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ABSTRACT 

In today’s era of the fourth industrial revolution, individuals are confronted with 
an overwhelming deluge of information on a daily basis. The digital landscape is 
teeming with diverse data streams, encompassing realms such as IoT, social media, 
healthcare, business, cryptocurrencies, and cybersecurity. This phenomenon 
presents challenges due to the considerable storage capacity demanded by these 
extensive datasets, culminating in the complexities of executing time-consuming 
and labor-intensive tasks like analytical, processing, and retrieval operations. In 
addressing this conundrum, artificial intelligence, particularly machine learning and 
deep learning, emerges as a pragmatic solution. Clustering, an unsupervised learning 
technique, assumes a pivotal role by discerning a specific number of clusters to 
effectively categorize data through coherent grouping. Consequently, clustering 
finds relevance across numerous domains and applications dealing with vast 
datasets. This comprehensive survey meticulously scrutinizes seven prominent 
clustering methodologies—namely k-means, G-means, DBSCAN, Agglomerative 
hierarchical clustering, Two-stage density (DBSCAN and k-means) algorithm, Two-
levels (DBSCAN and hierarchical) clustering algorithm, and Two-stage MeanShift and 
k-means clustering algorithm—undertaking a rigorous comparison using a genuine 
dataset: The Blockchain dataset, encompassing prominent cryptocurrencies like 
Binance, Bitcoin, Doge, and Ethereum. The assessment encompasses various 
metrics, including silhouette coefficient, Calinski-Harabasz, Davies-Bouldin Index, 
time complexity, and entropy.

Index words: Clustering, k-means, G-means, DBSCAN, Agglomerative clustering, 
Two-stage density clustering, and Two-stage (MeanShift and k-means) clustering 
algorithm.

I.	 INTRODUCTION

Nowadays, we find ourselves in a time characterized by the prevalence of big 
data in which almost everything has been digitalized and is connected to a data 
source [1], [2]. People are confronted with an overwhelming rush of information 
and data from many services and resources that were previously inaccessible just 
a few decades ago. It is, thanks to the tremendous improvements, the internet’s 
enormous development, and powerful data servers that have happened. Clients can 
access a wide variety of internet resources and services, which generate a ton of 
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data on individuals, things, and their interactions. This data includes a wide range of 
categories, including data from the Internet of Things, social media, cybersecurity, 
businesses, blockchain, smartphones, healthcare, and more. Although this 
abundance of data has great potential for both people and corporations, there are 
also difficulties and consequences.  The sheer amount of data necessitates large 
amounts of storage space, which complicates and extends the time required for 
analytical activities, processing operations, and retrieval operations.  

As a result, machine learning (ML), a subset of artificial intelligence (AI), has seen 
substantial growth in the field of data analysis and computation. which is known for 
its capacity to enable systems to learn and improve via experience without explicit 
programming, has emerged as a prominent technology in the current era of the 
fourth industrial revolution [3].

Machine learning (ML) has gained widespread recognition as the dominant 
technology in the fourth industrial revolution. Its popularity stems from the fact 
that ML empowers systems to acquire knowledge and refine their performance 
through experiential learning, without the requirement for explicit programming. 
Thus, ML algorithms are essential for intelligently using these data, analyzing it, and 
developing related real-world applications.

Generally, the efficiency and productivity of ML solutions are influenced by various 
factors, such as the data’s features and type, along with the effectiveness 
of the employed learning algorithms. ML encompasses various methodologies, 
such as supervised, unsupervised, semi-supervised, and reinforcement learning. 
Additionally, deep learning, derived from artificial neural networks, forms a subset 
of ML approaches and offers intelligent data assessment capabilities [4].
   
To intelligently make use of the data, clustering is one of the solutions. Clustering 
data aims to create good-quality clusters. Classifying or grouping these data into 
a set of categories or clusters is an important part of dealing with them, for they 
would be extremely beneficial to everyone from regular users to researchers and 
businesspeople, as they deliver an effective tool for dealing with huge datasets.
   	
The process of clustering entails the partitioning of data into distinct groups of 
similar objects. Each group, known as a cluster, comprises objects that exhibit 
similarities amongst themselves while being distinguishable from objects in other 
clusters. Clustering achieves simplification while representing data even if it loses 
some fine features. Some clusters represent many data objects. Data modeling 
sets clustering in different perspectives from historical, statistical, numerical, and 
mathematical analysis. Clusters correspond to hide patterns in machine learning, 
finding clusters is an unsupervised learning technique, and the results represent 
a data concept. Data mining manages huge datasets that force clustering and 
examine additional severe computational requirements. Data mining analysis is one 
of the first steps in clustering to identify groups of related data sets that can be 
used as a starting point for investigating additional relationships.  

Clustering techniques are mainly used to group similar data points into clusters 
based on certain features or characteristics. These algorithms are particularly useful 
in scenarios where you want to uncover patterns, similarities, or natural groupings 
within your data without having explicit labels for each group. Specific scenarios 
where clustering algorithms find applications include:
•	 Customer Segmentation: In marketing, clustering algorithms can be used to 
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segment customers into different groups based on their purchasing behavior, 
preferences, demographics, or other attributes. This helps businesses tailor 
their marketing strategies to specific customer segments.

•	 Image Segmentation: In computer vision, clustering algorithms can be applied 
to segment images into different regions based on color, texture, or other 
visual features. This is used in tasks like object detection, where the algorithm 
separates different objects in an image.

•	 Anomaly Detection: Clustering can be used to identify anomalies or outliers in 
a dataset. By grouping most of the data points together, anomalies become 
more evident as they often do not fit well into any cluster.

•	 Document Classification: Clustering can help categorize documents based on 
their content. For example, news articles could be clustered into topics such 
as politics, sports, entertainment, etc.

•	 Genetic Analysis: In bioinformatics, clustering algorithms are used to group 
genes with similar expression patterns or sequences, which can help in 
understanding the relationships between different genes.

•	 Social Network Analysis: Clustering can be used to identify communities within 
social networks. This is particularly helpful in understanding how individuals 
are connected or to detect groups with similar interests.

    
The primary objective of this study is to provide readers with a comprehensive 
analysis of diverse techniques employed in data clustering. Algorithms that are 
under study are as follows: k-means, G-means, DBSCAN, agglomerative hierarchical 
clustering, two-stage density (DBSCAN and k-means) clustering algorithm, two-
levels (DBSCAN and hierarchical) clustering algorithm, and two-stage MeanShift 
and k-means clustering algorithm. This research analyzes all these seven clustering 
techniques based on metrics like silhouette coefficient, Calinski-Harabasz, Davies-
Bouldin Index, time complexity, and entropy and compares them with a brand-
new real dataset mainly the blockchain technology that includes Binance Bitcoin, 
Ethereum, Doge, and Dash Coin. Figure 1 shows the approach for cluster analysis 
using four fundamental steps.
   
The initial stage involves either feature extraction or feature selection. Feature 
selection entails choosing distinctive features from a pool of candidates, while 
feature extraction employs transformations to generate valuable and distinct 
features from the original ones [6]–[8]. Both processes are essential for achieving 
successful clustering in various applications. A well-chosen set of features can 
significantly reduce workload and make the resultant design process much easier. 

  
Fig. 1. The clustering procedure [5].

The second step is the clustering algorithm design or selection. The clustering 
results are directly affected by the algorithm used to cluster the data. Because 
the literature has a large number of alternative solutions, it is critical to thoroughly 
analyze the characteristics of the underlying problem before selecting or designing 
a suitable technique [9]. 
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Consequently, the chosen algorithm’s application must be validated. A clustering 
method will always discover a division given a dataset. The key is to split the data 
in such a way that the initial problem can be solved. As a result, effective clustering 
estimation criteria for the clustering results are necessary. External, internal, and 
relative indices are the three well-known ideas in this context [10]it is difficult 
to define a unified approach to address the clustering problem and thus diverse 
clustering algorithms abound in the research community. These algorithms, under 
different clustering assumptions, often lead to qualitatively different results. As 
a consequence the results of clustering algorithms (i.e., data set partitionings. 
The selection of appropriate evaluation criteria is equally critical to the evaluation 
findings, and it is highly dependent on both the underlying data and the clustering 
technique used. The clustering results must be interpreted in the final step. The 
final goal is to derive relevant insights from the original data to address and solve 
the original data clustering challenge.

A. CONTRIBUTION 

The contribution of this work is to examine closely seven clustering data algorithms: 
k-means and G-means that belong to center-based clustering, DBSCAN, two-stage 
density clustering algorithm (DBSCAN and k-means), two-level clustering algorithm 
(DBSCAN and hierarchical) and two-stage MeanShift and k-means clustering 
algorithm which is under density-based clustering, and Agglomerative hierarchical 
clustering since these algorithms are the most valid and commonly used in the 
literature [11-17]. Also, to study these algorithms in terms of several metrics: 
silhouette coefficient, Calinski-Harabasz, Davies-Bouldin Index, Time complexity, 
and entropy. These metrics have not been done altogether before on these five 
algorithms. Moreover, the researchers compared the algorithm over a real dataset 
– the Cryptocurrencies data; it is a new dataset that also has not been applied to 
these clustering algorithms based on the previously mentioned metrics.

The rest of the paper is structured as follows: in section 2, the researchers state 
the background of clustering algorithms briefly, with the related works on these 
clustering algorithms. Section 3 is about the seven clustering algorithms and how 
they work in detail. In section 4, the researchers go in-depth with experimental 
results and comparisons between these six techniques over real datasets. In 
conclusion, section 5 serves as the final section encompassing the summary and 
future works.

II.	 RELATED WORK
   
Clustering is a significant field of research for computer scientists, as well as 
for pattern recognition and statistical fields. There have been several studies on 
algorithms that have been improved or developed; however, this chapter will focus 
on five main categories of clustering techniques [18]:
1.	 Partitioning/Centroid-based clustering algorithms
2.	 Density-based clustering algorithms
3.	 Hierarchical clustering algorithms
4.	 Grid-based clustering algorithms
5.	 Model-based clustering algorithms

Every category has its strengths and weaknesses. Hence, clustering algorithms 
produce more intuitive cluster assignments based on the input data. Figure 2 
illustrates the various algorithms within each category.
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Fig. 2 Taxonomy of clustering algorithms

A.	 PARTITIONING CLUSTERING

Partitioning approaches or centroid-based methods are the famous types of 
clustering techniques with k-means being the most well-known example. The data is 
partitioned into a series of mutually exclusive divisions using partitioning methods. 
The user almost always identifies the number of partitions for these algorithms, and 
they frequently apply a distance-based heuristic. Other than k-means, examples of 
partitional clustering include k-medoids, CLARA, and G-means, fuzzy c-means which 
belongs to fuzzy partitioning clustering, etc. [19] 

K-MEDOIDS:

The k-means clustering algorithm is vulnerable to outliers and noise because of its 
reliance on the mean point as the center of each cluster, which can be influenced 
by extreme values. In contrast, k-medoids clustering is more robust against outliers 
and noise as it selects a specific object from the dataset as the center of the cluster 
centroid, known as the medoid. Medoid is mainly the median in statistics with the 
minimum sum of dissimilarity to the other objects in the cluster [20]. A common 
technique for k-medoids clustering is Partitioning around Medoids (PAM). It chooses 
k representative points to create initial clusters and then proceeds to better cluster 
representatives. After that, it analyzes all possible pairings of representative and 
non-representative points, and for each pair, it calculates the quality of the resulting 
clustering. An initial representative point is substituted with the new point, which 
reduces the distortion function the most. The set of optimal points for every cluster 
produces the new corresponding medoids at each iteration.  PAM is not scalable 
for huge datasets; hence, some algorithms, such as Clustering LARge Applications 
(CLARA), have been suggested to increase efficiency [21].

CLARA:

In [22], the CLARA method was developed as an extension to PAM to deal with large 
datasets. The method chooses the relevant set of medoids by sampling data points 
from the dataset and applying the Partitioning Around Medoids (PAM) algorithm to 
each sampled point. Using an objective function, the evaluation of these medoids 
is done by measuring the average dissimilarity between each object in the dataset 
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and the medoid of the cluster. This process of selection and clustering is repeated 
for a specific number of iterations. Finally, the clusters associated with the set of 
medoids that yield the lowest value for the objective function are chosen [20].

