because it identifies
clusters based on high-density regions, which are less likely to be affected by
random noise.

3. Scalability: Since the approach only requires the computation of pairwise
distances between nearby locations, it exhibits computational efficiency and
may be used effectively on huge datasets.

4. Flexibility: The algorithm can be used with a variety of distance metrics and
density estimation techniques, making it appropriate for a wide variety of
applications and data kinds.

5. The appropriate number of clusters can be automatically determined by the
algorithm, thus there is no need to define it beforehand, which can be a hard
task sometimes for other clustering algorithms.

THE DISADVANTAGES OF THIS ALGORITHM ARE:
1. The parameter selection for this algorithm may have a negative impact, such

as the distance metric, bandwidth, and threshold values.
2. Although the two-stage density clustering algorithm is generally effective

at locating groups of arbitrary sizes and shapes, it may struggle to identify
clusters with highly irregular shapes or those that have overlapping regions.

In the context of the Two-stage density clustering algorithm, the overall complexity
is determined primarily by the complexity of the DBSCAN stage. If we consider the
DBSCAN stage with an efficient implementation using data structures like KD-Trees,
the total complexity can be approximately O(n log n) or O(n) where n is the number
of data points.

The Two-stage density clustering algorithm can find applications in the domain of
finance and cryptocurrency analysis. One such application is market sentiment
analysis where social media and news sentiment can influence cryptocurrency
prices. Clustering algorithms can be applied to sentiment data to identify clusters
of positive, negative, or neutral sentiment, aiding in sentiment analysis.

1. TWO-LEVEL ALGORITHM (DBSCAN AND HIERARCHICAL CLUSTERING)

The Two-level clustering algorithm involves two stages of clustering [50]. In the
first stage, the approach uses a density-based clustering method like DBSCAN to
identify dense areas in the data (Density-Based Spatial Clustering of Applications
with Noise) or OPTICS (Ordering Points to Identify the Clustering Structure). Based
on the density of data points in the data space, these techniques detect clusters,
rather than assuming a fixed number of clusters or relying on a distance-based
similarity measure. In the second stage, the algorithm applies a clustering technique
to group the identified dense regions into clusters using any clustering algorithm; in
this case, hierarchical clustering forms a cluster hierarchy. The main advantages of
the Two-level clustering algorithm:
1. It recognizes clusters of any size and shape and handles complex data

distributions.
2. It is useful for datasets with varying density and noise.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 27

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

The disadvantages of this technique:
1. The performance of the algorithm can be influenced by the selection of

parameters in the density-based clustering stage.
2. The algorithm’s performance might not be as good as it could be when working

with excessively huge datasets.

The Two-level algorithm that combines DBSCAN and Hierarchical clustering involves
using DBSCAN to form initial clusters and then applying Hierarchical clustering to
these clusters. The choice of pairwise distance matrices and density estimation
techniques can impact the performance of each of these components:

1. PAIRWISE DISTANCE MATRICES:
•	 For DBSCAN: The most commonly used distance metric for DBSCAN

is Euclidean distance. However, depending on the nature of the data,
other distance metrics like Manhattan distance, cosine distance, or
even custom distance metrics tailored to the data’s characteristics can
be used.

•	 For Hierarchical Clustering: Similar to DBSCAN, the choice of distance
metric for hierarchical clustering can also include Euclidean distance,
Manhattan distance, etc.

2. DENSITY ESTIMATION TECHNIQUES:
•	 For DBSCAN: DBSCAN relies on the concept of density reachability and

core points. No specific density estimation technique is used explicitly
in DBSCAN. It assesses the density of neighborhoods around data points
to determine core and border points.

•	 For Hierarchical Clustering: Hierarchical clustering does not involve
density estimation per se. Instead, it focuses on the linkage between
clusters to determine how they should be merged.

The combined complexity of the algorithm involves running DBSCAN first and then
applying hierarchical clustering to the clusters formed by DBSCAN. Since DBSCAN’s
complexity is O(n^2) and hierarchical clustering’s complexity is O(n^3), the overall
complexity can be approximated as O(n^2 + n^3), which simplifies to O(n^3).

The Two-level clustering algorithm, combining DBSCAN and hierarchical clustering,
can find applications within the domain of finance and cryptocurrency. One such
potential application is portfolio construction where investors can use two-
level clustering to assist in portfolio construction. DBSCAN can help identify
cryptocurrencies with similar price behaviors, and hierarchical clustering can further
classify these clusters based on factors like market capitalization or technology
category. This information can be valuable for diversification strategies.

A. TWO-STAGE MEANSHIFT AND K-MEANS CLUSTERING ALGORITHM

The clustering method known as the Two-stage MeanShift and k-means algorithm
makes use of kernel density estimation. To locate density peaks (cluster centers) in
the dataset, the technique initially uses MeanShift clustering. The density of each
point is then calculated using a kernel density estimator utilizing the predicted
bandwidth and the positions of the density peaks. A density threshold is used to
choose a portion of the density peaks as probable cluster centers after ranking
the density peaks according to their density values. The remaining data points are
then assigned to the candidate cluster centers using k-means clustering [51]. The
implementation of the algorithm is as follows: The data is first scaled then clustering
is applied. Thus, the first stage is done as follows:

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 28

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

•	 The bandwidth is estimated as the standard deviation of the MeanShift cluster
centers, and a kernel density estimator is fit to the data.

•	 The density peak locations (cluster centers) are identified by evaluating the
kernel density estimator on a grid of points and selecting the top n centers
points with the highest density values.

•	 The density at each cluster center is calculated using the kernel density
estimator.

•	 A density threshold is calculated as the median density of the cluster
centers, and the cluster centers with densities equal to or higher than the
predetermined threshold are chosen as the possible cluster centers.

•	 The remaining data points are assigned to clusters by calculating their
distances from potential cluster centers using the Euclidean distance metric.

The total complexity of the Two-stage MeanShift and k-means clustering algorithm
depends on the complexities of both the MeanShift algorithm and the k-means
algorithm, as well as the data size and the number of clusters. We already calculated
the complexity of the k-means algorithm. The MeanShift algorithm’s time complexity
is typically O(n^2) or O(n*log(n)), where n is the number of data points. This is because
for each data point, MeanShift iteratively updates the point’s position based on the
mean of data points within a certain distance (bandwidth). The number of iterations
can vary based on the data and convergence criteria.