FUZZY C-MEANS:

According to [23], in fuzzy clustering, unlike the standard k-means, each data point 
has a chance of being associated with multiple clusters rather than exclusively 
belonging to a single cluster. In fuzzy c-means clustering, every point is assigned a 
weight indicating its affiliation with each cluster. This means that a point exhibits 
a variable degree of connection or linkage to the clusters, which is determined by 
the inverse distance to the cluster center, rather than being tightly constrained to 
a single cluster. The fuzzy c-means process works as follows [24]: 
•	 Assume that there are k clusters. 
•	 Randomly set the k-means μk connected with the clusters and calculate the 

probability that each data point xi is affiliated with a specific cluster k. 

•	 Using the association probabilities assigned to each data point, recompute 
the cluster’s center by taking into account the weighted average of the 
data points. When the required number of iterations has been completed or 
convergence has been reached, the iteration process should come to an end. 

For datasets with overlapping characteristics, fuzzy c-means clustering outperforms 
the k-means algorithm by producing superior results.

B.	 DENSITY-BASED CLUSTERING

Density-based clustering views the data as a representation of a fundamental 
density function, with the areas having more points; thus, the areas with higher 
density, are the ones where the underlying function is more expected to yield 
results. These algorithms seek to cluster data points by locating local density peaks 
and causing nearby points to converge in these areas [25]. DBSCAN is regarded as 
one of the most popular density-based clustering approaches [15], also there are 
several algorithms like OPTICS, DBCLASD, DENCLUE, etc.[26] 

OPTICS:

The DBSCAN algorithm’s operating concept is shared by the OPTICS technique [27], 
which depends on the two parameters eps and Minpts, but the approach is intended 
to eliminate one of the DBSCAN algorithm’s primary weaknesses: the challenge of 
locating meaningful  clusters in data with various densities. To do this, the data 
points are linearly arranged so that contiguous ordering results from placing 
adjacent  points closer to one another. Additionally, each point is given a unique 
distance that represents the ideal density level for cluster selection, making it 
challenging for Turnitin or other similar tools to find similarities between points that 
are part of the same cluster. This is known as a dendrogram. So, there is no need to 
set the suitable parameter carefully, and the result is a hierarchical outcome. But 
the parameter is specified in the algorithm as the largest radius considered. It is ideal 
to set it very large; however, this results in expensive computational expenses. The 
OPTICS density algorithm permits the choice of hierarchical structure and complex 
shape clusters. The hierarchical structure can be built easily using a reachability 
diagram.
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DBCLASD:

The DBCLASD density-based technique [26] assumes that the distribution of 
items inside a cluster is equal. Without requiring input parameters, this method 
dynamically determines the number and arrangement of clusters in a dataset. 
Notably, this method is especially helpful for managing huge datasets. DBCLASD 
gradually adds points from its neighbors to an initial cluster. The procedure is 
repeated until the resulting cluster’s closest neighbor distances match the required 
distance distribution. A point that is not already a member of a cluster but is being 
considered for cluster membership is referred to as a candidate point. Candidates 
are categorized as unsuccessful candidates and will be reevaluated at a later time 
if they fail the initial cluster membership test. A cluster’s contents may eventually 
move to another cluster as time passes. DBCLASD takes around twice as long to run 
as DBSCAN. Unlike DBSCAN, it is adaptable to changes in parameters; however, it is 
not appropriate for non-spatial data objects.

DENCLUE:

DENCLUE (DENsity-based CLUstEring) [28] is a particular application of Kernel Density 
Estimation (KDE), a non-parametric technique for locating areas of data points 
with a high density of observations. This method was designed by the DENCLUE 
developers primarily for the categorization of large multimedia databases that 
contain a lot of noise and clustering of high-dimensional feature vectors. As can 
be seen in Figure 3, DENCLUE generally goes through two stages: the pre-clustering 
stage and the clustering stage. A database map in the shape of a hyper-rectangle 
is built in the first phase to speed up the computation of the density function. 
The second stage identifies clusters from highly populated cubes in which the 
number of points surpasses a threshold decided in parameters and their adjacent 
populated cubes. To calculate the density function, which is calculated as the total 
of these influence functions, this algorithm analyzes the mutual effect between 
points. Numerous influence functions change the separation between two points, 
including those covered in [28]. The authors, however, paid particular attention to 
the Gaussian function. The approach locates the density attractor for each point in 
the database, which equates to the local maximum of the density function, to find 
clusters. The Hill Climbing algorithm determines this maximum using the gradient 
ascent method [29]. Attracted points are the collection of points that make up the 
trajectory leading to the density attractor. Then, clusters are built by taking into 
account both the density attractors and the points they attract.

 
Fig. 3 The DENCL UE process [28]

C.	 HIERARCHICAL CLUSTERING

Hierarchical approaches function by forming a cluster hierarchy. It is a top-level 
cluster that contains all of the data points, followed by a series of sub-clusters 
that becomes more specific. It’s divided into two types agglomerative and divisive 
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clustering. CURE, BIRCH, and CHAMELEON are algorithms under hierarchical clustering 
[17].

CURE:

   	
Fig. 4. The CURE architecture

The CURE algorithm was created with the idea that it may be used to cluster extremely 
large databases, hence the name CURE. This algorithm is an agglomerative hierarchical 
clustering technique, that falls between the center-based and all-point extremes. 
The CURE method divides the data into smaller clusters using random sampling. 
Then, each cluster is subjected to computations to be compared to the others. Any 
two clusters are merged if their similarity is less than a predetermined threshold. 
Recalculating the mean of each point yields the centroid of the newly combined 
cluster, just like in k-means. Until all clusters that cannot be further merged are 
found, this iterative procedure continues. CURE demonstrates robustness against 
outliers and can identify clusters with asymmetrical geometries and large-size 
changes. However, this is an approximation approach, where many of the outcomes 
in real-world situations were disappointing [30]. The CURE process is depicted in 
Figure 4.

BIRCH:

Large databases can be handled with BIRCH, which is another hierarchical 
agglomerative clustering algorithm [31]. The number of input/output operations 
was kept to a minimum. Using a tree structure to first divide objects into clusters, 
The BIRCH approach first uses a tree structure to partition objects into hierarchical 
clusters and then it uses several clustering methods to further refine the clusters. 
It clusters incoming data points gradually and adaptively to achieve the optimum 
clustering quality while taking into account resource limits like memory and 
processing time. Given the resources at hand, the BIRCH algorithm dynamically and 
progressively groups incoming data points, aiming to produce high-quality clustering 
outcomes. To create trustworthy clusters, the BIRCH technique is broken down into 
four steps. To reprToers, it provides two concepts: clustering feature and clustering 
feature tree (CF tree). A height-balanced tree known as a CF tree.

CHAMELEON:

   
	 Fig. 5 The CHAMELEON framework
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A dynamic model is used by the hierarchical algorithm CHAMELEON [32] to determine 
how similar two clusters are to one another. The dynamic model’s merging mechanism 
makes it easier to find cohesive and organic clusters. As long as a similarity matrix 
can be created, the CHAMELEON methodology for dynamic cluster modeling can 
be used with any form of data. The algorithm is broken down into three stages: 
first, a k-nearest neighbors’ graph is built from the original dataset; second, graph 
partitioning techniques are used to separate the data points of the k-nearest 
neighbors into sub-clusters. The final clusters are formed by repeatedly merging 
the sub-clusters obtained in the preceding stage. This method has proven to be 
effective for locating clusters in two dimensions with various shapes, densities, 
and sizes; hence, it overcomes the constraints of previous algorithms. Figure 5 
illustrates the framework of CHAMELEONS.

D.	 GRID-BASED CLUSTERING

With Grid-based clustering, operations are carried out on complete cells rather than 
individual data points by dividing the data space into a grid with a fixed number 
of cells. Due to the smaller number of things to process, this approach frequently 
takes less time to process than other approaches. Since the procedures are 
independent of the data point count and solely depend on the number of cells, 
scaling these methods typically does not affect the amount of data points. This 
method is demonstrated by grid-based clustering algorithms such as STING, CLIQUE, 
and OPTI GRID [33].

STING:

The STING algorithm is a technique that divides a given spatial region into rectangular 
cells using a grid system [34]. Each level of the hierarchical structure that these 
cells create corresponds to a different resolution. Higher-level cells at each level 
are further divided to produce lower-level cells. Ahead of time, each cell’s statistical 
data are calculated, saved, and used to answer inquiries. The user must set the 
density parameter, which determines the clustering quality, which is a noteworthy 
downside of this strategy. The following describes how the STING algorithm works:
1.	 Select a foundational level.
2.	 Using the database’s instructions as a guide, build a grid-like structure and 

produce.
3.	 parameters for each cell.
4.	 Find the likelihood confidence interval for each cell at the given level.
5.	 Continue to the next level of the structure and repeat step 3 for the pertinent 

cells in the higher-level layer if the level you are on is not the final one.
6.	 Find the relevant cells that meet the query criteria if a query condition is 

found, and then obtain the appropriate regions.
7.	 The linked cells’ data is processed, and the results that satisfy the query’s 

conditions are presented.

CLIQUE:

CLIQUE clustering algorithm employs a density and grid-based method, which 
means a subspace clustering technique, to determine the cluster by using a density 
threshold and several grids as input parameters [35]. It is specifically intended to 
handle datasets with several dimensions. Due to its grid-based methodology and 
effective application of the apriori principle, CLIQUE is very scalable. Large datasets 
and datasets with many dimensions can be properly handled. The technique begins 
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by splitting the data space into grids with equal-sized units for each dimension. 
Then, it determines which data points within dense units exceed a predetermined 
threshold value. Once the algorithm discovers dense cells along one dimension, it 
attempts to determine dense cells along two dimensions, and so on until all dense 
cells throughout the full dimension are discovered. The method then finds the 
largest set cluster of connected dense cells after discovering all dense cells in all 
dimensions. Finally, the CLIQUE algorithm creates a description of the cluster. The 
apriori technique is then used to construct clusters from all dense subspaces.

OPTIGRID:

A grid-based clustering algorithm called OPTIGRID [26] was created to handle 
problems posed by high-dimensional data. Its main goal is to lessen the negative 
effects of dimensionality in these data fields. When working with high-dimensional 
data, OPTIGRID indicates the efficiency constraints of other approaches like BIRCH 
and STING. The technique finds the best hyperplanes for each dimension using data 
projections, leading to an ideal grid-based partitioning. The kernel density function 
is employed to estimate density. OPTIGRID uses contracting projections, which are 
linear transformations applied to all points, to effectively identify cutting planes. An 
upper bound on the planar density of a point is given by its density in the contracting 
projection, indicated by x. All of the predictions in dataset D are first calculated by 
OPTIGRID using a set of contracting projections that are defined. The best cutting 
planes are represented by the set BEST CUT. The cluster is saved in dataset D if 
BEST CUT is supplied; if not, the cutting planes with the greatest BEST CUT score 
are selected. Then, all the points x from D are arranged into a multidimensional grid 
called G. Then, clusters are picked out of grid cells with a high density of people and 
added to a cluster set C. It takes O(N) time to finish the entire procedure.

E.	 MODEL-BASED CLUSTERING

Model-based clustering is a statistical method to cluster data [36]. It is built to 
model an unknown distribution as a grouping of simpler ones. It chooses a specific 
model for every cluster and finds out the appropriate fitting for the model. The 
following four criteria are used to classify model-based clustering:
1.	 The number of grouping components, including finite and infinite mixture 

models.
2.	 Multivariate normal models or Gaussian mixture models (GMMs) are included 

in the clustering kernel
3.	 The estimation method
4.	 The dimensionality includes classes of factorizing algorithms 

SOM (Self-Organizing Feature Map), EM (Expectation Maximization), and COBWEB are 
a few examples of model-based clustering techniques.

SOM: 

Self-organizing maps, or SOMs, are neural networks made up of a single layer with 
a group of units arranged in an n-dimensional grid (such as 1D, 2D, or 3D, etc.). 
SOMs are also known as Kohonen maps. SOMs generate low-dimensional projection 
representations of high-dimensional data distributions while preserving the 
similarity relationships between the data objects. The concept of self-organizing 
maps follows three processes:
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Competitive Process: For each input pattern vector fed to the map, each neuron in 
the map computes a discriminant function value. The best matching unit (BMU), or 
neuron that most closely resembles the input pattern vector, is crowned the winner.
   
Cooperative Process: The winning neuron (BMU) decides where a nearby group of 
activated neurons will be in space. Then, these nearby neurons cooperate.
   
Synaptic Adaptation: Activated neurons can change the weights of the discriminant 
function associated with the input pattern vector to change the values of the 
function.
  
To assess how closely neurons and the input vector resemble one other, distance 
measurements are used. To determine how close the input pattern and SOM units 
are to one another, a number several distance measures are employed, including 
correlation, block distance, Euclidean distance, and direction cosine. The squared 
Euclidean distance, however, is typically the most frequently used metric in real-
world applications. A neighborhood function is used by neurons to collaborate 
within a grid layout.
   
Self-organizing maps function in training and mapping modes, similar to many artificial 
neural networks. Using an input dataset in the “input space,” a lower-dimensional 
representation of the input data is created during the training phase and is referred 
to as the “map space.” The produced map is put to use in the mapping process to 
categorize additional input data.

EXPECTATION–MAXIMIZATION:

Iterative methods like the Expectation-Maximization (EM) algorithm consist of two 
steps: E and M [37]. The expected log-likelihood is estimated using the most recent 
parameter estimates in the E step using a function. The expected log-likelihood 
obtained in the E step is then maximized in the M step to determine the parameters. 
The estimated parameters are then employed in the following E phase to establish 
the distribution of latent variables. If the underlying probability distribution structure 
of the latent variables is understood, EM can be used to forecast the values of 
latent variables that are not directly observable but can be inferred from the values 
of other observed variables. Numerous unsupervised clustering techniques are built 
on EM, as shown in Figure 6 below.

Fig. 6 The flow chart for the EM algorithm
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COBWEB:

COBWEB is a well-known and simple approach to incremental conceptual learning 
[38]. It generates a classification tree with hierarchical clustering. Each node relates 
to an idea and offers a probabilistic description of that idea. A new object’s class 
can be predicted using the classification tree, and missing attribute values can be 
inferred. COBWEB uses four main processes to build the classification tree. The 
approach is chosen based on the category utility that is obtained from the resulting 
categorization. The subsequent actions comprise:
1.	 Combining Two Nodes requires replacing two nodes with a new node that 

has children that represent both sets of combined children from the original 
nodes. All objects classified under the old nodes’ attribute-value distributions 
are described in the new node.

2.	 Splitting a Node: In this procedure, a node is replaced by its progeny, which 
produces several child nodes.

3.	 A new node that corresponds to the object being added is created by this 
action, which is known as adding a new node.

4.	 Navigating an Object through the Tree: This operation uses the COBWEB 
algorithm to classify the object and the subtree contained within the node, as 
well as to determine the best path across the tree.

VI.	 THE ALGORITHMS

There are different approaches to performing clustering, and there are many 
categories for clustering techniques. Selecting an appropriate clustering algorithm 
for a dataset can be challenging due to the various choices available, as each 
category has its strengths and weaknesses. Several crucial factors, including 
cluster characteristics, dataset features, outlier presence, and the number of data 
objects, impact this decision [11]. Thus, the researchers  concentrate in this work 
on conducting a detailed study of seven clustering algorithms k-means, G-means, 
DBSCAN, agglomerative clustering, two-stage density clustering (DBSCAN and 
k-means), two-level (DBSCAN and hierarchical) clustering algorithm and two-stage 
MeanShift and k-means clustering algorithm under three categories, because they 
are the most immaculate and widely used in the literature in computer science. So, 
the researchers compare these algorithms in key performance indicators that have 
not been done before at this level for all these seven algorithms.

THESE SEVEN CLUSTERING ALGORITHMS ARE UNDER THREE PROMINENT 
CATEGORIES WHICH ARE THE FOLLOWING:
1.	 Centroid-based/Partitional clustering 
2.	 Density-based clustering 
3.	 Hierarchical clustering
 
CENTROID-BASED CLUSTERING (K-MEANS, G-MEANS CLUSTERING, AND 
MEANSHIFT):
 
In the centroid-based clustering technique, objects are grouped into clusters 
depending on how close they are to a central vector that defines the clusters. To 
determine cluster membership, the squared distance from the central vector is 
reduced [12]. In plainer terms, a cluster is a collection of points where each point 
is closer to its own cluster’s center than it is to any other cluster’s center. The 
average of all the locations within a cluster, known as the centroid, is used to 
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determine the cluster’s center. k-means is a well-known instance of a centroid-
based approach, in which clusters are formed around a central point called the 
centroid. The centroid is calculated as the average of all the points within the cluster, 
considering continuous features [13]. The k-means clustering algorithm has distinct 
characteristics. One notable feature is that the number of clusters (k) must be 
predetermined, which sets it apart from other clustering techniques. Nonetheless, 
this can be seen as a drawback, as determining the appropriate number of clusters 
is not always straightforward. Furthermore, k-means clustering is not hierarchical 
in nature and does not allow for overlapping clusters. Another centroid-based 
clustering technique known as G-means clustering [14] offers an improved approach 
which automates the process of determining the number of clusters by utilizing a 
normality test. This algorithm relies on a statistical test that assesses whether a 
given data sample follows a Gaussian distribution. Unlike k-means, G-means takes a 
hierarchical approach instead of requiring a pre-defined number of clusters (referred 
to as ‘k’). It begins with a smaller number of clusters and iteratively tests if the data 
associated with a cluster centroid exhibits Gaussian characteristics. If not, then the 
algorithm splits the cluster to refine the clustering process.

MeanShift is also a centroid-based clustering algorithm. MeanShift iteratively 
allocates the points to the clusters by moving the data points to their nearest cluster 
centroid. In contrast to k-means, this algorithm eliminates the need to predefine the 
number of clusters as it dynamically determines the appropriate number based on 
the given data.

DENSITY-BASED CLUSTERING (DBSCAN):

Density-based clustering involves identifying clusters as regions containing high-
density points, which are distinguished from other clusters by low-density regions. 
This method is particularly suitable for handling scenarios that involve noise and 
outliers [15]. DBSCAN is a highly popular density-based approach for clustering data. 
It is effective in identifying clusters of varying sizes and shapes within extensive 
datasets that contain noise and outliers. Unlike conventional methods that require 
an estimation of the number of clusters beforehand, DBSCAN groups data points 
based on their distances from one another, typically using the Euclidean distance 
metric and a minimum point threshold. The algorithm constructs circular regions 
around each data point with a radius called Eps and then classifies the points into 
three distinct types: core points, border points, and noise points [16]. 

HIERARCHICAL CLUSTERING (AGGLOMERATIVE CLUSTERING):

Hierarchical clustering, referred to as hierarchical cluster analysis, is a method that 
groups similar objects into clusters. The outcome is a collection of distinct clusters, 
with each cluster containing objects that are most similar to one another. This 
clustering approach is categorized into two types [17]:
1.	 Agglomerative Hierarchical Clustering: This method starts from individual 

clusters and gradually merges pairs of clusters as it progresses up the 
hierarchy. Thus, at each step clusters are added or merged. Hence, this 
algorithm is also called additive hierarchical clustering.

2.	 Divisive Hierarchical Clustering: In contrast to agglomerative clustering, this 
technique follows a top-down approach. It begins with a single cluster and 
iteratively divides it as it traverses down the hierarchy. So, at each step, it 
divides the farthest point in the cluster, and it keeps on repeating this method 
until every cluster only has one single point.
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The widely known technique is Agglomerative Clustering. It’s used in the industry 
and will be explained and tested in this work.
   	
In this section, the researhers explain in-depth the seven prominent clustering 
algorithms which are the k-means, G-means, DBSCAN, agglomerative clustering, 
two-stage density clustering algorithm, and two-level clustering algorithm (DBSCAN 
and hierarchical clustering) along with two-stage MeanShift and k-means clustering 
algorithm.

A.	 K-MEANS CLUSTERING

An unsupervised machine learning method called k-means clustering is used to 
categorize groups of data objects inside a dataset. It is one of the first and most 
extensively used clustering techniques. It is simple to implement in Python because 
of its popularity and simplicity. The basic idea behind k-means is to divide the data 
into k clusters, where each cluster contains data points that are comparable to other 
data points in that cluster. The other clustering techniques assign a set of rules 
according to how the data should be clustered together. As was already indicated, 
one well-known use of the centroid-based technique is k-means. The steps of the 
k-means algorithm are shown in Figure 7 and are as follows [39]:
1.	 The appropriate number of clusters, k, should be determined.
2.	 Choose k sites at random to act as the initial centroids.
3.	 Based on the Euclidean distance between each point and the cluster centroids, 

assign each point to the nearest cluster centroid. 
4.	 the newly generated clusters’ centroids should be recalculated.
5.	 Keep on repeating the third and fourth steps until the centroids of newly created 

clusters stay the same for the distances between all the elements of their clusters. 

Fig. 7 The k-means clustering pseudocode

The within-cluster sum of squared errors (SSE), also known as cluster inertia, is 
minimized using the k-means clustering technique. SSE stands for the sum of the 
squared differences between each sample and the centroid of the cluster to which 
it was assigned. The cluster analysis at each stage minimized the total SSE with SSE_
total = SSE1 + SSE2 + SSE3 + SSE4 ….  + SSEn. The total sum of squared errors (SSE) 
needs to be minimized as the objective function. The k-means clustering algorithm 
differs from previous clustering techniques in several ways, one of which is the 
need to specify the number of clusters (k) in advance. This predetermined choice 
of k can be considered a disadvantage, though, as it isn’t always clear how many 
clusters the data should be split up into [41]. Moreover, k-means are not hierarchical, 
and clusters do not overlap.
Total SSE = Σ Σ (distance(xi, ci))2
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WHERE:

•	 Total SSE: The sum of squared errors for all clusters.
•	 xi: Each data point.
•	 ci: The centroid (mean) of the cluster to which xi belongs.
•	 distance (xi, ci): The distance between data point xi and the centroid ci of the 

corresponding cluster.

This method makes use of a plot of a reduction in variation versus the number of 
clusters (k) to establish the ideal value of k. A plot of the squared sum of errors 
(SSE) about the number of clusters (k) can also be produced. Such a plot is shown in 
Figure 8, where the elbow point denotes the ideal number of clusters [42]. The elbow 
point is defined as the point at which, after passing a predetermined threshold, the 
cluster inertia or SSE starts to drop linearly.

 

   
Fig. 8 The plot of SSE versus the number of clusters

The k-means algorithm involves two main steps in each iteration: assigning data 
points to clusters and updating cluster centroids. In each iteration, every data point 
is assigned to the nearest cluster centroid, which takes O(k*n) time, where “k” is the 
number of clusters and “n” is the number of data points. Then, the cluster centroids 
are updated based on the assigned points, taking O(k*d) time, where “d” is the 
number of dimensions of the data points. The algorithm typically converges after 
a certain number of iterations, which can vary depending on factors like the initial 
centroids, data distribution, and convergence criteria. The number of iterations is 
denoted as “T.” Therefore, the overall time complexity of the k-means algorithm is 
approximately O(T*k*n*d).

k-means clustering has several applications within the domain of finance and 
cryptocurrency due to its ability to group similar data points and uncover patterns. 

HERE ARE SOME NOTABLE APPLICATIONS WHERE K-MEANS CAN BE 
SIGNIFICANTLY PREFERABLE:

1.	1.	 Customer Segmentation for Investment Services:Customer Segmentation for Investment Services: k-means can be used 
to segment customers based on their investment behaviors, risk tolerance, 
portfolio preferences, and financial goals. This segmentation can help 
financial institutions tailor their investment services and products to different 
customer segments, leading to better customer satisfaction and more 
effective marketing strategies.