The algorithm is implemented using the using scikit-learn library in Python. The
KMeans () function from the sci-kit-learn library is used in the second stage to
apply the k-means clustering method to the probable cluster centers. Based on
their distances, the remaining data points are then assigned to the closest possible
cluster center. Finally, the results are evaluated using various clustering evaluation
metrics, and the data is plotted along with the identified cluster centers. The
advantages of this approach:
1. It allows the algorithm to identify density peaks in the data more accurately

and efficiently.
2. It is useful for datasets with varying noise and density.
3. It has been shown to perform well on high-dimensional and large-scale

datasets.

THE DISADVANTAGES OF THIS ALGORITHM:
1. It is critical to the selection of the bandwidth.
2. Inability to function well in high dimensions.

The Two-stage MeanShift and k-means clustering algorithm can find applications
within the domain of finance and cryptocurrency, especially when dealing with large
datasets that require efficient clustering. One such potential application is Initial
Coin Offering (ICO) Analysis where clustering can assist in categorizing ICOs based
on features such as project goals, team composition, and tokenomics. This can help
potential investors evaluate ICOs and make more informed investment decisions.

II. THE EXPERIMENTAL RESULTS

This section presents the outcomes of applying various clustering algorithms to
a dataset containing historical market data for the top 1,000 cryptocurrencies by
market capitalization. The dataset provides insights into the behavior of these
cryptocurrencies over time. The section begins by introducing the dataset used for

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 29

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

the experimentation, which includes information on cryptocurrency prices, market
capitalization, trading volume, and other metrics. This dataset spans from April 2013
to September 2017 and is available on Kaggle.

The main goal of the experimentation is to group cryptocurrencies based on their
market behavior, aiming to uncover hidden patterns and trends not immediately
evident through visual inspection. The section then outlines the clustering
methodology used, starting with preprocessing the data by scaling and normalizing
it to a common scale. The algorithms evaluated include k-means, Agglomerative
Clustering, DBSCAN, G-means, Two-stage MeanShift and k-means, and Two-stage
density (DBSCAN and k-means).

Subsequently, the section presents the results of applying each clustering algorithm
to the dataset. For each algorithm, the time consumed, Silhouette Coefficient, Calinski-
Harabasz Index, Davies-Bouldin Index, and entropy are reported. The performance
of each algorithm is discussed based on these metrics, highlighting strengths and
limitations. Clustering outcomes are visually depicted using descriptive statistics,
and comparisons are made between different algorithms.

Finally, a comprehensive table summarizing the evaluation metrics for each algorithm
is provided for easy comparison. This table condenses the key results, allowing
readers to quickly assess the performance of the various clustering techniques.
Overall, the experimental results provide insights into the effectiveness of different
clustering algorithms for analyzing cryptocurrency market data, facilitating an
informed understanding of their behavior and potential future trends.

A. THE DATASET

The dataset the researchers are using is called “Cryptocurrency Market History
from CoinMarketCap,” which is available on Kaggle. It was created by Tania J on
September 15th, 2017, and was last updated on September 28th, 2017. It contains
historical market data for the top 1,000 cryptocurrencies by market capitalization
as tracked by CoinMarketCap. Also, it includes information on the daily price, market
capitalization, trading volume, and other metrics for each cryptocurrency. The
dataset is in a CSV file format and has a size of approximately 1.5 GB. It contains
1,754,291 rows and 13 columns. Here is a brief explanation of each column in the
dataset:
•	 Slug: The unique identification number given to the cryptocurrency.
•	 Symbol: The shorthand designation for a cryptocurrency used in trade.
•	 Name: The cryptocurrency’s given name in official documents.
•	 Date: The date for which the data is provided.
•	 Rank now: The rank of the cryptocurrency by market capitalization on the

given date.
•	 Open: The cryptocurrency’s starting price on the specified date.
•	 High: The cryptocurrency’s highest price as of the given date.
•	 Low: The cryptocurrency’s lowest price that was recorded on the given day.
•	 Close: The cryptocurrency’s final price as of the end of the selected date.
•	 Volume: The trading volume of the cryptocurrency on the given date.
•	 Market: The market capitalization of the cryptocurrency on the given date.
•	 Close_ratio: The ratio of the closing price to the high price for the day.
•	 Spread: The difference between the high and low prices for the day.

Each row in the dataset represents the market data for a single cryptocurrency

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 30

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

on a single day. The data covered a period from April 28th, 2013 to September
2nd, 2017. Overall, this dataset can be used for a variety of analyses related to
cryptocurrencies and their market behavior.

This work uses an unsupervised clustering technique to divide cryptocurrencies into
various groups based on their market behavior. To do this, a dataset of historical
market data is used for the top 1,000 cryptocurrencies by market capitalization, as
tracked by CoinMarketCap.

The main contribution is to identify groups of cryptocurrencies that have
similar market behavior and characteristics, using all columns in the dataset as
input features for the clustering algorithm. This will allow the readers to gain a
comprehensive understanding of the cryptocurrency market and identify trends
and patterns that may not be immediately apparent through visual inspection of
the data. To accomplish this, the first step is to pre-process the data by scaling
and normalizing it to ensure that all columns are on a similar scale. Then select a
clustering approach that is appropriate for your data, such as k-means, hierarchical
clustering, or any other relevant technique, and set the number of clusters that
need to be identified. After that, run the clustering algorithm on the pre-processed
data to obtain a set of clusters, each one having a collection of cryptocurrencies
with comparable market behavior. Once the clusters are identified, analyze the
characteristics of each cluster to gain insights into the behavior of different groups
of cryptocurrencies in the market. For example, certain clusters may contain highly
volatile cryptocurrencies with high trading volumes, while others contain fewer
volatile cryptocurrencies with lower market capitalization. Overall, the objective
of this work is to enhance comprehension of the cryptocurrency market. and
provide insights that can be used to make better-informed decisions related to
cryptocurrency investment, trading, and risk management.

B. METRICS USED

The metrics used to evaluate the performance of these algorithms are introduced
next. These metrics encompass a range of aspects, including computational
time, clustering quality, and the homogeneity of clusters. The metrics include the
Silhouette Coefficient, Calinski-Harabasz Index, Davies-Bouldin Index, entropy, and
the Elbow Method. A brief description of each metric is provided, explaining how it
helps assess the quality of clustering results.

1. TIME CONSUMED:
Time consumed, also known as computational time, refers to the amount of time
it takes for a clustering algorithm to complete its execution. The time consumed
by a clustering algorithm can be an important evaluation metric, particularly in
situations where the dataset is large or the algorithm is computationally intensive.
In general, algorithms that take longer to execute may be less practical for real-
world applications where speed is a critical factor.