2.	2.	 Portfolio Optimization:Portfolio Optimization: k-means can be used to group similar assets within a 
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portfolio based on historical performance, risk factors, and correlations. This 
information can be used to optimize portfolio allocation and reduce risk by 
diversifying across different clusters of assets.

3.	3.	 Market Sentiment Analysis:Market Sentiment Analysis: k-means can be used to cluster social media 
or news sentiment data related to cryptocurrencies. By grouping similar 
sentiment patterns, traders and investors can gauge overall market sentiment 
and make predictions about potential market movements.

k-means is preferable in these applications within the finance and cryptocurrency 
domains due to its simplicity, scalability, and ability to handle large datasets. It can 
quickly reveal patterns and groupings within the data, making it a valuable tool for 
understanding market trends, customer behaviors, and risk factors.  

THE ADVANTAGES AND DISADVANTAGES OF K-MEANS ARE:

ADVANTAGES OF K-MEANS:

1.	 Simple: It is simple to implement the k-means method to find unknown 
data groupings in complicated datasets. The results are presented in an 
understandable and approachable way.

2.	 Adaptable: The k-means algorithm is extremely adaptable and simple to 
modify. Making changes to the cluster assignment permits quick changes to 
the algorithm if any problems occur.

3.	 Appropriate for large datasets: In addition to being appropriate for a variety 
of datasets, including those with a large number of data points, k-means also 
perform noticeably faster on larger datasets than on smaller ones. Additionally, 
the clustering method k-means can produce larger clusters.

4.	 Efficient: The used algorithm shows effectiveness while partitioning large 
datasets. The properties of the clusters have an impact on their performance. 
In particular, k-means performs well when dealing with hyper-spherical 
clusters.

5.	 Time complexity: The execution time for k-means segmentation increases 
linearly with the number of data parts. k-means takes less time to categorize 
similar features in the data than hierarchical algorithms do.

6.	 Cost of computation: The k-means algorithm excels above other clustering 
algorithms in terms of computational efficiency.

DISADVANTAGES OF K-MEANS:

1.	 Lack of an ideal cluster set: For optimal performance, the clusters should be 
preset because the k-means algorithm does not naturally yield an ideal set of 
clusters.

2.	 Regardless of the size variances in the input data, the uniform cluster effect 
creates clusters of the same size. It is not designed to handle data of various 
densities and sizes.

3.	 The need to provide k-values: The number of clusters (k) to be produced for 
the dataset must be specified upfront according to the k-means clustering 
technique.

4.	 Sensitive to noise and outliers: k-means doesn’t recognize noise and outliers 
and gives different results depending on the presence of outliers.

5.	 Works in assumption: it operates on the assumption that the clusters used are 
spherical with an equal number of observations. The spherical assumptions 
must be achieved, otherwise, the algorithm cannot operate with large clusters.



Journal of Advances in Computing and Engineering (ACE)                               Volume 4, Issue 1, June 2024- ISSN 2735-5985 

  17

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

B.	 G-MEANS CLUSTERING

G-means is an enhanced version of k-means clustering. It uses a statistical test to 
choose an acceptable k for splitting a k-means centroid into two centers [43], [44]. 
This splitting decision is determined by conducting the Anderson-Darling statistical 
test for assessing the presence of a Gaussian distribution [14]. G-means algorithm 
works as follows (as shown in Figure 9):
1.	 The G-means algorithm begins with a small number of k-means centers and 

gradually increases the number of centers. Initially, clustering is performed 
using k-means with k = 1, as depicted in Figure 10.

2.	 Then this algorithm finds the points in that cluster’s neighbor (adjacent to the 
centroid) to check its quality. Since there is only one cluster at first, G-means, 
the algorithm continues by running k-means with k = 2 and the supplied 
points, identifying the two clusters that occur. The neighborhood is clustered 
by creating a vector connecting these two clusters, which is a key step in the 
process. Following that, all nearby points were projected onto this vector via 
G-means, as shown in Figure 11.

3.	 Execute the Anderson–Darling test to check whether the sample in each 
cluster made in 2 follows the Gaussian distribution or not (as shown in Figure 
12). 

4.	 In each iteration of the algorithm if the sample of data follows the Gaussian 
distribution, the two candidate clusters are rejected and the original one is 
kept else the candidate clusters substitute the original one (in the example 
shown in Figure 13 the distribution is bimodal, hence the test fails. So, the 
original is discarded and the two candidate clusters are accepted.

5.	 G-means finishes its work and no further clusters are added after every 
cluster has a Gaussian distribution, as seen in Figure 14.

THE CLUSTER CREATION PROCESS IN G-MEANS CAN BE ILLUSTRATED AS 
FOLLOWS:

•	 Initial Cluster: All data points are initially grouped into a single cluster.
•	 k-means and Statistical Test: Apply k-means to the cluster and perform a 

statistical test. If the p-value – confidence internval - is significant, the cluster 
is considered meaningful and no further splitting occurs.

•	 Split Unsignificant Cluster: If the p-value is not significant, the cluster is split 
into two smaller clusters along the dimension with the highest between-
cluster variance.

•	 Iterative Process: Continue the process iteratively, performing k-means and 
the statistical test on each cluster. Unsignificant clusters are split, while 
significant clusters are retained.

•	 Final Clusters: The process concludes when all clusters are statistically 
significant and no further splitting is needed.

The use of the confidence interval (p-value) adds a layer of statistical significance 
to the clustering process, making G-means more suitable for scenarios where the 
number of clusters is uncertain and where meaningful clusters need to be identified 
while considering the underlying  data distribution. 
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Fig. 9 The G-means algorithm 

Figure 10 Vector created between two clusters.

Fig. 11 Initial clusters

Fig. 12 The two clusters and two neighborhoods are formed
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The complexity of G-means depends on various factors, including the number of 
data points, the number of features, the number of iterations, and the complexity of 
the statistical tests being used. A breakdown of the complexity is as follows:

Fig. 13 The distribution is bimodal and fails the test

Fig. 14 The distributions for both clusters look fairly Gaussian

1.	 Initialization (k-means): O(n*k*d), where n is the number of data points, k is the 
number of clusters, and d is the number of features.

2.	 Iterative Clustering and Splitting:
•	 Iterations: The number of iterations in G-means can vary based on the 

data and the stopping criteria. Let’s denote it as ‘i’.
•	 Clustering and statistical tests: For each iteration, the complexity is 

similar to a k-means clustering step followed by the statistical tests for 
each cluster.

•	 O(n*k*d) for each clustering step.
•	 The complexity of the statistical tests depends on the number of points 

in the cluster being tested and the specific test being used.
3.	 Total Complexity: O(i*n*k*d) + Complexity of statistical tests.

G-means clustering, like other clustering algorithms, can be applied to various 
domains within finance and cryptocurrency. Its ability to automatically determine 
the optimal number of clusters makes it suitable for scenarios where the underlying 
structure of the data might not be well-defined or known in advance. Here are 
some applications within the domain of finance and cryptocurrency where G-means 
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clustering could be useful:
1.	1.	 Portfolio Diversification:Portfolio Diversification: G-means clustering can help in forming diversified 

portfolios by grouping similar financial assets together. This can aid investors 
in managing risk and optimizing their investment strategies.

2.	2.	 Cryptocurrency Analysis:Cryptocurrency Analysis: G-means can be used to analyze different aspects 
of cryptocurrency data, such as grouping cryptocurrencies with similar price 
trends, trading volumes, or adoption rates.

THE ADVANTAGES AND DISADVANTAGES OF G-MEANS ARE:
ADVANTAGES OF G-MEANS:
1.	 G-means is a quick and adaptable method that produces results that are 

extremely reliable and works well with large datasets.
2.	 It works well with data that isn’t spherical (stretched-out clusters). 
3.	 G-means excels in precisely estimating the number of clusters and the 

locations of possible cluster centers because it may operate without any 
previous information - there is no need to indicate the number of clusters that 
should be selected from a dataset, the initial centers, or any other parameters.

4.	 G-means performs well in high-dimensional data. 
DISADVANTAGES OF G-MEANS:
1.	 There’s a chance of overestimating the number of clusters, especially if the 

desired model is a Gaussian Mixture Model, which is a well-liked and useful for 
displaying spatial data in images.

2.	 The effects of noise and outliers can affect G-means grouping.

C.	 DBSCAN CLUSTERING:

The clustering method known as DBSCAN, or density-based spatial clustering of 
applications with noise, bases its operations on the density of data points that 
refers to unsupervised learning techniques [45]. It discovers high-density core 
samples and expands clusters from them. This method is unlike k-means, it doesn’t 
need to provide the number of clusters k previously. Using a distance metric like 
Euclidean distance and a minimum number of points, DBSCAN conducts clustering 
by associating points that are close to one another. Additionally, it identifies sites in 
regions with low density as outliers. Consequently, compared to k-means clustering, 
DBSCAN is less impacted by outliers. The DBSCAN method uses two parameters for 
choosing the number of clusters (k) instead of guessing it. The initial parameter, 
Epsilon (Eps), denotes the minimal distance necessary between two places to be 
regarded as neighbors. So, the two points are supposed to be neighbors if the 
distance between them is of utmost Eps.  To each point’s density, Eps also specifies 
the radius of the circle that is formed around it. The minimal number of points required 
to construct a cluster is specified by the second parameter, Minpts. It is a threshold 
on the minimum number of points clustered together for a region to be a cluster. 
The cluster size is acknowledged only if it exceeds or equals the Minpts threshold. 
Therefore, it is significant to know how to choose the values of Eps and Minpts. A 
minor change in these values can significantly affect the results created by the 
DBSCAN algorithm. Minpts should have a value that is one more than or equal to 
the number of dimensions in the dataset (Minpts>=Dimensions+1) or twice the 
dimensions (Minpts = Dimension*2). So, taking Minpts as 1 does not make sense 
since it will end up with each point being in a distinct cluster, it should be at least 3.
  
The k-distance measurement graph serves as a tool to pinpoint the optimal Eps 
value or the point where the graph exhibits the most pronounced curvature, often 
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referred to as the “elbow” point. Opting for a lower Eps value yields more clusters, 
potentially leading to the identification of additional data points as noise. On the 
other hand, opting for a higher Eps value can result in the merging of smaller 
clusters into a single larger cluster, potentially causing the loss of finer data details. 
The DBSCAN algorithm establishes circular regions with a radius of Eps around 
each data point and classifies them into three distinct types: core points, border 
points, and noise points, as illustrated in Figure 15. A core point is characterized by 
having a minimum of Minpts points within the Eps radius of its surrounding circle. A 
border point, in contrast, lacks the required number of points (Minpts) within the Eps 
radius. Noise points, which don’t conform to any cluster and do not fit the criteria of 
core or border points, are considered outliers that stand apart from the clustering 
structure.

  
Fig. 15 The core, border, and noise points of the DBSCAN cluster

THE PSEUDOCODE FOR THE DBSCAN ALGORITHM IS AS FOLLOWS:

THE FOLLOWING DESCRIBES HOW THE DBSCAN ALGORITHM FUNCTIONS:
1.	 It starts by choosing a random point (p) from the dataset and checks all 

neighbor points at a distance Eps from it. Point (p) is considered as a core point 
if Eps-neighbors >= Minpts, p creates the first cluster with its Eps-neighbors. 
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DBSCAN keeps on checking all its member points, finding their respective Eps-
neighbors, and expanding the initial cluster until there are no more points to 
be added to this cluster.

2.	 It creates a new cluster for other core points that are not allocated to the 
cluster.

3.	 It finds and allocates all points that are recursively connected to the core 
point cluster.

4.	 DBSCAN iterates over all unvisited points in the dataset and allocates them to 
the closest cluster distance eps from themselves. Locate the point that does 
not fit any clusters as a noise point.

DBSCAN is a powerful clustering algorithm that can be particularly useful in the 
domain of finance and cryptocurrency due to its ability to identify clusters of varying 
shapes and its capability to handle noise effectively. Here are some applications 
within finance and cryptocurrency where DBSCAN can be advantageous:
1.	1.	 Anomaly Detection:Anomaly Detection: DBSCAN can be used to detect anomalies or outliers in 

financial data, such as irregular trading patterns, unusual transaction amounts, 
or fraudulent activities. It can identify data points that do not belong to any 
cluster, which could indicate suspicious behavior.

2.	2.	 Credit Card Fraud Detection:Credit Card Fraud Detection: In the credit card industry, DBSCAN can help 
detect fraudulent transactions by identifying clusters of transactions that 
deviate from normal spending patterns. This can improve the accuracy of 
fraud detection systems.

3.	3.	 Risk Assessment: Risk Assessment: DBSCAN can assist in assessing risk in financial portfolios by 
identifying clusters of assets with similar risk profiles. This can help investors 
and financial institutions manage risk more effectively.

THE ADVANTAGES AND DISADVANTAGES OF DBSCAN CLUSTERING [41]:
ADVANTAGES OF DBSCAN:
1.	 DBSCAN doesn’t require several clusters to be specified previously.
2.	 It determines clusters with arbitrary shapes. It can even locate a cluster that 

is surrounded by (but not linked to) another cluster.
3.	 DBSCAN has a concept of noise. It’s sturdy for detecting outliers.
4.	 DBSCAN only uses two parameters and is mostly unaffected by the 

arrangement of the points in the database. 

DISADVANTAGES OF DBSCAN [47]: 
1.	 DBSCAN is not entirely deterministic: Depending on the order in which the data 

is processed, border points that can be reached from more than one cluster 
may belong to either cluster. For the majority of data sets and domains, 
this circumstance is uncommon and has minimal bearing on the clustering 
outcome: DBSCAN is deterministic on both noise and core points.

2.	 DBSCAN doesn’t handle data with changing densities and sparse datasets, 
because the Minpts-Eps combination cannot be carefully chosen for all 
clusters.

3.	 It can be challenging to choose an adequate distance threshold (Eps) when 
the data and scale are not well-defined or understood.

4.	 It takes too long for DBSCAN to observe each point’s nearest neighbors. The 
DBSCAN algorithm has an O(n2) time complexity.



Journal of Advances in Computing and Engineering (ACE)                               Volume 4, Issue 1, June 2024- ISSN 2735-5985 

  23

http://dx.doi.org/10.21622/ACE.2024.04.1.698

http://apc.aast.edu

D.	 AGGLOMERATIVE CLUSTERING

   
Hierarchical clustering is a technique that requires forming clusters with dominant 
ordering starting from top to bottom. This clustering method is categorized into two 
types [48]:

1.	 Agglomerative Hierarchical Clustering (as shown in Figure 16)
2.	 Divisive Hierarchical Clustering (as shown in Figure 17)

Fig. 16 Agglomerative hierarchical clustering.

Fig. 17  Divisive hierarchical clustering

Initially consider every data point as an individual cluster and at every step, merge the 
nearest pairs of the cluster. (It is a bottom-up method). At first, every dataset is 
considered an individual entity or cluster. At every iteration, the clusters merge with 
different clusters until one cluster is formed. 

THE ALGORITHM FOR AGGLOMERATIVE HIERARCHICAL CLUSTERING IS:
1.	 Calculate the similarity of one cluster with all the other clusters (calculate 

proximity matrix)
2.	 Consider every data point as an individual cluster.
3.	 Merge the clusters which are highly similar or close to each other.
4.	 Recalculate the proximity matrix for each cluster.
5.	 Repeat Steps 3 and 4 until only a single cluster remains.

AGGLOMERATIVE HIERARCHICAL CLUSTERING IS A VERSATILE AND WIDELY 
USED CLUSTERING TECHNIQUE THAT OFFERS SEVERAL ADVANTAGES IN VARIOUS 
DATA ANALYSIS SCENARIOS:
1.	1.	 Hierarchical Structure:Hierarchical Structure: Agglomerative hierarchical clustering creates a 

hierarchy of clusters, resulting in a dendrogram that shows the relationships 
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between clusters at different levels of granularity. This hierarchical structure 
provides insights into the inherent organization of the data, allowing users to 
choose the desired number of clusters based on their needs.

2.	2.	 Flexibility in Number of Clusters:Flexibility in Number of Clusters: Unlike algorithms like k-means that require 
specifying the number of clusters upfront, agglomerative hierarchical 
clustering doesn’t require this information. It allows you to explore different 
levels of granularity in clustering by cutting the dendrogram at different 
heights, which can be particularly useful when the optimal number of clusters 
is unknown.

3.	3.	 Diverse Cluster Shapes and Sizes:Diverse Cluster Shapes and Sizes: Agglomerative clustering can handle 
clusters of varying shapes and sizes, including non-spherical and irregularly 
shaped clusters. This makes it suitable for datasets where clusters might not 
be well-separated or have different densities.

Agglomerative hierarchical clustering has various applications within the domain of 
finance and cryptocurrency due to its ability to reveal hierarchical structures and 
relationships in data. Some suitable applications include credit risk analysis where 
agglomerative clustering can group borrowers with similar credit risk profiles. This 
can assist lending institutions in categorizing borrowers and setting appropriate 
interest rates based on risk levels.

AGGLOMERATIVE HIERARCHICAL CLUSTERING WORKS AS FOLLOWS:
1.	 Start by treating each data point as its cluster, yielding N clusters.
2.	 Reduce the number of clusters to N-1 by combining two adjacent data points 

into one cluster.
3.	 Reduce the number of clusters to N-2 by repeatedly fusing the two nearest 

clusters into a new cluster.
4.	 Repeat the preceding step until there is just one cluster left, which is the 

clustering result.

As mentioned previously hierarchical clustering merges the most similar points. One 
method for determining similarity is to calculate the distance between the cluster 
centroids. The closest points are recognized as being similar, and they are then 
combined. There is the concept of a proximity matrix in hierarchical clustering. This 
matrix saves the distances between each point. 
   
The idea of a dendrogram is used to calculate the number of clusters in hierarchical 
clustering. A dendrogram is a tree-like graph that shows how groups have merged. 
In the dendrogram, a vertical line is clipped, and a horizontal line is drawn, by setting 
a threshold distance. Then, by counting the vertical lines that cross the threshold 
line, the number of clusters is calculated (as shown in Figure 18).

Fig. 18 Hierarchical clustering dendrogram
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THE ADVANTAGES OF THE AGGLOMERATIVE HIERARCHICAL ALGORITHM [41]:
1.	 The number of clusters does not need to be predetermined previously. Instead, 

a dendrogram can be used to calculate the number of clusters, which helps 
with the analysis.

2.	 It is easy and simple to implement and analyze the results. Unlike k-means 
clustering, which calls for pre-specifying the number of groups and maybe 
changing it later in light of data analysis for better outcomes, this approach is 
much easier to implement and interpret.

3.	 It has a good capability to visualize data.

ITS DISADVANTAGES INCLUDE: 
1.	 The agglomerative hierarchical clustering technique is slower than other 

approaches due to its high temporal complexity. It operates with an O(n2 log 
n) time complexity, where n is the total number of data objects.

2.	 Any prior steps can never be undone by the algorithm. So, if the algorithm 
clusters two objects and later discovers any error, it’s impossible to cancel 
and count the error happening later.

3.	 It is sensitive to noise and it’s not scalable for large datasets.

E.	 TWO-STAGE DENSITY CLUSTERING ALGORITHM (DBSCAN AND K-MEANS)

The two-stage density clustering is an algorithm for identifying clusters in a data set. 
It is a two-stage process that combines the strengths of density-based clustering 
and k-means clustering to achieve a robust and accurate clustering solution [49].

First stage: First stage: Using a density-based clustering method like DBSCAN is the first phase 
of the two-stage density clustering algorithm. The procedure starts by selecting a 
random object and looking at the number of objects in the vicinity, as specified by 
the radius (eps). If there are more than MinPts objects, the object is identified as a 
core point, and its neighborhood serves as the foundation for a new cluster. If the 
number of objects is less than MinPts, the object is considered a border point or a 
noise point, and it is not part of any cluster. The algorithm then proceeds to the next 
object and repeats the process until all objects have been processed.  In the DBSCAN 
stage, the most commonly used pairwise distance matrix is the Euclidean distance 
matrix. However, other distance metrics like Manhattan distance, Cosine similarity, 
or custom-defined distance functions can also be used based on the nature of the 
data and the problem. The DBSCAN algorithm relies on density estimation to identify 
core, border, and noise points. It uses the concept of ε-neighborhoods to determine 
the density of points around each data point. The density estimation technique 
involves calculating the number of points within a certain radius (ε) from each data 
point. Points with a sufficient number of neighbors within ε are considered core 
points.

Second stage:Second stage: A k-means clustering technique is used in the second stage of the 
two-stage density clustering process. By reducing the sum of squared distances 
between each object and its cluster centroid, this stage aims to improve the 
clusters discovered in the previous one. The process starts by randomly initializing 
the cluster centroids or by using a different method. The cluster centroids are then 
updated depending on the average of the items inside each cluster once each object 
is allocated to the closest cluster centroid. Until the cluster centroids converge 
and stop changing, or until the predetermined maximum number of iterations, this 
iterative process is repeated. The following are some benefits of the Two-stage 
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density clustering algorithm:
1.	 This method’s ability to identify clusters of varied sizes and shapes without 

being constrained by certain patterns or structures is one of its main 
advantages, unlike other clustering algorithms that assume spherical clusters 
and may not perform well on complex data.

2.	 Robustness to noise: The algorithm can handle noisy data because it identifies 
clusters based on high-density regions, which are less likely to be affected by 
random noise.

3.	 Scalability: Since the approach only requires the computation of pairwise 
distances between nearby locations, it exhibits computational efficiency and 
may be used effectively on huge datasets.

4.	 Flexibility: The algorithm can be used with a variety of distance metrics and 
density estimation techniques, making it appropriate for a wide variety of 
applications and data kinds.

5.	 The appropriate number of clusters can be automatically determined by the 
algorithm, thus there is no need to define it beforehand, which can be a hard 
task sometimes for other clustering algorithms.

THE DISADVANTAGES OF THIS ALGORITHM ARE:
1.	 The parameter selection for this algorithm may have a negative impact, such 

as the distance metric, bandwidth, and threshold values. 
2.	 Although the two-stage density clustering algorithm is generally effective 

at locating groups of arbitrary sizes and shapes, it may struggle to identify 
clusters with highly irregular shapes or those that have overlapping regions.

In the context of the Two-stage density clustering algorithm, the overall complexity 
is determined primarily by the complexity of the DBSCAN stage. If we consider the 
DBSCAN stage with an efficient implementation using data structures like KD-Trees, 
the total complexity can be approximately O(n log n) or O(n) where n is the number 
of data points.

The Two-stage density clustering algorithm can find applications in the domain of 
finance and cryptocurrency analysis. One such application is market sentiment 
analysis where social media and news sentiment can influence cryptocurrency 
prices. Clustering algorithms can be applied to sentiment data to identify clusters 
of positive, negative, or neutral sentiment, aiding in sentiment analysis.

1.	 TWO-LEVEL ALGORITHM (DBSCAN AND HIERARCHICAL CLUSTERING)

The Two-level clustering algorithm involves two stages of clustering [50]. In the 
first stage, the approach uses a density-based clustering method like DBSCAN to 
identify dense areas in the data (Density-Based Spatial Clustering of Applications 
with Noise) or OPTICS (Ordering Points to Identify the Clustering Structure). Based 
on the density of data points in the data space, these techniques detect clusters, 
rather than assuming a fixed number of clusters or relying on a distance-based 
similarity measure. In the second stage, the algorithm applies a clustering technique 
to group the identified dense regions into clusters using any clustering algorithm; in 
this case, hierarchical clustering forms a cluster hierarchy. The main advantages of 
the Two-level clustering algorithm:
1.	 It recognizes clusters of any size and shape and handles complex data 

distributions. 
2.	 It is useful for datasets with varying density and noise. 
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The disadvantages of this technique:
1.	 The performance of the algorithm can be influenced by the selection of 

parameters in the density-based clustering stage.
2.	 The algorithm’s performance might not be as good as it could be when working 

with excessively huge datasets.