2. SILHOUETTE COEFFICIENT:
The Silhouette Coefficient is a clustering evaluation metric that evaluates the
accuracy of each data point’s assignment to each matching cluster to determine
the correctness of a clustering conclusion. Higher values indicate a better
clustering fit, signaling that the data points are well-grouped, whereas lower
values reflect potential misclassification or erroneous assignment of data points
to clusters. It is assessed on a scale from -1 to 1, with higher values indicating
greater clustering fit. To calculate the Silhouette Coefficient for a clustering result,

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 31

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

first compute two quantities for each data point: Based on two mean distances,
the Silhouette Coefficient is calculated for a particular data point. The first is the
average separation between the point and every other point in the cluster to which
it belongs (abbreviated as “a”). The second is the average distance (abbreviated
“b”) between the point and every other point in the closest nearby cluster. The
formula for calculating the silhouette coefficient is (b - a) / max(a, b), where ‘max’
stands for the highest value that can be found between ‘a’ and ‘b’. A high value for
the Silhouette Coefficient shows that the data point is well-clustered, comparable
to other points in the cluster to which it has been assigned, and distinct from other
points in other clusters. If the Silhouette Coefficient is low, the clustering algorithm
may have created poorly separated clusters or the data point may have been
incorrectly assigned to the cluster.

3. CALINSKI-HARABASZ INDEX:
A statistic called the Calinski-Harabasz Index compares the ratio of between-
cluster variance to within-cluster variance to rate the quality of clustering results.
More favorable clustering outcomes are indicated by a higher Calinski-Harabasz
Index value. It is determined by multiplying the ratio of the total number of data
points to the total number of clusters by one, then dividing the sum of squares
between clusters by the sum of squares within clusters. The clusters are thought
to be distinct with significant between-cluster variance when the Calinski-Harabasz
Index value is greater. In contrast, a lower Calinski-Harabasz Index value suggests
that the clusters are weakly segregated or that there is a significant amount of
variance within the cluster.

4. DAVIES-BOULDIN INDEX:
The distance between each cluster and its closest neighboring cluster is measured
as part of the Davies-Bouldin Index, a statistic used to rate the quality of clustering
results. The Davies-Bouldin Index’s smaller value denotes better clustering outcomes.
Then we determine the average distance between each point in a cluster and the
cluster centroid before computing the Davies-Bouldin Index. Next, calculate the
pairwise distances between each pair of centroids, and for each centroid, select the
closest neighboring centroid. Following that, the Davies-Bouldin Index is calculated
using the following formula: DB = (1/k) * sum (max (R_i + R_j) / d (C_i, C_j)). Here, k is
the number of clusters, R_i is the average separation between each point in cluster
i and its centroid, and C_i is the centroid of that cluster.

5. ENTROPY:
Entropy is a clustering metric that measures the homogeneity of clusters by
evaluating the distribution of data points within each cluster. Specifically, entropy
measures the degree to which a cluster contains data points from the same class or
category. We determine the distribution of data points belonging to various classes
or categories within a specific cluster before beginning to compute entropy. Then
compute the entropy of the cluster as the sum of the product of each proportion
and its logarithm, where the logarithm is taken to the base of the number of classes
or categories. A low entropy score indicates that the cluster’s data points are quite
homogeneous and largely belong to one type of class or category. On the other
hand, a high entropy number denotes that the cluster’s data points are diverse
and reflect a variety of classes or categories. Therefore, a clustering algorithm that
produces clusters with low entropy values is generally considered to be of higher
quality than one that produces clusters with high entropy values.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 32

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

6. ELBOW METHOD:
The elbow method is a popular approach for figuring out the ideal number of clusters
for clustering algorithms. It works under the assumption that the within-cluster sum
of squares (WSS) tends to decrease as the number of clusters rises. This happens
as a result of the clustering of each data point into a more specific and focused
group. However, after a certain number of clusters, the rate of decrease in WSS
tends to slow down, as the clusters become too specific and may even start to
overfit the data. To apply the elbow method, first run the clustering algorithm on the
dataset for a range of cluster numbers, such as 1 to 10 clusters. For each potential
number of clusters, determine the within-cluster sum of squares (WSS) and then
apply the elbow approach. The squared distances between each data point and its
associated cluster center are added to determine the WSS. Then, create an elbow
curve by plotting the obtained WSS values against the corresponding number of
clusters. The elbow curve typically looks like an arm with a clear elbow point. The
elbow point is the cluster number at which the rate of decrease in WSS starts to
slow down significantly, indicating that adding more clusters beyond this point may
not significantly improve the clustering quality. By choosing the elbow point on the
depicted curve, one may calculate the ideal number of clusters given the dataset.
The elbow method is a heuristic approach, thus it’s important to keep in mind that
there might not always be a clear elbow point. In some cases, the curve may not
have a distinct elbow and may instead have a gradual slope, making it hard to find
the optimal number of clusters. The elbow approach may be supplemented in these
situations by using other clustering evaluation metrics, such as the silhouette
coefficient, Calinski-Harabasz index, or Davies-Bouldin index. The determination of
the ideal number of clusters is aided by the use of these additional measures as
supporting tools.

7. HIERARCHICAL CLUSTERING DENDROGRAM:
A popular technique for grouping or clustering data points according to their
similarity or proximity is called hierarchical clustering. It creates a dendrogram, a
hierarchical depiction of the relationships between the data points and clusters in
the form of a tree diagram. The clustering results’ hierarchical structure is shown
visually in a dendrogram. It consists of horizontal lines, called branches, that
represent the data points or clusters, and vertical lines, called nodes, that represent
the merges or splits that occur during the clustering process. The height of each
node represents the distance or dissimilarity between the merged clusters or data
points. The longer the branch, the greater the distance or dissimilarity between the
data points or clusters. The hierarchical clustering dendrogram can be constructed
using two main methods: agglomerative and divisive. When using agglomerative
hierarchical clustering, each data point is initially treated as a separate cluster,
and then the closest clusters are gradually combined to produce a single cluster.
Divisive hierarchical clustering, in comparison, starts with all of the data points in
one cluster and then iteratively breaks them up into smaller clusters until every
data point is in its cluster. Different distance measures, such as Euclidean distance,
Manhattan distance, and cosine similarity, can be used to quantify the distance
or dissimilarity between data points or clusters. The dendrogram that is produced
as well as the overall caliber of the clustering can be significantly influenced by
the use of a certain distance metric. Determining the ideal number of clusters is
made easier with the help of the dendrogram, which provides a visual depiction of
the clustering structure. To determine the number of clusters, use the horizontal
lines in the dendrogram as a guide and look for the longest vertical lines that do
not cross any horizontal lines. Such a vertical line represents a possible number of
clusters. The chosen number of clusters is a trade-off between cluster granularity
and cluster quality.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 33

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

Overall, the hierarchical clustering dendrogram is a powerful tool for visualizing
and interpreting the clustering structure of data points or clusters. It can help us
understand the relationships between the data points and clusters and to make
informed decisions about the optimal number of clusters.