The Two-level algorithm that combines DBSCAN and Hierarchical clustering involves 
using DBSCAN to form initial clusters and then applying Hierarchical clustering to 
these clusters. The choice of pairwise distance matrices and density estimation 
techniques can impact the performance of each of these components:

1.	 PAIRWISE DISTANCE MATRICES:
•	 For DBSCAN: The most commonly used distance metric for DBSCAN 

is Euclidean distance. However, depending on the nature of the data, 
other distance metrics like Manhattan distance, cosine distance, or 
even custom distance metrics tailored to the data’s characteristics can 
be used.

•	 For Hierarchical Clustering: Similar to DBSCAN, the choice of distance 
metric for hierarchical clustering can also include Euclidean distance, 
Manhattan distance, etc.

2.	 DENSITY ESTIMATION TECHNIQUES:
•	 For DBSCAN: DBSCAN relies on the concept of density reachability and 

core points. No specific density estimation technique is used explicitly 
in DBSCAN. It assesses the density of neighborhoods around data points 
to determine core and border points.

•	 For Hierarchical Clustering: Hierarchical clustering does not involve 
density estimation per se. Instead, it focuses on the linkage between 
clusters to determine how they should be merged.

The combined complexity of the algorithm involves running DBSCAN first and then 
applying hierarchical clustering to the clusters formed by DBSCAN. Since DBSCAN’s 
complexity is O(n^2) and hierarchical clustering’s complexity is O(n^3), the overall 
complexity can be approximated as O(n^2 + n^3), which simplifies to O(n^3).

The Two-level clustering algorithm, combining DBSCAN and hierarchical clustering, 
can find applications within the domain of finance and cryptocurrency. One such 
potential application is portfolio construction where investors can use two-
level clustering to assist in portfolio construction. DBSCAN can help identify 
cryptocurrencies with similar price behaviors, and hierarchical clustering can further 
classify these clusters based on factors like market capitalization or technology 
category. This information can be valuable for diversification strategies.

A.	  TWO-STAGE MEANSHIFT AND K-MEANS CLUSTERING ALGORITHM

The clustering method known as the Two-stage MeanShift and k-means algorithm 
makes use of kernel density estimation. To locate density peaks (cluster centers) in 
the dataset, the technique initially uses MeanShift clustering. The density of each 
point is then calculated using a kernel density estimator utilizing the predicted 
bandwidth and the positions of the density peaks. A density threshold is used to 
choose a portion of the density peaks as probable cluster centers after ranking 
the density peaks according to their density values. The remaining data points are 
then assigned to the candidate cluster centers using k-means clustering [51]. The 
implementation of the algorithm is as follows: The data is first scaled then clustering 
is applied. Thus, the first stage is done as follows:
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•	 The bandwidth is estimated as the standard deviation of the MeanShift cluster 
centers, and a kernel density estimator is fit to the data.

•	 The density peak locations (cluster centers) are identified by evaluating the 
kernel density estimator on a grid of points and selecting the top n centers 
points with the highest density values.

•	 The density at each cluster center is calculated using the kernel density 
estimator.

•	 A density threshold is calculated as the median density of the cluster 
centers, and the cluster centers with densities equal to or higher than the 
predetermined threshold are chosen as the possible cluster centers.

•	 The remaining data points are assigned to clusters by calculating their 
distances from potential cluster centers using the Euclidean distance metric.

The total complexity of the Two-stage MeanShift and k-means clustering algorithm 
depends on the complexities of both the MeanShift algorithm and the k-means 
algorithm, as well as the data size and the number of clusters. We already calculated 
the complexity of the k-means algorithm. The MeanShift algorithm’s time complexity 
is typically O(n^2) or O(n*log(n)), where n is the number of data points. This is because 
for each data point, MeanShift iteratively updates the point’s position based on the 
mean of data points within a certain distance (bandwidth). The number of iterations 
can vary based on the data and convergence criteria.
    
The algorithm is implemented using the using scikit-learn library in Python. The 
KMeans ( ) function from the sci-kit-learn  library is used in the second stage to 
apply the k-means clustering method to the probable cluster centers. Based on 
their distances, the remaining data points are then assigned to the closest possible 
cluster center. Finally, the results are evaluated using various clustering evaluation 
metrics, and the data is plotted along with the identified cluster centers. The 
advantages of this approach:
1.	 It allows the algorithm to identify density peaks in the data more accurately 

and efficiently.
2.	 It is useful for datasets with varying noise and density.
3.	 It has been shown to perform well on high-dimensional and large-scale 

datasets.

THE DISADVANTAGES OF THIS ALGORITHM:
1.	 It is critical to the selection of the bandwidth.
2.	 Inability to function well in high dimensions.

The Two-stage MeanShift and k-means clustering algorithm can find applications 
within the domain of finance and cryptocurrency, especially when dealing with large 
datasets that require efficient clustering. One such potential application is Initial 
Coin Offering (ICO) Analysis where clustering can assist in categorizing ICOs based 
on features such as project goals, team composition, and tokenomics. This can help 
potential investors evaluate ICOs and make more informed investment decisions.

II.	 THE EXPERIMENTAL RESULTS

This section presents the outcomes of applying various clustering algorithms to 
a dataset containing historical market data for the top 1,000 cryptocurrencies by 
market capitalization. The dataset provides insights into the behavior of these 
cryptocurrencies over time. The section begins by introducing the dataset used for 
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the experimentation, which includes information on cryptocurrency prices, market 
capitalization, trading volume, and other metrics. This dataset spans from April 2013 
to September 2017 and is available on Kaggle.

The main goal of the experimentation is to group cryptocurrencies based on their 
market behavior, aiming to uncover hidden patterns and trends not immediately 
evident through visual inspection. The section then outlines the clustering 
methodology used, starting with preprocessing the data by scaling and normalizing 
it to a common scale. The algorithms evaluated include k-means, Agglomerative 
Clustering, DBSCAN, G-means, Two-stage MeanShift and k-means, and Two-stage 
density (DBSCAN and k-means).

Subsequently, the section presents the results of applying each clustering algorithm 
to the dataset. For each algorithm, the time consumed, Silhouette Coefficient, Calinski-
Harabasz Index, Davies-Bouldin Index, and entropy are reported. The performance 
of each algorithm is discussed based on these metrics, highlighting strengths and 
limitations. Clustering outcomes are visually depicted using descriptive statistics, 
and comparisons are made between different algorithms.

Finally, a comprehensive table summarizing the evaluation metrics for each algorithm 
is provided for easy comparison. This table condenses the key results, allowing 
readers to quickly assess the performance of the various clustering techniques. 
Overall, the experimental results provide insights into the effectiveness of different 
clustering algorithms for analyzing cryptocurrency market data, facilitating an 
informed understanding of their behavior and potential future trends.

A.	 THE DATASET

The dataset the researchers are using is called “Cryptocurrency Market History 
from CoinMarketCap,” which is available on Kaggle. It was created by Tania J on 
September 15th, 2017, and was last updated on September 28th, 2017. It contains 
historical market data for the top 1,000 cryptocurrencies by market capitalization 
as tracked by CoinMarketCap. Also, it includes information on the daily price, market 
capitalization, trading volume, and other metrics for each cryptocurrency. The 
dataset is in a CSV file format and has a size of approximately 1.5 GB. It contains 
1,754,291 rows and 13 columns. Here is a brief explanation of each column in the 
dataset:
•	 Slug: The unique identification number given to the cryptocurrency.
•	 Symbol: The shorthand designation for a cryptocurrency used in trade.
•	 Name: The cryptocurrency’s given name in official documents.
•	 Date: The date for which the data is provided.
•	 Rank now: The rank of the cryptocurrency by market capitalization on the 

given date.
•	 Open: The cryptocurrency’s starting price on the specified date.
•	 High: The cryptocurrency’s highest price as of the given date.
•	 Low: The cryptocurrency’s lowest price that was recorded on the given day.
•	 Close: The cryptocurrency’s final price as of the end of the selected date.
•	 Volume: The trading volume of the cryptocurrency on the given date.
•	 Market: The market capitalization of the cryptocurrency on the given date.
•	 Close_ratio: The ratio of the closing price to the high price for the day.
•	 Spread: The difference between the high and low prices for the day.

Each row in the dataset represents the market data for a single cryptocurrency 
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on a single day. The data covered a period from April 28th, 2013 to September 
2nd, 2017. Overall, this dataset can be used for a variety of analyses related to 
cryptocurrencies and their market behavior.

This work uses an unsupervised clustering technique to divide cryptocurrencies into 
various groups based on their market behavior. To do this, a dataset of historical 
market data is used for the top 1,000 cryptocurrencies by market capitalization, as 
tracked by CoinMarketCap. 
   
The main contribution is to identify groups of cryptocurrencies that have 
similar market behavior and characteristics, using all columns in the dataset as 
input features for the clustering algorithm. This will allow the readers to gain a 
comprehensive understanding of the cryptocurrency market and identify trends 
and patterns that may not be immediately apparent through visual inspection of 
the data. To accomplish this, the first step is to pre-process the data by scaling 
and normalizing it to ensure that all columns are on a similar scale. Then select a 
clustering approach that is appropriate for your data, such as k-means, hierarchical 
clustering, or any other relevant technique, and set the number of clusters that 
need to be identified. After that, run the clustering algorithm on the pre-processed 
data to obtain a set of clusters, each one having a collection of cryptocurrencies 
with comparable market behavior. Once the clusters are identified, analyze the 
characteristics of each cluster to gain insights into the behavior of different groups 
of cryptocurrencies in the market. For example, certain clusters may contain highly 
volatile cryptocurrencies with high trading volumes, while others contain fewer 
volatile cryptocurrencies with lower market capitalization. Overall, the objective 
of this work is to enhance comprehension of the cryptocurrency market. and 
provide insights that can be used to make better-informed decisions related to 
cryptocurrency investment, trading, and risk management.

B.	 METRICS USED

The metrics used to evaluate the performance of these algorithms are introduced 
next. These metrics encompass a range of aspects, including computational 
time, clustering quality, and the homogeneity of clusters. The metrics include the 
Silhouette Coefficient, Calinski-Harabasz Index, Davies-Bouldin Index, entropy, and 
the Elbow Method. A brief description of each metric is provided, explaining how it 
helps assess the quality of clustering results.

1.	 TIME CONSUMED:
Time consumed, also known as computational time, refers to the amount of time 
it takes for a clustering algorithm to complete its execution. The time consumed 
by a clustering algorithm can be an important evaluation metric, particularly in 
situations where the dataset is large or the algorithm is computationally intensive. 
In general, algorithms that take longer to execute may be less practical for real-
world applications where speed is a critical factor.

2.	 SILHOUETTE COEFFICIENT:
The Silhouette Coefficient is a clustering evaluation metric that evaluates the 
accuracy of each data point’s assignment to each matching cluster to determine 
the correctness of a clustering conclusion. Higher values indicate a better 
clustering fit, signaling that the data points are well-grouped, whereas lower 
values reflect potential misclassification or erroneous assignment of data points 
to clusters. It is assessed on a scale from -1 to 1, with higher values indicating 
greater clustering fit. To calculate the Silhouette Coefficient for a clustering result, 
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first compute two quantities for each data point: Based on two mean distances, 
the Silhouette Coefficient is calculated for a particular data point. The first is the 
average separation between the point and every other point in the cluster to which 
it belongs (abbreviated as “a”). The second is the average distance (abbreviated 
“b”) between the point and every other point in the closest nearby cluster. The 
formula for calculating the silhouette coefficient is (b - a) / max(a, b), where ‘max’ 
stands for the highest value that can be found between ‘a’ and ‘b’. A high value for 
the Silhouette Coefficient shows that the data point is well-clustered, comparable 
to other points in the cluster to which it has been assigned, and distinct from other 
points in other clusters. If the Silhouette Coefficient is low, the clustering algorithm 
may have created poorly separated clusters or the data point may have been 
incorrectly assigned to the cluster.