C. THE RESULTS

In this section, the researchers present the results of our clustering analysis using
various algorithms on the dataset. The performance of each algorithm is evaluated
based on several metrics. These metrics provide insights into the quality of the
clustering solution and the overall performance of each algorithm.

•	•	 K-K-meansmeans
Time consumed: 0.6294 seconds
Silhouette Coefficient: 0.568
Calinski-Harabasz Index: 544.807
Davies-Bouldin Index: 0.699
Entropy: 0.5081

As mentioned earlier, the k-means algorithm performed well based on these metrics,
with a Silhouette Coefficient greater than 0.5, a high Calinski-Harabasz Index, and a
relatively low Davies-Bouldin Index. However, the little high entropy value suggests
that there may be a lot of variability or noise in the data, which could impact the
clustering results. Overall, the results indicate that the k-means algorithm has
provided a reasonably good clustering solution.

Fig. 19 Data distribution between clusters

As shown in Figure 19, 47.2% of data is classified to the second cluster 1 while
others are in the first cluster called 0 here.

•	•	 Agglomerative ClusteringAgglomerative Clustering
Time consumed: 0.4049 seconds
Silhouette Coefficient: 0.568
Calinski-Harabasz Index: 543.178
Davies-Bouldin Index: 0.697
Entropy: 0.5063

The Agglomerative Clustering algorithm performed well based on these metrics,
with a Silhouette Coefficient greater than 0.5, a high Calinski-Harabasz Index, and
a relatively low Davies-Bouldin Index. However, also the little high entropy value
suggests that there may be a lot of variability or noise in the data, which could
impact the clustering results. However, one key difference to note is that the
Agglomerative Clustering algorithm took a little less to run, with a time consumption
of 0.4 seconds, compared to the k-means algorithm, which only took 0.6 seconds.
This may be a consideration when choosing which algorithm to use for clustering,

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 34

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

depending on the size and complexity of the dataset.

•	•	 DBSCANDBSCAN
Time consumed: 0.0290 seconds
Silhouette Coefficient: -0.155
Calinski-Harabasz Index: 0.484
Davies-Bouldin Index: 3.536
Entropy: 0.1386

The DBSCAN algorithm did not perform as well as the k-means and Agglomerative
Clustering algorithms based on the provided metrics. The negative Silhouette
Coefficient suggests that there is a significant overlap between the clusters, and the
low Calinski-Harabasz Index and high Davies-Bouldin Index suggest that the clusters
are not well-separated or distinct. Additionally, the low entropy value suggests that
there won’t be enough variability in the data to form distinct clusters. So, the value
of entropy shows the purity of clusters. However, one notable advantage of the
DBSCAN algorithm is that it is very efficient, with a time consumption of only 0.029
seconds, which may be beneficial for larger datasets. In summary, while the DBSCAN
algorithm did not perform as well as the other algorithms based on the provided
metrics, its efficiency may make it a useful option in certain situations.

•	•	 GG-means-means
Time consumed: 1.546 seconds
Silhouette Coefficient: 0.5031
Calinski-Harabasz Index: 703.356
Davies-Bouldin Index: 0.597
Entropy: 0.5714

As previously mentioned, the G-means algorithm performed similarly to the k-means
and Agglomerative Clustering algorithms based on the provided metrics, with a high
Silhouette Coefficient, a higher Calinski-Harabasz Index, and a low Davies-Bouldin
Index. However, the little high entropy value suggests that there may be a lot
of variability or noise in the data, which could impact the clustering results. One
difference to note is that the G-means algorithm took longer to run than the k-means
algorithm but was a little less than the Agglomerative Clustering algorithm, with a
time consumption of 1.546 seconds. Additionally, G-means has the advantage of
being able to automatically determine the optimal number of clusters, which can be
useful when the optimal number of clusters is not known beforehand. In summary,
the G-means algorithm is a promising option for clustering, especially when the
optimal number of clusters is not known, but the high entropy value suggests that
the clustering results should be interpreted with caution.

•	•	 Two-level algorithmTwo-level algorithm (DBSCAN and Hierarchical clustering)
Time consumed: 0.0388 seconds
Silhouette Coefficient: -0.1548
Calinski-Harabasz Index: 0.483
Davies-Bouldin Index: 3.5365
Entropy: 0.1386

As mentioned earlier, the Two-level (DBSCAN and Hierarchical clustering) algorithm
performed poorly compared to the other algorithms based on the provided metrics,
with a negative Silhouette Coefficient, a low Calinski-Harabasz Index, and a high
Davies-Bouldin Index. The low Silhouette Coefficient suggests that the clusters may
be overlapping or poorly defined, and the high Davies-Bouldin Index suggests that

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 35

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

the clustering results may not be well separated. On the positive side, the Two-level
(DBSCAN and Hierarchical clustering) algorithm was the fastest algorithm to run,
with a time consumption of 0.038 seconds. However, the low performance on the
provided metrics suggests that the clustering results may not be reliable or useful
for further analysis.

To sum up, this algorithm may not be the best option for clustering this dataset,
based on the provided metrics. Other algorithms such as k-means, Agglomerative
Clustering, and G-means may be better options, depending on the specific needs and
goals of the analysis. Clustering results may not be reliable, and the high Davies-
Bouldin Index suggests that there may be an overlap between clusters. The DBSCAN
Hierarchical Two-Levels algorithm did not perform well based on the provided
metrics, suggesting that other clustering algorithms may be more appropriate for
this dataset.

•	•	 Two-stage MeanShift and Two-stage MeanShift and kk-means clustering-means clustering
Time Consumed--- 4.558 seconds
Silhouette Coefficient: 0.522
Calinski-Harabasz Index: 574.909
Davies-Bouldin Index: 0.608
Entropy: 0.5383

As previously mentioned, the Silhouette Coefficient for the two-stage MeanShift and
k-means clustering algorithm is 0.522 which indicates a moderate level of clustering
quality. The Calinski-Harabasz Index for this clustering method is 574.909, which is
higher than the other methods we have evaluated so far but less than G-means.
This suggests that the clusters are well-separated and distinct. The Davies-Bouldin
Index for this algorithm is 0.608, which is also lower than the previous results we
obtained for DBSCAN and agglomerative clustering. This indicates that the clusters
are more compact and less scattered. Finally, the Entropy value for the two-stage
density algorithm is 0.5383, which is higher than the previous results for k-means,
agglomerative clustering, and G-means. This suggests that the clusters formed
by this clustering algorithm have more diversity in terms of the distribution of the
different cryptocurrencies across the clusters.

Overall, the Two-stage MeanShift and k-means clustering algorithm shows promising
results in terms of the quality of the clustering and its ability to separate well-defined
and compact clusters (see figure 20). However, its entropy value suggests that the
clusters formed may not be as homogeneous in terms of the cryptocurrencies they
contain as the clusters formed by the other methods.

Fig. 20 Density of clusters distributions

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 36

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

•	•	 Two-stage DensityTwo-stage Density (DBSCAN and k-means)
Time consumed --- 1.1318 seconds
Silhouette Coefficient: -0.247
Calinski-Harabasz Index: 0.330
Davies-Bouldin Index: 2.783
Entropy: 0.1382

The results obtained for the Two-stage density (DBSCAN and k-means) clustering
method show a negative Silhouette Coefficient of -0.247, which indicates that the
clusters are overlapping and not well-separated. The Calinski-Harabasz Index is
0.330, which is relatively low compared to the other clustering methods evaluated
so far. This suggests that the clusters are not well-defined and distinct. The Davies-
Bouldin Index for this algorithm is 2.783, which is less than the previous results we
obtained for DBSCAN. This suggests that the clusters are more scattered and less
compact. Finally, the Entropy value for the Two-stage density (DBSCAN and k-means)
is 0.1382, which is lower than the previous results for k-means and agglomerative
clustering. This suggests that the clusters formed may have some level of diversity
in terms of the distribution of the different cryptocurrencies across the clusters.

Compared to the Two-stage MeanShift and k-means clustering method, the Two-
stage density (DBSCAN and k-means) shows lower quality in terms of the Silhouette
Coefficient and the Calinski-Harabasz Index. It also shows a higher Davies-Bouldin
Index, suggesting that the clusters formed are less compact and more scattered.
However, the Entropy value for Two-stage density (DBSCAN and k-means) is lower
than the one obtained for Two-stage MeanShift and k-means, indicating that the
clusters formed may be more homogeneous in terms of the cryptocurrencies they
contain.

Overall, the Two-stage MeanShift and k-means show better results in terms of
the quality of the clustering and its ability to separate well-defined and compact
clusters.

•	 Algorithms Comparison and Discussion

 Table 1 summarizes the comparison results.
TABLE I: EVALUATIONMETRICS FOR THE SEVENCLUSTRING TECHNIQUES

Algorithm
Time
Consumed

Silhouette
Coefficient

Calinski-
Harabasz
Index

Davies-
Bouldin
Index Entropy

k-means 0.629s 0.568 544.807 0.699 0.5081

Agglomerative Clustering 0.404s 0.568 543.178 0.697 0.5063

DBSCAN 0.029s -0.155 0.484 3.536 0.1386

G-means 1.546s 0.503 703.356 0.597 0.5714

Two-level algorithm
(DBSCAN and
Hierarchical)

0.038s -0.155 0.484 3.536 0.1386

Two-stage MeanShift
and k-means

4.55 s 0.522 574.909 0.608 0.5383

Two-stage density
(DBSCAN and k-means)

0.131 -0.247 0.330 2.783 0.1382

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 37

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

Based on the table, it seems like k-means is one of the most popular clustering
algorithms, and in this case, it has a relatively low time consumption of 0.62 seconds.
It performs well in terms of the Silhouette Coefficient (0.568), Calinski-Harabasz
Index (544.807), and Davies-Bouldin Index (0.699), indicating that the clusters are
well-separated and compact. The entropy value of 0.5081 suggests that the clusters
have a good degree of purity.

Agglomerative Clustering is a hierarchical clustering method that takes slightly less
time to execute than k-means, consuming 0.404 seconds in this case. However,
its performance is quite similar to k-means, with a Silhouette Coefficient of 0.568,
Calinski-Harabasz Index of 543.178, and Davies-Bouldin Index of 0.697. The entropy
value is slightly the same as k-means with 0.5063, indicating a marginally good
cluster purity.

DBSCAN is a density-based clustering algorithm that is very fast, taking only
approximately 0.03 seconds to execute. However, its performance is significantly
worse than k-means and Agglomerative Clustering, with a negative Silhouette
Coefficient (-0.155) so points are not well clustered, low Calinski-Harabasz Index
(0.484) so the clusters are not well-separated, and high Davies-Bouldin Index (3.536)
so low quality of clustering. However, the entropy value of 0.1386 suggests that the
clusters are approx. very pure.

G-means is another clustering algorithm that takes a moderate amount of time
to execute, consuming 1.54 seconds. Its performance is similar to k-means and
Agglomerative Clustering, with a Silhouette Coefficient of 0.568, and Davies-Bouldin
Index of 0.597, and a higher Calinski-Harabasz Index of 703.35. However, the entropy
value is slightly higher at 0.5714, indicating an approx. a lower degree of cluster
purity than the previous algorithm.

Two-Levels DBSCAN Hierarchical is a variation of the DBSCAN algorithm that takes
substantially less time to execute, consuming 0.03 seconds similar to DBSCAN.
Also, its performance is identical to the original DBSCAN, with a negative Silhouette
Coefficient (-0.155), low Calinski-Harabasz Index (0.484), and high Davies-Bouldin
Index (3.536) indicating that clusters are not well separated and not well clustered.
And The entropy value remains the same at 0.1386 which suggests that the clusters
are approximately very pure.

Two-stage density DBSCAN k-means is a combination of DBSCAN and k-means
algorithms that takes 1.125 seconds to execute. Its performance is worse than
k-means and Agglomerative Clustering, with a negative Silhouette Coefficient
(-0.247), low Calinski-Harabasz Index (0.330), and high Davies-Bouldin Index (2.783).
The entropy value is similar to DBSCAN at 0.1382.