3.	 CALINSKI-HARABASZ INDEX:
A statistic called the Calinski-Harabasz Index compares the ratio of between-
cluster variance to within-cluster variance to rate the quality of clustering results. 
More favorable clustering outcomes are indicated by a higher Calinski-Harabasz 
Index value. It is determined by multiplying the ratio of the total number of data 
points to the total number of clusters by one, then dividing the sum of squares 
between clusters by the sum of squares within clusters. The clusters are thought 
to be distinct with significant between-cluster variance when the Calinski-Harabasz 
Index value is greater. In contrast, a lower Calinski-Harabasz Index value suggests 
that the clusters are weakly segregated or that there is a significant amount of 
variance within the cluster.

4.	 DAVIES-BOULDIN INDEX:
The distance between each cluster and its closest neighboring cluster is measured 
as part of the Davies-Bouldin Index, a statistic used to rate the quality of clustering 
results. The Davies-Bouldin Index’s smaller value denotes better clustering outcomes. 
Then we determine the average distance between each point in a cluster and the 
cluster centroid before computing the Davies-Bouldin Index. Next, calculate the 
pairwise distances between each pair of centroids, and for each centroid, select the 
closest neighboring centroid. Following that, the Davies-Bouldin Index is calculated 
using the following formula: DB = (1/k) * sum (max (R_i + R_j) / d (C_i, C_j)). Here, k is 
the number of clusters, R_i is the average separation between each point in cluster 
i and its centroid, and C_i is the centroid of that cluster.

5.	 ENTROPY:
Entropy is a clustering metric that measures the homogeneity of clusters by 
evaluating the distribution of data points within each cluster. Specifically, entropy 
measures the degree to which a cluster contains data points from the same class or 
category. We determine the distribution of data points belonging to various classes 
or categories within a specific cluster before beginning to compute entropy. Then 
compute the entropy of the cluster as the sum of the product of each proportion 
and its logarithm, where the logarithm is taken to the base of the number of classes 
or categories. A low entropy score indicates that the cluster’s data points are quite 
homogeneous and largely belong to one type of class or category. On the other 
hand, a high entropy number denotes that the cluster’s data points are diverse 
and reflect a variety of classes or categories. Therefore, a clustering algorithm that 
produces clusters with low entropy values is generally considered to be of higher 
quality than one that produces clusters with high entropy values.
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6.	 ELBOW METHOD:
The elbow method is a popular approach for figuring out the ideal number of clusters 
for clustering algorithms. It works under the assumption that the within-cluster sum 
of squares (WSS) tends to decrease as the number of clusters rises. This happens 
as a result of the clustering of each data point into a more specific and focused 
group. However, after a certain number of clusters, the rate of decrease in WSS 
tends to slow down, as the clusters become too specific and may even start to 
overfit the data. To apply the elbow method, first run the clustering algorithm on the 
dataset for a range of cluster numbers, such as 1 to 10 clusters. For each potential 
number of clusters, determine the within-cluster sum of squares (WSS) and then 
apply the elbow approach. The squared distances between each data point and its 
associated cluster center are added to determine the WSS. Then, create an elbow 
curve by plotting the obtained WSS values against the corresponding number of 
clusters. The elbow curve typically looks like an arm with a clear elbow point. The 
elbow point is the cluster number at which the rate of decrease in WSS starts to 
slow down significantly, indicating that adding more clusters beyond this point may 
not significantly improve the clustering quality. By choosing the elbow point on the 
depicted curve, one may calculate the ideal number of clusters given the dataset. 
The elbow method is a heuristic approach, thus it’s important to keep in mind that 
there might not always be a clear elbow point. In some cases, the curve may not 
have a distinct elbow and may instead have a gradual slope, making it hard to find 
the optimal number of clusters. The elbow approach may be supplemented in these 
situations by using other clustering evaluation metrics, such as the silhouette 
coefficient, Calinski-Harabasz index, or Davies-Bouldin index. The determination of 
the ideal number of clusters is aided by the use of these additional measures as 
supporting tools.

7.	 HIERARCHICAL CLUSTERING DENDROGRAM: 
A popular technique for grouping or clustering data points according to their 
similarity or proximity is called hierarchical clustering. It creates a dendrogram, a 
hierarchical depiction of the relationships between the data points and clusters in 
the form of a tree diagram. The clustering results’ hierarchical structure is shown 
visually in a dendrogram. It consists of horizontal lines, called branches, that 
represent the data points or clusters, and vertical lines, called nodes, that represent 
the merges or splits that occur during the clustering process. The height of each 
node represents the distance or dissimilarity between the merged clusters or data 
points. The longer the branch, the greater the distance or dissimilarity between the 
data points or clusters. The hierarchical clustering dendrogram can be constructed 
using two main methods: agglomerative and divisive. When using agglomerative 
hierarchical clustering, each data point is initially treated as a separate cluster, 
and then the closest clusters are gradually combined to produce a single cluster. 
Divisive hierarchical clustering, in comparison, starts with all of the data points in 
one cluster and then iteratively breaks them up into smaller clusters until every 
data point is in its cluster. Different distance measures, such as Euclidean distance, 
Manhattan distance, and cosine similarity, can be used to quantify the distance 
or dissimilarity between data points or clusters. The dendrogram that is produced 
as well as the overall caliber of the clustering can be significantly influenced by 
the use of a certain distance metric. Determining the ideal number of clusters is 
made easier with the help of the dendrogram, which provides a visual depiction of 
the clustering structure. To determine the number of clusters, use the horizontal 
lines in the dendrogram as a guide and look for the longest vertical lines that do 
not cross any horizontal lines. Such a vertical line represents a possible number of 
clusters. The chosen number of clusters is a trade-off between cluster granularity 
and cluster quality.
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Overall, the hierarchical clustering dendrogram is a powerful tool for visualizing 
and interpreting the clustering structure of data points or clusters. It can help us 
understand the relationships between the data points and clusters and to make 
informed decisions about the optimal number of clusters.

C.	 THE RESULTS

In this section, the researchers present the results of our clustering analysis using 
various algorithms on the dataset. The performance of each algorithm is evaluated 
based on several metrics. These metrics provide insights into the quality of the 
clustering solution and the overall performance of each algorithm.

•	•	 K-K-meansmeans
Time consumed: 0.6294 seconds
Silhouette Coefficient: 0.568
Calinski-Harabasz Index: 544.807
Davies-Bouldin Index: 0.699
Entropy: 0.5081

As mentioned earlier, the k-means algorithm performed well based on these metrics, 
with a Silhouette Coefficient greater than 0.5, a high Calinski-Harabasz Index, and a 
relatively low Davies-Bouldin Index. However, the little high entropy value suggests 
that there may be a lot of variability or noise in the data, which could impact the 
clustering results. Overall, the results indicate that the k-means algorithm has 
provided a reasonably good clustering solution.

 
Fig. 19 Data distribution between clusters

As shown in Figure 19, 47.2% of data is classified to the second cluster 1 while 
others are in the first cluster called 0 here.

•	•	 Agglomerative ClusteringAgglomerative Clustering
Time consumed: 0.4049 seconds
Silhouette Coefficient: 0.568
Calinski-Harabasz Index: 543.178
Davies-Bouldin Index: 0.697
Entropy: 0.5063

The Agglomerative Clustering algorithm performed well based on these metrics, 
with a Silhouette Coefficient greater than 0.5, a high Calinski-Harabasz Index, and 
a relatively low Davies-Bouldin Index. However, also the little high entropy value 
suggests that there may be a lot of variability or noise in the data, which could 
impact the clustering results. However, one key difference to note is that the 
Agglomerative Clustering algorithm took a little less to run, with a time consumption 
of 0.4 seconds, compared to the k-means algorithm, which only took 0.6 seconds. 
This may be a consideration when choosing which algorithm to use for clustering, 
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depending on the size and complexity of the dataset.

•	•	 DBSCANDBSCAN
Time consumed: 0.0290 seconds
Silhouette Coefficient: -0.155
Calinski-Harabasz Index: 0.484
Davies-Bouldin Index: 3.536
Entropy: 0.1386

The DBSCAN algorithm did not perform as well as the k-means and Agglomerative 
Clustering algorithms based on the provided metrics. The negative Silhouette 
Coefficient suggests that there is a significant overlap between the clusters, and the 
low Calinski-Harabasz Index and high Davies-Bouldin Index suggest that the clusters 
are not well-separated or distinct. Additionally, the low entropy value suggests that 
there won’t be enough variability in the data to form distinct clusters. So, the value 
of entropy shows the purity of clusters. However, one notable advantage of the 
DBSCAN algorithm is that it is very efficient, with a time consumption of only 0.029 
seconds, which may be beneficial for larger datasets. In summary, while the DBSCAN 
algorithm did not perform as well as the other algorithms based on the provided 
metrics, its efficiency may make it a useful option in certain situations.

•	•	 GG-means-means
Time consumed: 1.546 seconds
Silhouette Coefficient: 0.5031
Calinski-Harabasz Index: 703.356
Davies-Bouldin Index: 0.597
Entropy: 0.5714

As previously mentioned, the G-means algorithm performed similarly to the k-means 
and Agglomerative Clustering algorithms based on the provided metrics, with a high 
Silhouette Coefficient, a higher Calinski-Harabasz Index, and a low Davies-Bouldin 
Index. However, the little high entropy value suggests that there may be a lot 
of variability or noise in the data, which could impact the clustering results. One 
difference to note is that the G-means algorithm took longer to run than the k-means 
algorithm but was a little less than the Agglomerative Clustering algorithm, with a 
time consumption of 1.546 seconds. Additionally, G-means has the advantage of 
being able to automatically determine the optimal number of clusters, which can be 
useful when the optimal number of clusters is not known beforehand. In summary, 
the G-means algorithm is a promising option for clustering, especially when the 
optimal number of clusters is not known, but the high entropy value suggests that 
the clustering results should be interpreted with caution.

•	•	 Two-level algorithmTwo-level algorithm (DBSCAN and Hierarchical clustering)
Time consumed: 0.0388 seconds
Silhouette Coefficient: -0.1548
Calinski-Harabasz Index: 0.483
Davies-Bouldin Index: 3.5365
Entropy: 0.1386

As mentioned earlier, the Two-level (DBSCAN and Hierarchical clustering) algorithm 
performed poorly compared to the other algorithms based on the provided metrics, 
with a negative Silhouette Coefficient, a low Calinski-Harabasz Index, and a high 
Davies-Bouldin Index. The low Silhouette Coefficient suggests that the clusters may 
be overlapping or poorly defined, and the high Davies-Bouldin Index suggests that 
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the clustering results may not be well separated. On the positive side, the Two-level 
(DBSCAN and Hierarchical clustering) algorithm was the fastest algorithm to run, 
with a time consumption of 0.038 seconds. However, the low performance on the 
provided metrics suggests that the clustering results may not be reliable or useful 
for further analysis.

To sum up, this algorithm may not be the best option for clustering this dataset, 
based on the provided metrics. Other algorithms such as k-means, Agglomerative 
Clustering, and G-means may be better options, depending on the specific needs and 
goals of the analysis. Clustering results may not be reliable, and the high Davies-
Bouldin Index suggests that there may be an overlap between clusters. The DBSCAN 
Hierarchical Two-Levels algorithm did not perform well based on the provided 
metrics, suggesting that other clustering algorithms may be more appropriate for 
this dataset.

•	•	 Two-stage MeanShift and Two-stage MeanShift and kk-means clustering-means clustering
Time Consumed--- 4.558 seconds 
Silhouette Coefficient: 0.522
Calinski-Harabasz Index: 574.909
Davies-Bouldin Index: 0.608
Entropy: 0.5383

As previously mentioned, the Silhouette Coefficient for the two-stage MeanShift and 
k-means clustering algorithm is 0.522 which indicates a moderate level of clustering 
quality. The Calinski-Harabasz Index for this clustering method is 574.909, which is 
higher than the other methods we have evaluated so far but less than G-means. 
This suggests that the clusters are well-separated and distinct. The Davies-Bouldin 
Index for this algorithm is 0.608, which is also lower than the previous results we 
obtained for DBSCAN and agglomerative clustering. This indicates that the clusters 
are more compact and less scattered. Finally, the Entropy value for the two-stage 
density algorithm is 0.5383, which is higher than the previous results for k-means, 
agglomerative clustering, and G-means. This suggests that the clusters formed 
by this clustering algorithm have more diversity in terms of the distribution of the 
different cryptocurrencies across the clusters.
   