Finally, we have the TWO-stage (MeanShift and K-means), which is another clustering
algorithm that takes 4.558 seconds to execute. Its performance is slightly better
than k-means and Agglomerative Clustering in terms of the Calinski-Harabasz Index
(574.909) but has a slightly lower value in terms of the Silhouette Coefficient (0.522)
and Davies-Bouldin Index (0.608). The entropy value is 0.5383, indicating a good
degree of cluster purity.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 38

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

IV. CONCLUSION

With the advancement of new technologies, data has become a crucial component
of our day-to-day lives and the significance of data cannot be overstated. Clustering
is a clever method for obtaining important insights from data, which is essential.
It involves partitioning data into groups of related objects, where each cluster
comprises objects that are unique from those in other clusters but comparable to
each other. Classifying or organizing data into categories or clusters is an essential
part of managing data. Data clustering provides a valuable tool for working with
large datasets, making it useful to everyone from common users to researchers
and businesspeople. However, clustering data is a complex task that requires
the selection of numerous distinct methodologies, parameters, and metrics, all of
which have implications for several practical world issues. Therefore, analyzing
the advantages and disadvantages of clustering algorithms is a challenging
undertaking that has garnered a lot of attention. In this paper, we tackled this task
by comparing several clustering techniques based on various metrics using a real
dataset of cryptocurrencies. We explored seven clustering algorithms in detail:
k-means, G-means, Agglomerative Hierarchical Clustering, Two-level algorithm
(DBSCAN and Hierarchical), Two-stage MeanShift and k-means, and Two-stage
density (DBSCAN and k-means). The benefits and drawbacks of each method were
carefully considered before we applied them to the cryptocurrency dataset. Five
metrics were also used to assess their performance: temporal complexity, entropy,
silhouette coefficient, the Calinski-Harabasz Index, and the Davies-Bouldin Index.

Through our analysis, we attempted to provide a comprehensive evaluation of each
algorithm’s performance on the given dataset, enabling researchers, businesspeople,
and other users to make informed decisions when choosing a clustering algorithm
for their data. Our study highlighted the importance of considering multiple metrics
when selecting a clustering algorithm and underscores the need for further
research in this field to improve clustering techniques and their applications in real-
life scenarios.

k-means and Agglomerative Clustering showed according to the dataset used, that
both have very similar performance in terms of time consumed, Silhouette Coefficient,
Calinski-Harabasz Index, Davies-Bouldin Index, and Entropy. Both techniques
showed a significant Silhouette Coefficient, indicating that the clusters are distinct
and have homogeneous interiors. Additionally, the Calinski-Harabasz Index for both
techniques was relatively high, showing discrete and well-separated clusters.
However, the Entropy value for both algorithms was relatively high, indicating that
the resulting clusters are not very informative and do not provide much insight
into the underlying structure of the data. DBSCAN and Two-Levels (DBSCAN and
Hierarchical) both had very low Silhouette Coefficient values, indicating that the
resulting clusters are poorly separated and not very homogeneous. Additionally,
the Davies-Bouldin Index for both algorithms was relatively high, indicating that the
resulting clusters are not well-separated. However, both algorithms had a relatively
low time consumed, making them good choices for datasets with large numbers of
observations. G-means had a relatively high time consumed compared to k-means
and Agglomerative Clustering but had similar values for Silhouette Coefficient,
Calinski-Harabasz Index, Davies-Bouldin Index, and Entropy. However, the Entropy
value for G-means was slightly higher than that of k-means and Agglomerative
Clustering, indicating that the resulting clusters may not be as informative. Moreover,
the Two-stage density (DBSCAN and k-means) had a relatively low Silhouette
Coefficient and Calinski-Harabasz Index, demonstrating that the resulting clusters

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 39

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

are not particularly clearly distinguished from one another. Additionally, the Davies-
Bouldin Index value was relatively high, indicating that the resulting clusters are
not well-separated. However, the time consumed was relatively low, making this
algorithm a good choice for datasets with a large number of observations. Finally,
Two-stage (MeanShift and k-means) had a relatively high Silhouette Coefficient
and Calinski-Harabasz Index, demonstrating how distinct and well-separated the
resulting clusters are. Additionally, the Davies-Bouldin Index value was relatively
low, indicating that the resulting clusters are well-separated. However, the time
consumed was relatively high, indicating that this algorithm may not be the best
choice for datasets with a large number of observations.

Overall, the selection of the clustering technique is influenced by the specifics of
the dataset and the objectives of the study. For datasets with few clusters, it is
recommended to use K-means and agglomerative clustering, while DBSCAN and Two-
Levels (DBSCAN Hierarchical) are good choices for datasets with a large number
of observations. G-means is a good choice for datasets with irregular shapes or
varying cluster sizes, while Two-stage (MeanShift and k-means) is a good choice
for datasets where well-separated and distinct clusters are desired. It is important
to consider multiple metrics when evaluating clustering algorithms to obtain a
comprehensive understanding of their performance.

In conclusion, clustering algorithms are an essential tool for working with large
datasets and extracting useful information. Through the analysis of seven different
clustering algorithms on the cryptocurrency dataset using five metrics, we were
able to compare their performance and identify their strengths and weaknesses.
Each algorithm has its set of pros and cons, and the analysis’s objectives and the
particular dataset’s features determine the algorithm to use. Moving forward, there
are many opportunities to further explore the application of clustering algorithms in
various fields, such as finance, healthcare, and marketing. Given the speed at which
technology is developing and the growing amount of data available, the importance
of clustering algorithms in extracting meaningful insights and making data-driven
decisions will continue to grow. In addition, future research can focus on improving
existing clustering algorithms or developing new algorithms that can handle
datasets with complex structures, outliers, and high-dimensional features. With the
ongoing development of machine learning and artificial intelligence, the potential for
clustering algorithms to contribute to various fields and improve decision-making
processes is unlimited.

To sum up, the study of clustering algorithms is a crucial area of research that has
numerous practical applications. By understanding the performance and limitations
of various clustering algorithms, we can leverage them to extract useful information
from large datasets and gain valuable insights that can inform decision-making
processes.

V. REFERENCES

[1] S. Sreedhar Kumar, M. Madheswaran, B. A. Vinutha, H. Manjunatha Singh,
and K. V. Charan, “A brief survey of unsupervised agglomerative hierarchical
clustering schemes,” Progress in Color, Colorants and Coatings, vol. 8, no. 1,
2018, doi: 10.14419/ijet.v8i1.15803.

[2] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for
Discovering Clusters A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise,” in Proceedings - 2nd International

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 40

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

Conference on Knowledge Discovery and Data Mining, KDD 1996, 1996.

[3] M. Halkidi and M. Vazirgiannis, “A density-based cluster validity approach
using multi-representatives,” Pattern Recognit Lett, vol. 29, no. 6, pp. 773–786,
Apr. 2008, doi: 10.1016/j.patrec.2007.12.011.

[4] D. Brown, A. Japa, and Y. Shi, “A Fast Density-Grid Based Clustering Method,” in
2019 IEEE 9th Annual Computing and Communication Workshop and Conference
(CCWC), IEEE, Jan. 2019, pp. 0048–0054. doi: 10.1109/CCWC.2019.8666548.

[5] V. Kanageswari and A. Pethalakshmi, “A Novel Approach of Clustering Using
COBWEB,” International Journal of Information Technology, vol. 3, no. 3, 2015.

[6] D. Z. J. H. and J. F. M. Wegmann, “A Review of a Systematic Selection of
Clustering Algorithms and their Evaluation,” ArXiv, Jun. 2021.

[7] X. Jin and J. Han, “K-Medoids Clustering,” in Encyclopedia of Machine Learning,
Boston, MA: Springer US, 2011, pp. 564–565. doi: 10.1007/978-0-387-30164-
8_426.

[8] Y. Rani and D. H. Rohil, “A Study of Hierarchical Clustering Algorithm,”
International Research Publications House, vol. 3, p. 8, Nov. 2013.

[9] P. Bhattacharjee and P. Mitra, “A survey of density based clustering algorithms,”
Front Comput Sci, vol. 15, no. 1, p. 151308, Feb. 2021, doi: 10.1007/s11704-019-
9059-3.

[10] M. Ilango and V. Mohan, “A Survey of Grid Based Clustering Algorithms,”
International Journal of Engineering Science and Technology, vol. 2, no. 8,
2010.

[11] D. Tomar and S. Agarwal, “A survey on Data Mining approaches for Healthcare,”
International Journal of Bio-Science and Bio-Technology, vol. 5, no. 5, pp. 241–
266, Oct. 2013, doi: 10.14257/ijbsbt.2013.5.5.25.

[12] S. Suman, “A Survey on STING and CLIQUE Grid Based – ProQuest,” International
Journal of Advanced Research in Computer Science, vol. 5, pp. 1512–1512, May
2017.

[13] I. H. Sarker, M. H. Furhad, and R. Nowrozy, “AI-Driven Cybersecurity: An Overview,
Security Intelligence Modeling and Research Directions,” SN Comput Sci, vol. 2,
no. 3, p. 173, May 2021, doi: 10.1007/s42979-021-00557-0.

[14] N. Samy, R. Fathalla, N. A. Belal, and O. Badawy, “Classification of Autism Gene
Expression Data Using Deep Learning,” 2020, pp. 583–596. doi: 10.1007/978-3-
030-34080-3_66.

[15] H. Xu, S. Yao, Q. Li, and Z. Ye, “An Improved K-means Clustering Algorithm,” in
2020 IEEE 5th International Symposium on Smart and Wireless Systems within
the Conferences on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS-SWS), IEEE, Sep. 2020, pp. 1–5. doi: 10.1109/IDAACS-
SWS50031.2020.9297060.

[16] D. Miljkovic, “Brief review of self-organizing maps,” in 2017 40th International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), IEEE, May 2017, pp. 1061–1066. doi: 10.23919/
MIPRO.2017.7973581.

[17] A. Kumar, Y. S. Ingle, P. Abhijit, and P. Dhule, “Canopy Clustering : A Review
on Pre-Clustering Approach to K-Means Clustering,” International Journal of

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 41

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

Innovations & Advancement in Computer Science, vol. 3, no. 5, 2014.

[18] Y. Zhang, S. Ding, Y. Wang, and H. Hou, “Chameleon algorithm based on improved
natural neighbor graph generating sub-clusters,” Applied Intelligence, vol. 51,
no. 11, pp. 8399–8415, Nov. 2021, doi: 10.1007/s10489-021-02389-0.

[19] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering ACM Computing
Surveys,” Intelligent multidimensional data clustering and analysis, vol. 31, no.
3, 1999.

[20] J. Oyelade et al., “Data Clustering: Algorithms and Its Applications,” in 2019
19th International Conference on Computational Science and Its Applications
(ICCSA), IEEE, Jul. 2019, pp. 71–81. doi: 10.1109/ICCSA.2019.000-1.

[21] M. J. Zaki and J. W. Meira, Data Mining and Analysis. Cambridge University
Press, 2014. doi: 10.1017/CBO9780511810114.

[22] L. Cao, “Data Science,” ACM Comput Surv, vol. 50, no. 3, pp. 1–42, May 2018, doi:
10.1145/3076253.

[23] D. Deng, “DBSCAN Clustering Algorithm Based on Density,” in 2020 7th
International Forum on Electrical Engineering and Automation (IFEEA), IEEE,
Sep. 2020, pp. 949–953. doi: 10.1109/IFEEA51475.2020.00199.

[24] D. Deng, “DBSCAN Clustering Algorithm Based on Density,” in 2020 7th
International Forum on Electrical Engineering and Automation (IFEEA), IEEE,
Sep. 2020, pp. 949–953. doi: 10.1109/IFEEA51475.2020.00199.

[25] I. H. Sarker, “Deep Cybersecurity: A Comprehensive Overview from Neural
Network and Deep Learning Perspective,” SN Comput Sci, vol. 2, no. 3, p. 154,
May 2021, doi: 10.1007/s42979-021-00535-6.

[26] H. Rehioui, A. Idrissi, M. Abourezq, and F. Zegrari, “DENCLUE-IM: A New Approach
for Big Data Clustering,” Procedia Comput Sci, vol. 83, pp. 560–567, 2016, doi:
10.1016/j.procs.2016.04.265.

[27] G. Hamerly & C. Elkan, “Learning the k in k-means,” Adv Neural Inf Process
Syst, 2004.

[28] G. Jia, H.-K. Lam, S. Ma, Z. Yang, Y. Xu, and B. Xiao, “Classification of
Electromyographic Hand Gesture Signals Using Modified Fuzzy C-Means
Clustering and Two-Step Machine Learning Approach,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 28, no. 6, pp. 1428–1435,
Jun. 2020, doi: 10.1109/TNSRE.2020.2986884.