Overall, the Two-stage MeanShift and k-means clustering algorithm shows promising 
results in terms of the quality of the clustering and its ability to separate well-defined 
and compact clusters (see figure 20). However, its entropy value suggests that the 
clusters formed may not be as homogeneous in terms of the cryptocurrencies they 
contain as the clusters formed by the other methods.

Fig. 20 Density of clusters distributions
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•	•	 Two-stage DensityTwo-stage Density (DBSCAN and k-means)
Time consumed --- 1.1318 seconds
Silhouette Coefficient: -0.247
Calinski-Harabasz Index: 0.330
Davies-Bouldin Index: 2.783
Entropy: 0.1382

The results obtained for the Two-stage density (DBSCAN and k-means) clustering 
method show a negative Silhouette Coefficient of -0.247, which indicates that the 
clusters are overlapping and not well-separated. The Calinski-Harabasz Index is 
0.330, which is relatively low compared to the other clustering methods evaluated 
so far. This suggests that the clusters are not well-defined and distinct. The Davies-
Bouldin Index for this algorithm is 2.783, which is less than the previous results we 
obtained for DBSCAN. This suggests that the clusters are more scattered and less 
compact. Finally, the Entropy value for the Two-stage density (DBSCAN and k-means) 
is 0.1382, which is lower than the previous results for k-means and agglomerative 
clustering. This suggests that the clusters formed may have some level of diversity 
in terms of the distribution of the different cryptocurrencies across the clusters.
   
Compared to the Two-stage MeanShift and k-means clustering method, the Two-
stage density (DBSCAN and k-means) shows lower quality in terms of the Silhouette 
Coefficient and the Calinski-Harabasz Index. It also shows a higher Davies-Bouldin 
Index, suggesting that the clusters formed are less compact and more scattered. 
However, the Entropy value for Two-stage density (DBSCAN and k-means) is lower 
than the one obtained for Two-stage MeanShift and k-means, indicating that the 
clusters formed may be more homogeneous in terms of the cryptocurrencies they 
contain.
   
Overall, the Two-stage MeanShift and k-means show better results in terms of 
the quality of the clustering and its ability to separate well-defined and compact 
clusters.

•	 Algorithms Comparison and Discussion

   Table 1 summarizes the comparison results.
TABLE I:  EVALUATIONMETRICS FOR THE SEVENCLUSTRING TECHNIQUES

Algorithm
Time 
Consumed

Silhouette 
Coefficient

Calinski-
Harabasz 
Index

Davies-
Bouldin 
Index Entropy

k-means 0.629s 0.568 544.807 0.699 0.5081

Agglomerative Clustering 0.404s 0.568 543.178 0.697 0.5063

DBSCAN 0.029s -0.155 0.484 3.536 0.1386

G-means 1.546s 0.503 703.356 0.597 0.5714

Two-level algorithm 
(DBSCAN and 
Hierarchical)

0.038s -0.155 0.484 3.536 0.1386

Two-stage MeanShift 
and k-means

4.55 s 0.522 574.909 0.608 0.5383

Two-stage density 
(DBSCAN and k-means)

0.131 -0.247 0.330 2.783 0.1382
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Based on the table, it seems like k-means is one of the most popular clustering 
algorithms, and in this case, it has a relatively low time consumption of 0.62 seconds. 
It performs well in terms of the Silhouette Coefficient (0.568), Calinski-Harabasz 
Index (544.807), and Davies-Bouldin Index (0.699), indicating that the clusters are 
well-separated and compact. The entropy value of 0.5081 suggests that the clusters 
have a good degree of purity.

Agglomerative Clustering is a hierarchical clustering method that takes slightly less 
time to execute than k-means, consuming 0.404 seconds in this case. However, 
its performance is quite similar to k-means, with a Silhouette Coefficient of 0.568, 
Calinski-Harabasz Index of 543.178, and Davies-Bouldin Index of 0.697. The entropy 
value is slightly the same as k-means with 0.5063, indicating a marginally good 
cluster purity.

DBSCAN is a density-based clustering algorithm that is very fast, taking only 
approximately 0.03 seconds to execute. However, its performance is significantly 
worse than k-means and Agglomerative Clustering, with a negative Silhouette 
Coefficient (-0.155) so points are not well clustered, low Calinski-Harabasz Index 
(0.484) so the clusters are not well-separated, and high Davies-Bouldin Index (3.536) 
so low quality of clustering. However, the entropy value of 0.1386 suggests that the 
clusters are approx. very pure.

G-means is another clustering algorithm that takes a moderate amount of time 
to execute, consuming 1.54 seconds. Its performance is similar to k-means and 
Agglomerative Clustering, with a Silhouette Coefficient of 0.568, and Davies-Bouldin 
Index of 0.597, and a higher Calinski-Harabasz Index of 703.35. However, the entropy 
value is slightly higher at 0.5714, indicating an approx. a lower degree of cluster 
purity than the previous algorithm.

Two-Levels DBSCAN Hierarchical is a variation of the DBSCAN algorithm that takes 
substantially less time to execute, consuming 0.03 seconds similar to DBSCAN. 
Also, its performance is identical to the original DBSCAN, with a negative Silhouette 
Coefficient (-0.155), low Calinski-Harabasz Index (0.484), and high Davies-Bouldin 
Index (3.536) indicating that clusters are not well separated and not well clustered. 
And The entropy value remains the same at 0.1386 which suggests that the clusters 
are approximately very pure. 

Two-stage density DBSCAN k-means is a combination of DBSCAN and k-means 
algorithms that takes 1.125 seconds to execute. Its performance is worse than 
k-means and Agglomerative Clustering, with a negative Silhouette Coefficient 
(-0.247), low Calinski-Harabasz Index (0.330), and high Davies-Bouldin Index (2.783). 
The entropy value is similar to DBSCAN at 0.1382.

Finally, we have the TWO-stage (MeanShift and K-means), which is another clustering 
algorithm that takes 4.558 seconds to execute. Its performance is slightly better 
than k-means and Agglomerative Clustering in terms of the Calinski-Harabasz Index 
(574.909) but has a slightly lower value in terms of the Silhouette Coefficient (0.522) 
and Davies-Bouldin Index (0.608). The entropy value is 0.5383, indicating a good 
degree of cluster purity.
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IV.	 CONCLUSION

With the advancement of new technologies, data has become a crucial component 
of our day-to-day lives and the significance of data cannot be overstated. Clustering 
is a clever method for obtaining important insights from data, which is essential. 
It involves partitioning data into groups of related objects, where each cluster 
comprises objects that are unique from those in other clusters but comparable to 
each other. Classifying or organizing data into categories or clusters is an essential 
part of managing data. Data clustering provides a valuable tool for working with 
large datasets, making it useful to everyone from common users to researchers 
and businesspeople. However, clustering data is a complex task that requires 
the selection of numerous distinct methodologies, parameters, and metrics, all of 
which have implications for several practical world issues. Therefore, analyzing 
the advantages and disadvantages of clustering algorithms is a challenging 
undertaking that has garnered a lot of attention. In this paper, we tackled this task 
by comparing several clustering techniques based on various metrics using a real 
dataset of cryptocurrencies. We explored seven clustering algorithms in detail: 
k-means, G-means, Agglomerative Hierarchical Clustering, Two-level algorithm 
(DBSCAN and Hierarchical), Two-stage MeanShift and k-means, and Two-stage 
density (DBSCAN and k-means). The benefits and drawbacks of each method were 
carefully considered before we applied them to the cryptocurrency dataset. Five 
metrics were also used to assess their performance: temporal complexity, entropy, 
silhouette coefficient, the Calinski-Harabasz Index, and the Davies-Bouldin Index.

Through our analysis, we attempted to provide a comprehensive evaluation of each 
algorithm’s performance on the given dataset, enabling researchers, businesspeople, 
and other users to make informed decisions when choosing a clustering algorithm 
for their data. Our study highlighted the importance of considering multiple metrics 
when selecting a clustering algorithm and underscores the need for further 
research in this field to improve clustering techniques and their applications in real-
life scenarios.

k-means and Agglomerative Clustering showed according to the dataset used, that 
both have very similar performance in terms of time consumed, Silhouette Coefficient, 
Calinski-Harabasz Index, Davies-Bouldin Index, and Entropy. Both techniques 
showed a significant Silhouette Coefficient, indicating that the clusters are distinct 
and have homogeneous interiors. Additionally, the Calinski-Harabasz Index for both 
techniques was relatively high, showing discrete and well-separated clusters. 
However, the Entropy value for both algorithms was relatively high, indicating that 
the resulting clusters are not very informative and do not provide much insight 
into the underlying structure of the data. DBSCAN and Two-Levels (DBSCAN and 
Hierarchical) both had very low Silhouette Coefficient values, indicating that the 
resulting clusters are poorly separated and not very homogeneous. Additionally, 
the Davies-Bouldin Index for both algorithms was relatively high, indicating that the 
resulting clusters are not well-separated. However, both algorithms had a relatively 
low time consumed, making them good choices for datasets with large numbers of 
observations. G-means had a relatively high time consumed compared to k-means 
and Agglomerative Clustering but had similar values for Silhouette Coefficient, 
Calinski-Harabasz Index, Davies-Bouldin Index, and Entropy. However, the Entropy 
value for G-means was slightly higher than that of k-means and Agglomerative 
Clustering, indicating that the resulting clusters may not be as informative. Moreover, 
the Two-stage density (DBSCAN and k-means) had a relatively low Silhouette 
Coefficient and Calinski-Harabasz Index, demonstrating that the resulting clusters 
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are not particularly clearly distinguished from one another. Additionally, the Davies-
Bouldin Index value was relatively high, indicating that the resulting clusters are 
not well-separated. However, the time consumed was relatively low, making this 
algorithm a good choice for datasets with a large number of observations. Finally, 
Two-stage (MeanShift and k-means) had a relatively high Silhouette Coefficient 
and Calinski-Harabasz Index, demonstrating how distinct and well-separated the 
resulting clusters are. Additionally, the Davies-Bouldin Index value was relatively 
low, indicating that the resulting clusters are well-separated. However, the time 
consumed was relatively high, indicating that this algorithm may not be the best 
choice for datasets with a large number of observations.

Overall, the selection of the clustering technique is influenced by the specifics of 
the dataset and the objectives of the study. For datasets with few clusters, it is 
recommended to use K-means and agglomerative clustering, while DBSCAN and Two-
Levels (DBSCAN Hierarchical) are good choices for datasets with a large number 
of observations. G-means is a good choice for datasets with irregular shapes or 
varying cluster sizes, while Two-stage (MeanShift and k-means) is a good choice 
for datasets where well-separated and distinct clusters are desired. It is important 
to consider multiple metrics when evaluating clustering algorithms to obtain a 
comprehensive understanding of their performance. 

In conclusion, clustering algorithms are an essential tool for working with large 
datasets and extracting useful information. Through the analysis of seven different 
clustering algorithms on the cryptocurrency dataset using five metrics, we were 
able to compare their performance and identify their strengths and weaknesses. 
Each algorithm has its set of pros and cons, and the analysis’s objectives and the 
particular dataset’s features determine the algorithm to use. Moving forward, there 
are many opportunities to further explore the application of clustering algorithms in 
various fields, such as finance, healthcare, and marketing. Given the speed at which 
technology is developing and the growing amount of data available, the importance 
of clustering algorithms in extracting meaningful insights and making data-driven 
decisions will continue to grow. In addition, future research can focus on improving 
existing clustering algorithms or developing new algorithms that can handle 
datasets with complex structures, outliers, and high-dimensional features. With the 
ongoing development of machine learning and artificial intelligence, the potential for 
clustering algorithms to contribute to various fields and improve decision-making 
processes is unlimited.

To sum up, the study of clustering algorithms is a crucial area of research that has 
numerous practical applications. By understanding the performance and limitations 
of various clustering algorithms, we can leverage them to extract useful information 
from large datasets and gain valuable insights that can inform decision-making 
processes.
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