[29] T. D. Khang, N. D. Vuong, M.-K. Tran, and M. Fowler, “Fuzzy C-Means Clustering
Algorithm with Multiple Fuzzification Coefficients,” Algorithms, vol. 13, no. 7, p.
158, Jun. 2020, doi: 10.3390/a13070158.

[30] M. C. Nwadiugwu, “Gene-Based Clustering Algorithms: Comparison
Between Denclue, Fuzzy-C, and BIRCH,” Bioinform Biol Insights, vol. 14, p.
117793222090985, Jan. 2020, doi: 10.1177/1177932220909851.

[31] R. R. Vatsavai, C. T. Symons, V. Chandola, and G. Jun, “GX-Means: A model-
based divide and merge algorithm for geospatial image clustering,” Procedia
Comput Sci, vol. 4, pp. 186–195, 2011, doi: 10.1016/j.procs.2011.04.020.

[32] R. Nainggolan, R. Perangin-angin, E. Simarmata, and A. F. Tarigan, “Improved
the Performance of the K-Means Cluster Using the Sum of Squared Error (SSE)
optimized by using the Elbow Method,” J Phys Conf Ser, vol. 1361, no. 1, p.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 42

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

012015, Nov. 2019, doi: 10.1088/1742-6596/1361/1/012015.

[33] J. Qi, Y. Yu, L. Wang, and J. Liu, “K*-Means: An Effective and Efficient K-Means
Clustering Algorithm,” in 2016 IEEE International Conferences on Big Data and
Cloud Computing (BDCloud), Social Computing and Networking (SocialCom),
Sustainable Computing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom), IEEE, Oct. 2016, pp. 242–249. doi: 10.1109/BDCloud-
SocialCom-SustainCom.2016.46.

[34] X. Jin and J. Han, “K-Medoids Clustering,” in Encyclopedia of Machine Learning,
Boston, MA: Springer US, 2011, pp. 564–565. doi: 10.1007/978-0-387-30164-
8_426.

[35] G. Hamerly and C. Elkan, “Alternatives to the k-means algorithm that find
better clusterings,” in International Conference on Information and Knowledge
Management, Proceedings, 2002. doi: 10.1145/584792.584890.

[36] I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and
Research Directions,” SN Comput Sci, vol. 2, no. 3, p. 160, May 2021, doi: 10.1007/
s42979-021-00592-x.

[37] X.-L. Meng and D. Van Dyk, “The EM Algorithm—an Old Folk-song Sung to a Fast
New Tune,” J R Stat Soc Series B Stat Methodol, vol. 59, no. 3, pp. 511–567, Sep.
1997, doi: 10.1111/1467-9868.00082.

[38] I. H. Sarker, M. M. Hoque, Md. K. Uddin, and T. Alsanoosy, “Mobile Data Science
and Intelligent Apps: Concepts, AI-Based Modeling and Research Directions,”
Mobile Networks and Applications, vol. 26, no. 1, pp. 285–303, Feb. 2021, doi:
10.1007/s11036-020-01650-z.

[39] R. A. Haraty, M. Dimishkieh, and M. Masud, “An enhanced k-means clustering
algorithm for pattern discovery in healthcare data,” Int J Distrib Sens Netw,
vol. 2015, 2015, doi: 10.1155/2015/615740.

[40] F. U. Siddiqui and A. Yahya, “Partitioning Clustering Techniques,” in Clustering
Techniques for Image Segmentation, Cham: Springer International Publishing,
2022, pp. 35–67. doi: 10.1007/978-3-030-81230-0_2.

[41] S. Renjith, A. Sreekumar, and M. Jathavedan, “Performance evaluation of
clustering algorithms for varying cardinality and dimensionality of data sets,”
Mater Today Proc, vol. 27, pp. 627–633, 2020, doi: 10.1016/j.matpr.2020.01.110.

[42] S. Zhang, Z. You, and X. Wu, “Plant disease leaf image segmentation based on
superpixel clustering and EM algorithm,” Neural Comput Appl, vol. 31, no. S2,
pp. 1225–1232, Feb. 2019, doi: 10.1007/s00521-017-3067-8.

[43] L. Meng’Ao, M. Dongxue, G. Songyuan, and L. Shufen, “Research and Improvement
of DBSCAN Cluster Algorithm,” in 2015 7th International Conference on
Information Technology in Medicine and Education (ITME), IEEE, Nov. 2015, pp.
537–540. doi: 10.1109/ITME.2015.100.

[44] R. A. Haraty and A. Assaf, “DG-means: a superior greedy algorithm for clustering
distributed data,” J Supercomput, Jul. 2023, doi: 10.1007/s11227-023-05508-5.

[45] R. Xu and D. WunschII, “Survey of Clustering Algorithms,” IEEE Trans Neural
Netw, vol. 16, no. 3, pp. 645–678, May 2005, doi: 10.1109/TNN.2005.845141.

[46] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density Based Notion of Clusters,”
Proceedings of 2nd International Conference on Knowledge Discovery and
Data Mining, 1996.

Journal of Advances in Computing and Engineering (ACE) Volume 4, Issue 1, June 2024- ISSN 2735-5985

 43

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

[47] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science (1979), vol. 315, no. 5814, 2007, doi: 10.1126/science.1136800.

[48] J. Wu, H. Xiong, and J. Chen, “Towards understanding hierarchical clustering:
A data distribution perspective,” Neurocomputing, vol. 72, no. 10–12, 2009, doi:
10.1016/j.neucom.2008.12.011.

[49] M. Wang, Y.-Y. Zhang, F. Min, L.-P. Deng, and L. Gao, “A two-stage density
clustering algorithm,” Soft comput, vol. 24, no. 23, pp. 17797–17819, Dec. 2020,
doi: 10.1007/s00500-020-05028-x.

[50] A. Latifi-Pakdehi and N. Daneshpour, “DBHC: A DBSCAN-based hierarchical
clustering algorithm,” Data Knowl Eng, vol. 135, p. 101922, Sep. 2021, doi:
10.1016/j.datak.2021.101922.

[51] S. Sun, H. Song, D. He, and Y. Long, “An adaptive segmentation method
combining MSRCR and mean shift algorithm with K-means correction of green
apples in natural environment,” Information Processing in Agriculture, vol. 6,
no. 2, pp. 200–215, Jun. 2019, doi: 10.1016/j.inpa.2018.08.011.

